Reich DS, Lucchinetti CF, Calabresi PA (2018) Multiple sclerosis. N Engl J Med 378:169–180. doi:https://doi.org/10.1056/NEJMra1401483
Lublin FD, Reingold SC, J a C et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. https://doi.org/10.1212/WNL.0000000000000560
Wingerchuk DM, Banwell B, Bennett JL et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 85:177–189. https://doi.org/10.1212/WNL.0000000000001729
Article
PubMed
PubMed Central
Google Scholar
Thompson AJ, Banwell BL, Barkhof F et al (2018) Position Paper Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173. https://doi.org/10.1016/S1474-4422(17)30470-2
Rovira Á, Wattjes MP, Tintoré M et al (2015) Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis - clinical implementation in the diagnostic process. Nat Rev Neurol 11:471–482. https://doi.org/10.1038/nrneurol.2015.106
Article
PubMed
Google Scholar
Wingerchuk DM, Banwell B, Bennett JL et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85:177–189 https://doi.org/10.1212/WNL.0000000000001729
Kremer S, Renard F, Achard S et al (2015) Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder. JAMA Neurol 72:815. https://doi.org/10.1001/jamaneurol.2015.0248
Article
PubMed
PubMed Central
Google Scholar
Sinnecker T, Clarke MA, Meier D et al (2019) Evaluation of the central vein sign as a diagnostic imaging biomarker in multiple sclerosis. JAMA Neurol 76:1446–1456. https://doi.org/10.1001/jamaneurol.2019.2478
Article
PubMed
Google Scholar
Maggi P, Macri SMC, Gaitán MI et al (2014) The formation of inflammatory demyelinated lesions in cerebral white matter. Ann Neurol 76:594–608. https://doi.org/10.1002/ana.24242
Article
PubMed
PubMed Central
Google Scholar
Absinta M, Nair G, Sati P, Cortese ICM, Filippi M, Reich DS (2015) Direct MRI detection of impending plaque development in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2:e145. https://doi.org/10.1212/NXI.0000000000000145
Article
PubMed
PubMed Central
Google Scholar
Absinta M, Sati P, Gaitán MI et al (2013) Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann Neurol 74:669–678. https://doi.org/10.1002/ana.23959
Article
CAS
PubMed
Google Scholar
Absinta M, Sati P, Schindler M et al (2016) Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest 126:2597–2609. https://doi.org/10.1172/JCI86198
Article
PubMed
PubMed Central
Google Scholar
Wisnieff C, Ramanan S, Olesik J, Gauthier S, Wang Y, Pitt D (2015) Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron. Magn Reson Med 74:564–570. https://doi.org/10.1002/mrm.25420
Article
CAS
PubMed
Google Scholar
Bagnato F, Hametner S, Yao B et al (2011) Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain. 134:3599–3612. https://doi.org/10.1093/brain/awr278
Article
PubMed Central
Google Scholar
Kaunzner UW, Kang Y, Zhang S et al (2019) Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain. 142:133–145. https://doi.org/10.1093/brain/awy296
Article
PubMed
Google Scholar
Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I (2018) Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol 135:511–528. https://doi.org/10.1007/s00401-018-1818-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Absinta M, Sati P, Masuzzo F et al (2019) Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol 76:1474–1483. https://doi.org/10.1001/jamaneurol.2019.2399
Article
PubMed
PubMed Central
Google Scholar
Li X, Harrison DM, Liu H et al (2016) Magnetic susceptibility contrast variations in multiple sclerosis lesions. J Magn Reson Imaging 43:463–473. https://doi.org/10.1002/jmri.24976
Article
PubMed
Google Scholar
Tallantyre EC, Morgan PS, Dixon JE et al (2009) A comparison of 3T and 7T in the detection of small parenchymal veins within MS lesions. Invest Radiol 44:491–494. https://doi.org/10.1097/RLI.0b013e3181b4c144
Article
PubMed
Google Scholar
Tallantyre EC, Dixon JE, Donaldson I et al (2011) Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology. 76:534–539. https://doi.org/10.1212/WNL.0b013e31820b7630
Article
CAS
PubMed
PubMed Central
Google Scholar
Kollia K, Maderwald S, Putzki N et al (2009) First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am J Neuroradiol 30:699–702. https://doi.org/10.3174/ajnr.A1434
Article
CAS
PubMed
PubMed Central
Google Scholar
Dal-Bianco A, Hametner S, Grabner G et al (2015) Veins in plaques of multiple sclerosis patients – a longitudinal magnetic resonance imaging study at 7 Tesla. Eur Radiol 25:2913–2920. https://doi.org/10.1007/s00330-015-3719-y
Article
PubMed
Google Scholar
Adams C, Poston R, Bulk S (1989) Pathology, histochemistry and immunocytochemistry of lesions in acute multiple sclerosis. J Neurol Sci 92:291–306. https://doi.org/10.1016/0022-510x(89)90144-5
Article
CAS
PubMed
Google Scholar
Tan IL, Van Schijndel RA, Pouwels PJW et al (2000) MR venography of multiple sclerosis. AJNR Am J Neuroradiol 21:1039–1042 doi:10871010
CAS
PubMed
Google Scholar
Sati P, Oh J, Todd Constable R et al (2016) The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 12:714–722. https://doi.org/10.1038/nrneurol.2016.166
Article
PubMed
Google Scholar
Maggi P, Absinta M, Grammatico M et al (2018) Central vein sign differentiates multiple sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol 83:283–294. https://doi.org/10.1002/ana.25146
Article
CAS
PubMed
PubMed Central
Google Scholar
Hosseini Z, Matusinec J, Rudko DA et al (2018) Morphology-specific discrimination between MS white matter lesions and benign white matter hyperintensities using ultra-high-field MRI. AJNR Am J Neuroradiol:1–7. https://doi.org/10.3174/ajnr.A5705
Mainero C, Benner T, Radding A et al (2009) In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 73:941–948. https://doi.org/10.1212/WNL.0b013e3181b64bf7
Pitt D, Boster A, Pei W et al (2015) Imaging cortical lesions in multiple sclerosis with ultra–high-field magnetic resonance imaging. JAMA Neurol 67:812–818. https://doi.org/10.1001/archneurol.2010.148
Article
Google Scholar
Maranzano J, Dadar M, Rudko DA et al (2019) Comparison of multiple sclerosis cortical lesion types detected by multicontrast 3T and 7T MRI. AJNR Am J Neuroradiol 40:1162–1169. https://doi.org/10.3174/ajnr.A6099
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison DM, Roy S, Oh J et al (2015) Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis. JAMA Neurol 72:1004. https://doi.org/10.1001/jamaneurol.2015.1241
Article
PubMed
PubMed Central
Google Scholar
Treaba CA, Granberg TE, Sormani MP et al (2019) Longitudinal characterization of cortical lesion development and evolution in multiple sclerosis with 7.0-T MRI. Radiology. 291:710–749. https://doi.org/10.1148/radiol.2019181719
Article
Google Scholar
Cocozza S, Cosottini M, Signori A et al (2020) A clinically feasible 7-Tesla protocol for the identification of cortical lesions in Multiple Sclerosis. Eur Radiol 30:4586–4594. https://doi.org/10.1007/s00330-020-06803-y
Kutzelnigg A, Lucchinetti CF, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 128:2705–2712. https://doi.org/10.1093/brain/awh641
Article
PubMed
Google Scholar
Calabrese M, Oh MS, Favaretto A et al (2012) No MRI evidence of cortical lesions in neuromyelitis optica. Neurology. 79:1671–1676. https://doi.org/10.1212/WNL.0b013e31826e9a96
Article
PubMed
Google Scholar
Scalfari A, Romualdi C, Nicholas RS et al (2018) The cortical damage, early relapses, and onset of the progressive phase in multiple sclerosis. Neurology. 90:e2107–e2118. https://doi.org/10.1212/WNL.0000000000005685
Article
PubMed
Google Scholar
Stüber C, Pitt D, Wang Y (2016) Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping. Int J Mol Sci 17:100. https://doi.org/10.3390/ijms17010100
Article
CAS
PubMed Central
Google Scholar
Kilsdonk ID, Jonkman LE, Klaver R et al (2016) Increased cortical grey matter lesion detection in multiple sclerosis with 7-T MRI: a post-mortem verification study. Brain. 139:1472–1481. https://doi.org/10.1093/brain/aww037
Article
PubMed
Google Scholar
Magliozzi R, Howell OW, Nicholas R et al (2018) Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann Neurol 83:739–755. https://doi.org/10.1002/ana.25197
Article
CAS
PubMed
Google Scholar
Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJG, Reynolds R, Martin R (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16:147–158. https://doi.org/10.1038/nrn3900
Article
CAS
PubMed
Google Scholar
Tallantyre EC, Morgan PS, Dixon JE et al (2010) 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions. J Magn Reson Imaging 32:971–977. https://doi.org/10.1002/jmri.22115
Article
PubMed
Google Scholar
Mangeat G, Badji A, Ouellette R et al (2018) Changes in structural network are associated with cortical demyelination in early multiple sclerosis. Hum Brain Mapp 39:2133–2146. https://doi.org/10.1002/hbm.23993
Article
PubMed
PubMed Central
Google Scholar
Sinnecker T, Mittelstaedt P, Dörr J et al (2012) Multiple sclerosis lesions and irreversible brain tissue damage. Arch Neurol 69. https://doi.org/10.1001/archneurol.2011.2450
Urushibata Y, Kuribayashi H, Fujimoto K et al (2019) Advantages of fluid and white matter suppression (FLAWS)with MP2RAGE compared with double inversion recovery turbo spin echo (DIR-TSE) at 7T. Eur J Radiol 116:160–164. https://doi.org/10.1016/j.ejrad.2019.04.019
Article
PubMed
Google Scholar
Louapre C, Govindarajan ST, Giannì C et al (2015) Beyond focal cortical lesions in MS. Neurology. 85:1702–1709. https://doi.org/10.1212/wnl.0000000000002106
Article
PubMed
PubMed Central
Google Scholar
Mainero C, Louapre C, Govindarajan ST et al (2015) A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain. 138:932–945. https://doi.org/10.1093/brain/awv011
Article
PubMed
PubMed Central
Google Scholar
Jonkman LE, Fleysher L, Steenwijk MD et al (2016) Ultra-high field MTR and qR2∗ differentiates subpial cortical lesions from normal-appearing gray matter in multiple sclerosis. Mult Scler 22:1306–1314. https://doi.org/10.1177/1352458515620499
Article
PubMed
Google Scholar
Herranz E, Louapre C, Treaba CA et al (2019) Profiles of cortical inflammation in multiple sclerosis by 11C-PBR28 MR-PET and 7 Tesla imaging. Mult Scler J:1–13. https://doi.org/10.1177/1352458519867320
Zurawski J, Tauhid S, Chu R et al (2019) 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. Mult Scler J. https://doi.org/10.1177/1352458519885106
Zurawski J, Lassmann H, Bakshi R (2017) Use of magnetic resonance imaging to visualize leptomeningeal inflammation in patients withmultiple sclerosis: a review. JAMA Neurol 74:100–109. https://doi.org/10.1001/jamaneurol.2016.4237
Article
PubMed
Google Scholar
Eisele P, Griebe M, Szabo K et al (2015) Investigation of leptomeningeal enhancement in MS: a postcontrast FLAIR MRI study. Neurology. 84:770–775. https://doi.org/10.1212/WNL.0000000000001286
Article
CAS
PubMed
Google Scholar
Absinta M, Vuolo L, Rao A et al (2015) Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. 85:18–28. https://doi.org/10.1212/WNL.0000000000001587
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison DM, Wang KY, Fiol J et al (2017) Leptomeningeal enhancement at 7T in multiple sclerosis: frequency, morphology, and relationship to cortical volume. J Neuroimaging 27:461–468. https://doi.org/10.1111/jon.12444
Article
PubMed
PubMed Central
Google Scholar
Ighani M, Jonas S, Izbudak I et al (2020) No association between cortical lesions and leptomeningeal enhancement on 7-Tesla MRI in multiple sclerosis. Mult Scler J 26:165–176. https://doi.org/10.1177/1352458519876037
Article
Google Scholar
Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG (2004) Molecular changes in neurons in multiple sclerosis: altered axonal expression of Na v 1 . 2 and Na v 1 . 6 sodium channels and Na+Ca 2+ exchanger. Proc Natl Acad Sci U S A 101:8168–8173. https://doi.org/10.1073/pnas.0402765101
Inglese M, Madelin G, Oesingmann N et al (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain. 133:847–857. https://doi.org/10.1093/brain/awp334
Article
CAS
PubMed
PubMed Central
Google Scholar
Maarouf A, Audoin B, Pariollaud F et al (2017) Increased total sodium concentration in gray matter better explains cognition than atrophy in MS. Neurology. 88:289–295. https://doi.org/10.1212/WNL.0000000000003511
Article
CAS
PubMed
Google Scholar
Zaaraoui W, Konstandin S, Audoin B et al (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis. Radiology 264:859–867. https://doi.org/10.1148/radiol.12112680/-/DC1
Article
PubMed
Google Scholar
Fleysher L, Oesingmann N, Brown R, Sodickson DK, Wiggins GC, Inglese M (2013) Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI. NMR Biomed 26:9–19. https://doi.org/10.1002/nbm.2813
Article
CAS
PubMed
Google Scholar
Petracca M, Vancea RO, Fleysher L, Jonkman LE, Oesingmann N, Inglese M (2016) Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study. Brain.:1–12. https://doi.org/10.1093/brain/awv386
Vu AT, Auerbach E, Lenglet C et al (2015) High resolution whole brain diffusion imaging at 7 T for the Human Connectome Project. Neuroimage. 122:318–331. https://doi.org/10.1016/j.neuroimage.2015.08.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Jonkman LE, Klaver R, Fleysher L, Inglese M, Geurts JJG (2016) The substrate of increased cortical FA in MS: a 7T post-mortem MRI and histopathology study. Mult Scler 22:1804–1811. https://doi.org/10.1177/1352458516635290
Article
PubMed
Google Scholar
Gras V, Poser BA, Wu X, Tomi-Tricot R, Boulant N (2019) Optimizing BOLD sensitivity in the 7T Human Connectome Project resting-state fMRI protocol using plug-and-play parallel transmission. Neuroimage. 195:1–10. https://doi.org/10.1016/j.neuroimage.2019.03.040
Article
PubMed
Google Scholar
Ivanov D, Gardumi A, Haast RAM, Pfeuffer J, Poser BA, Uludağ K (2017) Comparison of 3 T and 7 T ASL techniques for concurrent functional perfusion and BOLD studies. Neuroimage. 156:363–376. https://doi.org/10.1016/j.neuroimage.2017.05.038
Article
PubMed
Google Scholar
Henning A (2018) Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: a review. Neuroimage. 168:181–198. https://doi.org/10.1016/j.neuroimage.2017.07.017
Article
CAS
PubMed
Google Scholar
Srinivasan R, Ratiney H, Hammond-Rosenbluth KE, Pelletier D, Nelson SJ (2010) MR spectroscopic imaging of glutathione in the white and gray matter at 7 T with an application to multiple sclerosis. Magn Reson Imaging 28:163–170. https://doi.org/10.1016/j.mri.2009.06.008
Article
CAS
PubMed
Google Scholar
Zhao W, Cohen-Adad J, Polimeni JR et al (2014) Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T. Magn Reson Med 72:291–300. https://doi.org/10.1002/mrm.24911
Article
PubMed
Google Scholar
Barry RL, Vannesjo SJ, By S, Gore JC, Smith SA (2018) Spinal cord MRI at 7T. Neuroimage. 168:437–451. https://doi.org/10.1016/j.neuroimage.2017.07.003
Article
PubMed
Google Scholar
Dula AN, Pawate S, Dortch RD et al (2016) Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis at 7T. Mult Scler J 22:320–328. https://doi.org/10.1177/1352458515591070
Article
CAS
Google Scholar
Mottershead JP, Schmierer K, Clemence M et al (2003) High field MRI correlates of myelin content and axonal density in multiple sclerosis. J Neurol 250:1293–1301. https://doi.org/10.1007/s00415-003-0192-3
Article
CAS
PubMed
Google Scholar
Sinnecker T, Dörr J, Pfueller CF et al (2012) Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology. 79:708–714. https://doi.org/10.1212/WNL.0b013e3182648bc8
Article
PubMed
Google Scholar
Maggi P, Sati P, Nair G et al (2020) Paramagnetic rim lesions are specific to multiple sclerosis: an international multicenter 3-T MRI study. Ann Neurol:ana.25877. https://doi.org/10.1002/ana.25877
Schumacher S, Pache F, Bellmann-Strobl J et al (2016) Neuromyelitis optica does not impact periventricular venous density versus healthy controls: a 7.0 Tesla MRI clinical study. MAGMA 29:535–541. https://doi.org/10.1007/s10334-016-0554-3
Article
PubMed
Google Scholar
Chawla S, Kister I, Wuerfel J et al (2016) Iron and non-iron-related characteristics of multiple sclerosis and neuromyelitis optica lesions at 7T MRI. AJNR Am J Neuroradiol 37:1223–1230. https://doi.org/10.3174/ajnr.A4729
Article
CAS
PubMed
PubMed Central
Google Scholar
Jarius S, Wildemann B, Paul F (2014) Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 176:149–164. https://doi.org/10.1111/cei.12271
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasquier B, Borisow N, Rasche L et al (2019) Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 6:1–8. https://doi.org/10.1212/NXI.0000000000000541
Article
Google Scholar
Chou IJ, Tanasescu R, Mougin OE et al (2019) Reduced myelin signal in normal-appearing white matter in neuromyelitis optica measured by 7T magnetic resonance imaging. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-50928-0
Article
CAS
Google Scholar
Susac JO, Murtagh FR, Egan RA et al (2003) MRI findings in Susac’s syndrome. Neurology. 61:1783–1787. https://doi.org/10.1212/01.WNL.0000103880.29693.48
Article
CAS
PubMed
Google Scholar
Wuerfel J, Sinnecker T, Ringelstein EB et al (2012) Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 18:1592–1599. https://doi.org/10.1177/1352458512441270
Article
PubMed
Google Scholar
Murata O, Sasaki N, Sasaki M et al (2015) Detection of cerebral microvascular lesions using 7 T MRI in patients with neuropsychiatric systemic lupus erythematosus. Neuroreport. 26:27–32. https://doi.org/10.1097/WNR.0000000000000297
Article
PubMed
Google Scholar