Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging. 13:496–520. https://doi.org/10.1002/jmri.1073
Article
CAS
PubMed
Google Scholar
Eck BL, Muzic RF, Levi J et al (2018) The role of acquisition and quantification methods in myocardial blood flow estimability for myocardial perfusion imaging CT. Phys Med Biol. 63:185011. https://doi.org/10.1088/1361-6560/aadab6
Article
CAS
PubMed
PubMed Central
Google Scholar
Bengel FM (2011) Leaving relativity behind. J Am Coll Cardiol. 8:749–751. https://doi.org/10.1016/j.jacc.2011.02.068
Article
Google Scholar
Sviri GE, Britz GW, Lewis DH, Newell DW, Zaaroor M, Cohen W (2006) Dynamic perfusion computed tomography in the diagnosis of cerebral vasospasm. Neurosurgery 59:319–324. https://doi.org/10.1227/01.NEU.0000222819.18834.33
Article
PubMed
Google Scholar
Morton G, Chiribiri A, Ishida M et al (2012) Quantification of absolute myocardial perfusion in patients with coronary artery disease. J Am Coll Cardiol 60:1546–1555. https://doi.org/10.1016/j.jacc.2012.05.052
Article
PubMed
Google Scholar
Slomka P, Xu Y, Berman D, Germano G (2014) Quantitative analysis of perfusion studies: strengths and pitfalls. J Nucl Cardiol 71:3831–3840. https://doi.org/10.1007/s12350-011-9509-2
Article
Google Scholar
Burrell S, MacDonald A (2006) Artifacts and pitfalls in myocardial perfusion imaging artifacts and pitfalls in myocardial perfusion imaging. J Nucl Med Technol 34:193–212
Chiribiri A, Schuster A, Ishida M et al (2013) Perfusion phantom: an efficient and reproducible method to simulate myocardial first-pass perfusion measurements with cardiovascular magnetic resonance. Magn Reson Med 69:698–707. https://doi.org/10.1002/mrm.24299
Article
CAS
PubMed
Google Scholar
Andersen IK, Sidaros K, Gesmar H, Rostrup E, Larsson HB (2000) A model system for perfusion quantification using FAIR. Magn Reson Imaging. 18:565–574. https://doi.org/10.1016/S0730-725X(00)00136-3
Article
Google Scholar
Brauweiler R, Eisa F, Hupfer M, Nowak T, Kolditz D, Kalender WA (2012) Development and evaluation of a phantom for dynamic contrast-enhanced imaging. Invest Radiol. 47:462–467. https://doi.org/10.1097/RLI.0b013e318250a72c
Article
PubMed
Google Scholar
Li P-C, Yeh C-K, Wang S-W (2002) Time-intensity-based volumetric flow measurements: an in vitro study. Ultrasound Med Biol. 28:349–358. https://doi.org/10.1016/S0301-5629(01)00516-6
Article
PubMed
Google Scholar
Peladeau-Pigeon M, Coolens C (2013) Computational fluid dynamics modelling of perfusion measurements in dynamic contrast-enhanced computed tomography: Development, validation and clinical applications. Phys Med Biol. 58:6111–6131. https://doi.org/10.1088/0031-9155/58/17/6111
Article
CAS
Google Scholar
Driscoll B, Keller H, Coolens C (2011) Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT. Med Phys. 38:4866–4880. https://doi.org/10.1118/1.3615058
Article
CAS
Google Scholar
Kim M, Abbey CK, Insana MF (2016) Efficiency of U.S. tissue perfusion estimators. IEEE Trans Ultrason Ferroelectr Freq Control. 63:1131–1139. https://doi.org/10.1109/TUFFC.2016.2571979
Article
PubMed
Google Scholar
Anderson JR, Ackerman JJH, Garbow JR (2011) Semipermeable hollow fiber phantoms for development and validation of perfusion-sensitive MR methods and signal models. Concepts Magn Reson Part B Magn Reson Eng. 39B:149–158. https://doi.org/10.1002/cmr.b.20202
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer-Wiethe K, Cangür H, Seidel G (2005) Comparison of different mathematical models to analyze diminution kinetics of ultrasound contrast enhancement in a flow phantom. Ultrasound Med Biol. 31:93–98. https://doi.org/10.1016/j.ultrasmedbio.2004.05.006
Article
PubMed
Google Scholar
Veltmann C, Lohmaier S, Schlosser T et al (2002) On the design of a capillary flow phantom for the evaluation of ultrasound contrast agents at very low flow velocities. Ultrasound Med Biol. 28:625–634. https://doi.org/10.1016/S0301-5629(02)00499-4
Article
PubMed
Google Scholar
Kim EJ, Kim DH, Lee SH, Huh YM, Song HT, Suh JS (2004) Simultaneous acquisition of perfusion and permeability from corrected relaxation rates with dynamic susceptibility contrast dual gradient echo. Magn Reson Imaging. 22:307–314. https://doi.org/10.1016/j.mri.2004.01.012
Article
PubMed
Google Scholar
Lee JH, Cheong H, Song J-A et al (2016) Perfusion assessment using intravoxel incoherent motion-based analysis of diffusion-weighted magnetic resonance imaging. Invest Radiol. 51:520–528. https://doi.org/10.1097/RLI.0000000000000262
Article
PubMed
Google Scholar
Chai JW, Chen JH, Kao YH et al (2002) Spoiled gradient-echo as an arterial spin tagging technique for quick evaluation of local perfusion. J Magn Reson Imaging. 16:51–59. https://doi.org/10.1002/jmri.10128
Article
PubMed
Google Scholar
Potdevin TC, Fowlkes JB, Moskalik AP, Carson PL (2004) Analysis of refill curve shape in ultrasound contrast agent studies. Med Phys. 31:623–632. https://doi.org/10.1118/1.1649534
Article
CAS
PubMed
Google Scholar
Lucidarme O, Franchi-abella S, Correas J, Bridal SL, Kurtisovski E (2003) Blood flow quantification with contrast-enhanced US : “Entrance in the Section” phenomenon — phantom and rabbit study. Radiology. 228:473–479. https://doi.org/10.1148/radiol.2282020699
Article
PubMed
Google Scholar
Boese A, Gugel S, Serowy S et al (2012) Performance evaluation of a C-Arm CT perfusion phantom. Int J Comput Assist Radiol Surg. 8:799–807. https://doi.org/10.1007/s11548-012-0804-4
Article
PubMed
Google Scholar
Hashimoto H, Suzuki K, Okaniwa E, Iimura H, Abe K, Sakai S (2017) The effect of scan interval and bolus length on the quantitative accuracy of cerebral computed tomography perfusion analysis using a hollow-fiber phantom. Radiol Phys Technol. 11:13–19. https://doi.org/10.1007/s12194-017-0427-0
Article
PubMed
Google Scholar
Suzuki K, Hashimoto H, Okaniwa E et al (2017) Quantitative accuracy of computed tomography perfusion under low - dose conditions , measured using a hollow - fiber phantom. Jpn J Radiol. 35:373–380. https://doi.org/10.1007/s11604-017-0642-y
Article
Google Scholar
Noguchi T, Yshiura T, Hiwatashi A et al (2007) Quantitative perfusion imaging with pulsed arterial spin labeling: a phantom study. Magn Reson Med Sci. 6:91–97. https://doi.org/10.2463/mrms.6.91
Article
PubMed
Google Scholar
Wang Y, Kim SE, Dibella EVR, Parker DL (2010) Flow measurement in MRI using arterial spin labeling with cumulative readout pulses - theory and validation. Med Phys. 37:5801–5810. https://doi.org/10.1118/1.3501881
Article
PubMed
PubMed Central
Google Scholar
Cangür H, Meyer-Wiethe K, Seidel G (2004) Comparison of flow parameters to analyse bolus kinetics of ultrasound contrast enhancement in a capillary flow model. Ultraschall Med. 25:418–421. https://doi.org/10.1055/s-2004-813796
Article
Google Scholar
Klotz E, König M (1999) Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol. 30:170–184. https://doi.org/10.1016/S0720-048X(99)00009-1
Article
CAS
PubMed
Google Scholar
Claassen L, Seidel G, Algermissen C (2001) Quantification of flow rates using harmonic grey-scale imaging and an ultrasound contrast agent: an in vitro and in vivo study. Ultrasound Med Biol. 27:83–88. https://doi.org/10.1016/S0301-5629(00)00324-0
Article
CAS
PubMed
Google Scholar
Mathys C, Rybacki K, Wittsack HJ et al (2012) A phantom approach to interscanner comparability of computed tomographic brain perfusion parameters. J Comput Assist Tomogr. 36:732–738. https://doi.org/10.1097/rct.0b013e31826801df
Article
Google Scholar
Ebrahimi B, Swanson SD, Chupp TE (2010) A microfabricated phantom for quantitative MR perfusion measurements: validation of singular value decomposition deconvolution method. IEEE Trans Biomed Eng. 57:2730–2736. https://doi.org/10.1109/TBME.2010.2055866
Article
Google Scholar
Ohno N, Miyati T, Chigusa T et al (2015) Technical note: development of a cranial phantom for assessing perfusion, diffusion, and biomechanics. Med Phys 44:1646–54 . https://doi.org/10.1002/mp.12182
Article
CAS
Google Scholar
Zarinabad N, Hautvast GLTF, Sammut E et al (2014) Effects of tracer arrival time on the accuracy of high-resolution (Voxel-wise) myocardial perfusion maps from contrast-enhanced first-pass perfusion magnetic resonance. IEEE Trans Biomed Eng. 61:2499–2506. https://doi.org/10.1109/TBME.2014.2322937
Article
PubMed
Google Scholar
Zarinabad N, Chiribiri A, Hautvast GLTF et al (2012) Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and Methods Comparison. Magn Reson Med. 68:1994–2004. https://doi.org/10.1002/mrm.24195
Article
PubMed
Google Scholar
O’Doherty J, Chalampalakis Z, Schleyer P, Nazir MS, Chiribiri A, Marsden PK (2017) The effect of high count rates on cardiac perfusion quantification in a simultaneous PET-MR system using a cardiac perfusion phantom. EJNMMI Phys. 4:31. https://doi.org/10.1186/s40658-017-0199-y
Article
Google Scholar
O’Doherty J, Sammut E, Schleyer P et al (2017) Feasibility of simultaneous PET-MR perfusion using a novel cardiac perfusion phantom. Eur J Hybrid Imaging. 1:1–14. https://doi.org/10.1186/s41824-017-0008-9
Article
Google Scholar
Otton J, Morton G, Schuster A et al (2013) A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom. J Cardiovasc Comput Tomogr. 7:117–124. https://doi.org/10.1016/j.jcct.2013.01.016
Article
PubMed
PubMed Central
Google Scholar
Ressner M, Brodin LA, Jansson T, Hoff L, Ask P, Janerot-Sjoberg B (2006) Effects of ultrasound contrast agents on doppler tissue velocity estimation. J Am Soc Echocardiogr. 19:154–164. https://doi.org/10.1016/j.echo.2005.09.025
Article
PubMed
Google Scholar
Ziemer BP, Hubbard L, Lipinski J, Molloi S (2015) Dynamic CT perfusion measurement in a cardiac phantom. Int J Cardiovasc Imaging. 31:1451–1459. https://doi.org/10.1007/s10554-015-0700-4
Article
PubMed
PubMed Central
Google Scholar
Sakano R, Kamishima T, Nishida M, Horie T (2015) Power Doppler signal calibration between ultrasound machines by use of a capillary-flow phantom for pannus vascularity in rheumatoid finger joints: a basic study. Radiol Phys Technol.8:120-124. https://doi.org/10.1007/s12194-014-0299-5
Article
Google Scholar
Gauthier TP, Averkiou MA, Leen ELS (2011) Perfusion quantification using dynamic contrast-enhanced ultrasound: the impact of dynamic range and gain on time-intensity curves. Ultrasonics. 51:102–106. https://doi.org/10.1016/j.ultras.2010.06.004
Article
CAS
PubMed
Google Scholar
Low L, Ramadan S, Coolens C, Naguib HE (2018) 3D printing complex lattice structures for permeable liver phantom fabrication. Bioprinting. 10. https://doi.org/10.1016/j.bprint.2018.e00025
Article
Google Scholar
Cho GY, Kim S, Jensen JH, Storey P, Sodickson DK, Sigmund EE (2012) A versatile flow phantom for intravoxel incoherent motion MRI. Magn Reson Med 67:1710–1720. https://doi.org/10.1002/mrm.23193
Article
PubMed
Google Scholar
Murthy VL, Bateman TM, Beanlands RS et al (2017) Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Med. 59:273–293. https://doi.org/10.2967/jnumed.117.201368
Article
Google Scholar
Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 13:407–484. https://doi.org/10.1177/074823379701300401
Article
CAS
PubMed
Google Scholar
Chrysanthou-Baustert I, Polycarpou I, Demetriadou O et al (2017) Characterization of attenuation and respiratory motion artifacts and their influence on SPECT MP image evaluation using a dynamic phantom assembly with variable cardiac defects. J Nucl Cardiol. 24:698–707. https://doi.org/10.1007/s12350-015-0378-y
Article
PubMed
Google Scholar
Fieseler M, Kugel H, Gigengack F et al (2013) A dynamic thorax phantom for the assessment of cardiac and respiratory motion correction in PET/MRI: A preliminary evaluation. Nucl Instrum Methods Phys Res. 702:59–63. https://doi.org/10.1016/j.nima.2012.09.039
Article
CAS
Google Scholar
Leiva-Salinas C, Hom J, Warach S, Wintermark M (2012) Stroke Imaging Research Roadmap. Neuroimaging Clin N Am. 21:1–9. https://doi.org/10.1016/j.nic.2011.01.009
Article
Google Scholar
Miles KA, Lee T, Goh V, Klotz E, Cuenod C (2012) Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 22:1430–1441. https://doi.org/10.1007/s00330-012-2379-4
Article
CAS
Google Scholar
Van Meurs WL (2011) Modeling and simulation in biomedical engineering - applications in cardiorespiratory physiology. The McGraw-Hill Companies. https://doi.org/10.1109/MPUL.2013.2289532
Article
Google Scholar
Sargent RG (2010) Verification and validation of simulation models. Proc 2010 Winter Simul Conf 166–183. https://doi.org/10.1109/WSC.2007.4419595
Wang K, Ho C, Zhang C, Wang B (2017) A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering. 3:653–662. https://doi.org/10.1016/J.ENG.2017.05.013
Article
CAS
Google Scholar
Wood RP, Khobragade P, Ying L et al (2015) Initial testing of a 3D printed perfusion phantom using digital subtraction angiography. Proc SPIE 9417, Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging, 94170V. https://doi.org/10.1117/12.2081471