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Abstract 

Background High-spatial resolution magnetic resonance imaging (MRI) is essential for imaging ankle joints. How-
ever, the clinical application of fast spin-echo sequences remains limited by their lengthy acquisition time. Artificial 
intelligence-assisted compressed sensing (ACS) technology has been recently introduced as an integrative accelera-
tion solution. We compared ACS-accelerated 3-T ankle MRI to conventional methods of compressed sensing (CS) 
and parallel imaging (PI) .

Methods We prospectively included 2 healthy volunteers and 105 patients with ankle pain. ACS acceleration factors 
for ankle protocol of T1-, T2-, and proton density (PD)-weighted sequences were optimized in a pilot study on healthy 
volunteers (acceleration factor 3.2–3.3×). Images of patients acquired using ACS and conventional acceleration meth-
ods were compared in terms of acquisition times, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), subjective 
image quality, and diagnostic agreement. Shapiro-Wilk test, Cohen κ, intraclass correlation coefficient, and one-way 
ANOVA with post hoc tests (Tukey or Dunn) were used.

Results ACS acceleration reduced the acquisition times of T1-, T2-, and PD-weighted sequences by 32−43%, com-
pared with conventional CS and PI, while maintaining image quality (mostly higher SNR with p < 0.004 and higher 
CNR with p < 0.047). The diagnostic agreement between ACS and conventional sequences was rated excellent (κ = 
1.00).

Conclusions The optimum ACS acceleration factors for ankle MRI were found to be 3.2–3.3× protocol. The ACS 
allows faster imaging, yielding similar image quality and diagnostic performance.

Relevance statement AI-assisted compressed sensing significantly accelerates ankle MRI times while preserving 
image quality and diagnostic precision, potentially expediting patient diagnoses and improving clinical workflows.

Key points 

• AI-assisted compressed sensing (ACS) significantly reduced scan duration for ankle MRI.

• Similar image quality achieved by ACS compared to conventional acceleration methods.

• A high agreement by three acceleration methods in the diagnosis of ankle lesions was observed.
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Graphical Abstract

Background
Ankle injuries are among the most common muscu-
loskeletal injuries in both the general public and physi-
cally active individuals engaged in various sports [1, 2]. 
Additionally, acute ankle sprains have a high recurrence 
rate, and up to 70% of patients may experience persistent 
physical impairment, including chronic ankle instability 
[3]. Ankle pathology can manifest acutely or chronically 
and might vary in tissue type, damage mode, and pres-
entation. Magnetic resonance imaging (MRI) is generally 
accepted as a noninvasive approach for ankle imaging 
evaluation due to its reliability, safety, and other benefits 
over diagnostic arthroscopy. To visualize the complex 
anatomical structures within the ankle joints and to dif-
ferentiate between various injury types, high in-plane 
resolution two-dimensional (2D) fast spin-echo (FSE) 
sequences need to be acquired along all the three dimen-
sions [4]. However, the clinical application of high-reso-
lution FSE sequences is currently limited by their lengthy 
acquisition periods and the motion artifacts associated 
[5]. By reducing MRI acquisition time, the efficiency of 
MRI exams can be increased, and patient comfort and 
compliance can be improved.

Various acceleration techniques have been developed 
to address this issue, such as parallel imaging (PI), partial 

Fourier imaging, and compressed sensing (CS). PI is com-
monly utilized in clinical applications, although at high 
acceleration factors, noise amplification can decrease 
the image quality [6]. Partial Fourier acceleration factor 
is typically limited to less than 2 fold, thus usually used 
in conjunction with other acceleration techniques [7]. 
CS, which leverages the sparsity constraint, offers a novel 
method for iterative reconstruction of under-sampled 
k-space data in a pseudorandom manner [8]. However, 
insufficient sparsity can result in aliasing artifacts that 
resemble noise, especially with an excessively high accel-
eration factor [9]. Efforts have been made to explore the 
application of artificial intelligence (AI), especially deep 
neural networks, in the reconstruction of undersampled 
k-space data, accelerating the MRI data acquisition with-
out sacrificing image quality [10]. Recent research has 
demonstrated promising outcomes to create high-quality 
images in shorter time using a compressed sensing AI 
framework [11].

This study utilizes an AI-assisted compressed sens-
ing (ACS) technology, which is recently presented to 
give an integrative MRI acceleration solution to address 
the limitations of the aforementioned techniques [9]. 
ACS employs an extended convolutional neural net-
work (CNN) to collaborate with PI, partial Fourier, and 
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CS, facilitating noise suppression, artifact reduction, and 
information recovery [12, 13]. The fully sampled k-space 
data are randomly undersampled and converted to image 
space as the model’s input during the training phase. The 
model processes undersampled data to predict fully sam-
pled data during the test phase.

This technique has been previously reported as helpful 
in abdominal imaging of the liver and kidney [9, 14]. Nev-
ertheless, the clinical application of ACS has remained 
limited in ankle imaging, even though in this discipline, 
high-resolution 2D imaging is required to visualize even 
subtle pathologies of joint structures. Therefore, the 
objective of the current study was to assess the effective-
ness of using ACS to accelerate ankle imaging. Conven-
tional 2D sequences for the ankle were acquired using PI, 
CS, and ACS to determine whether ACS could reduce 
the overall scan time while maintaining diagnostic image 
quality.

Methods
Study population
The study was conducted between June and October 
2022. One hundred five patients (55 men and 50 women; 
age, 37.9 ± 11.4 years) with a complaint of ankle pain who 
had undergone ankle MRI were included (left ankle, 43; 
right ankle, 62). The institutional review board approved 
this prospective study. Written informed consent was 
obtained from all study participants, following local ethi-
cal regulations. Exclusion criteria for study participation 
were age < 18 years, pregnancy, and ankle surgery within 
6 months.

ACS image reconstruction
The ACS method is a United States Food and Drug 
Administration-approved method for accelerating MRI 
acquisition using a deep learning approach, i.e., convolu-
tional neural networks (CNN). While CNN-based meth-
ods have shown superior reconstruction quality, their 
performance and reliability in clinical settings are often 
uncertain due to the black-box nature of the network. To 
address this uncertainty, ACS integrates the output of the 
trained AI module as an additional constraint into the CS 
framework. This is achieved by adding a regularization 
term based on the difference between the reconstructed 
image and the predicted image of the AI module, as indi-
cated in Eq. 1:

where x denotes the image to be reconstructed, E denotes 
the production of Fourier encoding with binary k-space 
sampling mask, y represents the acquired k space data, 

(1)
argminx||Ex − y||22 + �1||ψ(x)| |1 + �2||φ(xAI , x)| |w + �3||PI | |m + �4||PF | |n

ψ denotes the sparse thansform, xAI is the reconstructed 
image of the trained AI module, and �i is the constrain 
for each term.

The ACS neural networks were trained using a dataset 
of two million fully sampled images, which were previ-
ously acquired from both phantoms (2%) and human vol-
unteers (98%) [13]. Meanwhile, the architectural design 
employed in the iteration processes was derived from 
the k-space, with multiscale sparsification integrated. 
The CS, partial Fourier, and PI are all incorporated in the 
mathematical model. Simulation tests [13] have demon-
strated that ACS is able to correct errors in the output 
generated by the AI model and achieve high consistency 
compared to the fully-sampled reference standard.

The architecture of the deep neural network used for 
image reconstruction in this study was an extended 
fully CNN with paired undersampled and full-sampled 
images. After applying the inversed Fourier transform to 
the k-space signal, the network took the real and imagi-
nary components of the undersampled images as the 
input and produced the real and imaginary components 
of the reconstructed images, respectively. The network 
used in this study resembled U-net [15], with the modi-
fications that residual blocks [16], which consisted of two 
convolution operations and a skipping connection, sub-
stituted the convolution operation in the original U-net. 
To speed up learning progress, a long skipping connec-
tion was also incorporated to learn the residual between 
the fully sampled and under-sampled images. To further 
enhance the quality of the reconstructed images, the least 
squared generative adversarial network (GAN) training 
technique was employed [17].

Imaging protocol and study design
All subjects were examined with a clinical 3.0-T scan-
ner (uMR 880, United Imaging Healthcare, Shanghai, 
China) with a dedicated 24-channel receive ankle coil. 
The protocol included a T2-weighted FSE sequence, a 
T1-weighted FSE sequence, and three proton density 
(PD)-weighted FSE sequences with fat saturation (fat-sat) 
acquired with acceleration techniques of PI, CS, and ACS 
as listed in Table 1.

This study consisted of two steps: (1) a pilot study on 
healthy volunteers to explore the optimal acceleration 
factors for ACS and (2) an assessment of a cohort of 
patients with ankle injuries. The images acquired with PI 

(acceleration factor of 2.0×) and CS (acceleration factor 
of 2.1×) were used as baseline. The acceleration factor of 
ACS was varied from 2.3× to 3.8×.
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Pilot study on healthy volunteers
Two healthy volunteers were scanned to confirm the 
acceleration factors for ACS. The main focus was the 
maximum reduction of scan time without introduc-
ing artifacts or altering anatomical morphology. A 
series of ACS scans with acceleration factors rang-
ing from 2.3× to 3.8× were acquired. To compare the 
ACS images to the PI (2.0×) and CS (2.1×) images for 
each sequence and provide a subjective evaluation, two 
independent radiologists, with 5 (Q.W.) and 8 years 
(Y.Z.) of experience in musculoskeletal radiology, rated 
the image quality with a standardized 5-point Likert-
scale scoring system for a thorough assessment based 
on their preferences [18].

Assessment of a cohort of patients with ankle injuries
Quantitative image analysis
For anatomical structural quantitative image compari-
son, regions of interest (ROIs) in identical locations on 
images acquired with PI, CS, and ACS were delineated 
by the two independent abovementioned experienced 
radiologists (Q.W. and Y.Z.). The ROIs were drawn on 
the subchondral bone, joint fluid, cartilage, ligaments, 
muscle, fat, and tendons. Due to the ankle ligament align-
ment and the morphological structure of the ligaments, 

only the axial sequences were used to delineate ligament 
ROIs. The signal-to-noise ration (SNR) and contrast-to-
noise ratio (CNR) measurements were calculated from 
the ROIs. SNR was calculated by dividing the average sig-
nal intensity (SI) value of ROI placed on tissue (SItissue) by 
the standard deviation (SD) of SI of the tissue ROI (SDtis-

sue). SD of the tissue SI was used instead of background SI 
as SNR calculated by the background SD is not uniform 
across the regions of an accelerated sparse image [19, 20]. 
After acquiring the SNR for these structures, CNR was 
calculated for cartilage/fluid, cartilage/subchondral bone, 
ligament/fluid, ligament/fat, tendon/fluid, and tendon/
muscle using the following Eq. [19]:

Qualitative image analysis
The image quality of the PI, CS, and ACS images was 
evaluated in a blinded manner by the above-mentioned 
musculoskeletal radiologists. All images were rand-
omized and displayed simultaneously as images A, B, 
and C using a commercially available picture archiv-
ing and communication system workstation. Optimal 

(2)CNR =
SItissue1 − SItissue2

SD2
tissue1

+ SD2
tissue2

Fig. 1 Coronal PD fat-sat images on a healthy volunteer acquired using PI (a), CS (b), ACS 2.4× (c), ACS 2.8× (d), ACS 3.2× (e), and ACS 3.7× (e). ACS 
Artificial intelligence-assisted compressed sensing, CS Compressed sensing, PD Proton density, PI Parallel imaging
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adjustments were made to the window widths, con-
trasts, and levels for each sequence. The subjective 
image quality was rated using a five-point Likert scale 
regarding the depiction of anatomic structures (5 = 
excellent, optimal diagnostic value and clearly shows 
the structure with nearly no artifacts; 4 = good, good 
for the majority of diagnoses, with structures shown 
with minor artifacts; 3 = fair, acceptable for the major-
ity of diagnoses with the evaluation of the structure 
somewhat limited; 2 = limited, with severe localized 
artifacts and noise and the assessment of the structure 
substantially limited; 1 = poor, with extensive artifacts 
and noise, barely able to show structures).

Diagnostic agreement analysis
The two radiologists assessed images acquired with 
PI, CS, and ACS accelerations in a randomized order. 
The ligament injuries were evaluated depending on the 

degree of tearing of the anterior talofibular ligament 
and calcaneofibular ligament separately, depending on 
the presence of high signal within the ligament, abnor-
mal shape or orientation of the ligament, and discon-
tinuous signal of the ligament, with a three-point scale: 
0 = no lesion; 1 = partial-thickness tear; and 2 = com-
plete tear. Osteochondral lesions were also assessed 
with a five-point scale [21]: 0 = no lesion; 1 = hyper-
intense but morphologically intact cartilage surface; 2 
= fibrillation or fissures not extending to the bone; 3 
= flap present or bone exposed; 4 = loose undisplaced 
fragment; and 5 = displaced fragment.

Statistical analysis
Descriptive statistics presented are mean ± standard 
error of mean (SEM) for continuous variables (means ± 
standard deviatons are given in Supplementary Tables), 
and median (25th–75th percentile) for discrete variable, 

Fig. 2 SNR measurements of different anatomical structures derived from sequences with accelerations of ACS, CS, and PI. Statistically different 
pairs (p < 0.05) are marked with the star signs. ACS Artificial intelligence-assisted compressed sensing, CS Compressed sensing, PI Parallel imaging, 
SNR Signal-to-noise ratio
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and the normality was assessed using the Shapiro-Wilk 
test. Inter-reader agreements for image quality were 
measured by Cohen κ statistics, while interobserver 
agreements for the SNR and CNR were examined by 
calculating the intraclass correlation coefficient (ICC). 
SNRs, CNRs, and subjective image quality ratings 
between pairs of sequences acquired using PI, CS, and 
ACS were quantitatively assessed using the one-way 
ANOVA with Tukey’s post hoc tests or Friedman with 
Dunn’s post hoc tests, as appropriate. The evaluation of 
various ankle joint pathologies was compared between 
sequences acquired using PI, CS, and ACS. The agree-
ment of diagnostic performance was evaluated with 
Fleiss’ κ statistic. All statistical analyses were performed 
using SPSS version 26, released 2019 (IBM, Armonk, 
NY, USA); p values lower than 0.05 were considered sta-
tistically significant.

Results
Patients’ characteristics
Two healthy volunteers and 105 patients were included in 
this study, with 103 ligament injuries and 34 osteochon-
dral lesions.

Pilot study on healthy volunteers
Though the tendons and the tibial nerve were clearly 
depicted on all images, significant blurring artifacts were 
observed as the acceleration factors increased to 3.7, as 
illustrated in Fig. 1. Therefore, both radiologists favored 
the ACS acceleration factors of 3.2–3.3× for PD-weighted 
FSE, T1-weighted FSE, and T2-weighted FSE sequences 
(Table 1).

Baseline characteristics
The total acquisition time was 5:23 min:s for ankle proto-
col with ACS. Compared to conventional 2D sequences 
accelerated using PI, the ACS technique reduced the acqui-
sition time to 57% of that with PD-FSE sequence (acquisi-
tion time 6:09 min:s), 59% of that with T1-weighted FSE 
sequence (acquisition time 1:36 min:s), and 57% of that 
with T2-weighted FSE sequence (acquisition time 1:36 
min:s). Compared to CS acceleration, the ACS technique 
reduced the acquisition time to 62–67% of that with PD-
weighted FSE sequence (acquisition time 5:29 min:s), to 
67% of that with T1-weighted FSE sequence (acquisition 
time 1:24 min:s), and to 62% of that with T2-weighted FSE 
sequence (acquisition time 1:29 min:s).

Table 2 Signal-to-noise ratio of ligament, cartilage, subchondral bone, tendon, fluid, muscle, and fat

Data given as means ± standard error of means. ACS Artificial intelligence-assisted compressed sensing, CS Compressed sensing, PD Proton density, PI Parallel imaging

PD-weighted fat-sat transversal
Ligament Cartilage Subchondral bone Tendon Fluid Muscle Fat

ACS 1.40 ± 0.04 5.22 ± 0.11 3.64 ± 0.06 2.16 ± 0.05 24.39 ± 0.71 16.95 ± 0.28 8.09 ± 0.19

CS 1.60 ± 0.09 5.28 ± 0.27 3.19 ± 0.04 2.49 ± 0.06 21.20 ± 0.57 14.01 ± 0.20 6.49 ± 0.13

PI 1.56 ± 0.04 4.93 ± 0.09 3.38 ± 0.14 2.81 ± 0.08 20.41 ± 0.58 13.99 ± 0.20 6.47 ± 0.13

PD-weighted fat-sat sagittal
Cartilage Subchondral bone Tendon Fluid Muscle Fat

ACS 5.46 ± 0.12 8.90 ± 0.13 3.14 ± 0.04 29.63 ± 1.39 21.38 ± 0.55 12.65 ± 0.35

CS 5.37 ± 0.12 7.72 ± 0.10 4.06 ± 0.07 29.43 ± 1.51 20.42 ± 0.53 10.82 ± 0.29

PI 5.19 ± 0.11 7.05 ± 0.09 4.22 ± 0.07 28.17 ± 1.4 19.16 ± 0.45 10.11 ± 0.23

PD-weighted fat-sat coronal
Cartilage Subchondral bone Tendon Fluid Muscle Fat

ACS 6.13 ± 0.14 6.96 ± 0.07 3.55 ± 0.05 31.62 ± 1.43 22.92 ± 0.51 10.38 ± 0.21

CS 6.33 ± 0.39 6.62 ± 0.08 5.13 ± 0.09 31.88 ± 1.50 21.07 ± 0.47 9.21 ± 0.19

PI 5.87 ± 0.14 6.68 ± 0.07 5.41 ± 0.11 30.33 ± 1.43 20.15 ± 0.41 9.15 ± 0.17

T2-weighted transversal
Ligament Cartilage Subchondral bone Tendon Fluid Muscle Fat

ACS 1.74 ± 0.05 3.41 ± 0.10 5.30 ± 0.17 3.35 ± 0.08 30.53 ± 1.41 9.98 ± 0.24 27.84 ± 1.18

CS 1.92 ± 0.08 3.56 ± 0.10 5.41 ± 0.18 4.72 ± 0.16 29.98 ± 1.53 9.32 ± 0.19 26.34 ± 1.05

PI 1.99 ± 0.06 3.43 ± 0.10 5.14 ± 0.28 4.62 ± 0.15 28.1 ± 1.42 9.46 ± 0.20 25.75 ± 1.03

T1-weighted coronal
Cartilage Subchondral bone Tendon Fluid Muscle Fat

ACS 9.94 ± 0.21 14.94 ± 0.31 3.57 ± 0.10 13.51 ± 0.33 19.46 ± 0.37 29.93 ± 0.96

CS 9.98 ± 0.18 14.2 ± 0.29 3.88 ± 0.26 11.35 ± 0.24 17.54 ± 0.33 29.82 ± 0.95

PI 9.41 ± 0.20 13.12 ± 0.26 4.13 ± 0.26 10.71 ± 0.24 16.75 ± 0.32 28.70 ± 0.88
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Quantitative image analysis
The statistical results for the SNRs in the selected tis-
sues of ACS, PI, and CS sequences are shown in Fig.  2 
and Table  2, with the statistical analysis result in Table 
S2. Images acquired with ACS had significantly higher 
SNRs (p ≤ 0.004) than those with PI in cartilage (for all 
sequences except for transversal T2-weighted), subchon-
dral bone (for all sequences), fluid (for all sequences), 
muscle (for all sequences), and fat (for all sequences), 
but with significant lower SNRs (p ≤ 0.001) in liga-
ment (for transversal PD-weighted fat-sat and transver-
sal T2-weighted) and tendon (for all sequences). Images 
acquired with ACS had significantly higher SNRs than 
those with CS in the subchondral bone (for all sequences), 
fluid (for transversal PD-weighted fat-sat and coronal 
T1-weighted), muscle (for all sequences except for sagit-
tal PD-weighted fat-sat), and fat (for all sequences except 

for coronal T1-weighted). However, the SNRs of tendons 
were found to be lower when compared with those with 
CS accelerations for all sequences (p ≤ 0.005).

The CNRs (Fig. 3 and Table 3, with the statistical analy-
sis result in Table S4.) of ligament against both fluid and 
fat calculated from ACS sequences were significantly 
higher than those with PI (p ≤ 0.047). The CNRs of car-
tilage/fluid were higher (p ≤ 0.001) on transversal and 
sagittal PD-weighted fat-sat and transversal T2-weighted 
sequences but lower on coronal T1-weighted and coronal 
PD-weighted fat-sat for ACS compared to conventional 
PI (p ≤ 0.017). Significant higher CNRs (p ≤ 0.001) were 
found for ACS compared with PI in cartilage/subchon-
dral bone (all sequences except for sagittal and coronal 
PD-weighted fat-sat), tendon/fluid (for all sequences), 
and tendon/muscle (for all sequences). Compared with 
CS acceleration, significant higher CNRs (p ≤ 0.001) were 

Fig. 3 CNR measurements of different anatomical structure pairs derived from sequences with accelerations of ACS, CS, and PI. Statistically different 
pairs (p < 0.05) are marked with the star signs. ACS Artificial intelligence-assisted compressed sensing, CS Compressed sensing, PI Parallel imaging, 
SNR Signal-to-noise ratio
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Table 3 Contrast-to-noise ratio of ligament/fluid, ligament/fat, cartilage/fluid, cartilage/subchondral bone, tendon/fluid, and tendon/
muscle

Data given as means ± standard error of means. ACS Artificial intelligence-assisted compressed sensing, CS Compressed sensing, PD Proton density, PI Parallel imaging

PD-weighted fat-sat transversal

Cartilage/fluid Cartilage/subchondral bone Tendon/fluid Tendon/muscle Ligament/fluid Ligament/fat

ACS 4.93 ± 0.13 3.53 ± 0.07 19.60 ± 0.48 10.56 ± 0.23 13.41 ± 0.32 1.91 ± 0.09

CS 4.69 ± 0.13 3.34 ± 0.06 16.81 ± 0.40 8.51 ± 0.17 12.21 ± 0.30 1.53 ± 0.09

PI 4.54 ± 0.12 3.25 ± 0.06 16.13 ± 0.39 8.35 ± 0.17 11.86 ± 0.26 1.46 ± 0.07

PD-weighted fat-sat sagittal

Cartilage/fluid Cartilage/subchondral bone Tendon/fluid Tendon/muscle

ACS 5.91 ± 0.18 3.49 ± 0.08 23.47 ± 0.94 12.38 ± 0.32

CS 5.87 ± 0.17 3.56 ± 0.08 23.45 ± 1.00 11.96 ± 0.29

PI 5.52 ± 0.16 3.40 ± 0.08 21.82 ± 0.95 11.14 ± 0.29

PD-weighted fat-sat coronal

Cartilage/fluid Cartilage/subchondral bone Tendon/fluid Tendon/muscle

ACS 6.98 ± 0.21 4.16 ± 0.10 27.71 ± 1.11 16.75 ± 0.33

CS 7.30 ± 0.34 4.40 ± 0.35 27.79 ± 1.15 15.62 ± 0.30

PI 6.81 ± 0.21 4.55 ± 0.60 26.28 ± 1.10 14.75 ± 0.28

T2-weighted transversal

Cartilage/fluid Cartilage/subchondral bone Tendon/fluid Tendon/muscle Ligament/fluid Ligament/fat

ACS 10.19 ± 0.32 3.13 ± 0.10 26.35 ± 1.09 6.64 ± 0.17 16.51 ± 0.72 15.19 ± 0.54

CS 10.10 ± 0.33 2.92 ± 0.10 25.25 ± 1.17 5.40 ± 0.15 15.84 ± 0.73 14.01 ± 0.54

PI 9.20 ± 0.30 2.66 ± 0.09 23.26 ± 1.03 5.39 ± 0.15 14.87 ± 0.61 14.03 ± 0.53

T1-weighted coronal

Cartilage/fluid Cartilage/subchondral bone Tendon/fluid Tendon/muscle

ACS 1.42 ± 0.07 6.82 ± 0.13 7.71 ± 0.19 10.29 ± 0.24

CS 1.65 ± 0.07 7.06 ± 0.13 6.60 ± 0.15 9.57 ± 0.21

PI 1.53 ± 0.06 6.53 ± 0.13 6.23 ± 0.14 9.17 ± 0.21

Table 4 Comparison of the quality of structures of the ankle of images acquired with ACS, CS, and PI

5-point Likert scale (1 = worst; 5 = best). Data given as median (25th–75th percentile). ACS Artificial intelligence-assisted compressed sensing, CS Compressed sensing, 
PI Parallel imaging

Reader 1 Reader 2

ACS CS PI ACS CS PI

Ligament

 Anterior talofibular 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (4–5) 4 (4–5)

 Posterior talofibular 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (4–5) 4 (4–5)

 Calcaneofibular 5 (5–5) 5 (4–5) 5 (4–5) 5 (5–5) 5 (4–5) 4 (4–5)

 Deep medial collateral 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)

 Superficial medial collateral 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)

 Anterior tibiofibular 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)

 Posterior tibiofibular 5 (5–5) 5 (5–5) 5 (4–5) 5 (5–5) 5 (5–5) 5 (4–5)

Cartilage

 Tibiofibular 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)

 Talar 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)

Tendon

 Extensor 5 (5–5) 5 (4–5) 5 (4–5) 5 (5–5) 5 (5–5) 5 (5–5)

 Peroneal 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)

 Flexor 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)

Subchondral bone

 Talus 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)

 Fibula 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)

 Tibia 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5) 5 (5–5)
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calculated for ACS images in ligament/fluid (transversal 
PD-weighted fat-sat and transversal T2-weighted), liga-
ment/fat (transversal PD-weighted fat-sat and transversal 
T2-weighted), cartilage/fluid (transversal PD-weighted fat-
sat), cartilage/subchondral bone (for all sequences except 
for coronal PD-weighted fat-sat and coronal T1-weighted), 
tendon/fluid (transversal PD-weightedfat-sat, transver-
sal T2-weighted and coronal T1-weighted), and tendon/
muscle (for all sequences except for sagittal PD-weighted 
fat-sat). However, on coronal T1-weighted images, lower 
CNRs were found for cartilage against fluid and subchon-
dral bone (p ≤ 0.001).

Qualitative image analysis
Image quality ratings were performed for each sequence 
and all participants (Table  4). Similar image quality was 
noticed in general across three acceleration methods 
(Fig.  4). Images acquired with ACS showed significantly 
higher ratings for structures of the anterior and posterior 
talofibular ligaments and calcaneofibular ligament than CS 
and PI (p = 0.015 and p < 0.001, respectively). In addition, 
ACS yielded significantly higher image quality for anterior 
and posterior tibiofibular ligaments than PI (p = 0.009).

Interobserver agreement
The interobserver agreement between two readers in 
scoring image quality was substantial consistently for 
ACS accelerated sequences and routine sequences (κ = 
0.637−0.875, p < 0.001). The ICC between the two read-
ers was 0.989 for SNR and 0.987 for CNR (95% confidence 
interval 0.984–0.993 and 0.979–0.992, respectively).

Diagnostic agreement
Of the 103 patients with ligament lesions and 34 patients 
with osteochondral lesions, 32 patients showed both 
ligament and osteochondral lesions (Figs. 5 and 6). The 
evaluation of ankle pathologies resulted in an agreement 
of κ = 1.00 across sequences acquired with ACS, CS, and 
PI. The interobserver reliability was excellent for all cri-
teria (κ = 0.96–1.00).

Discussion
Our study has demonstrated the capability of compressed 
sensing combined with parallel imaging, partial Fourier, 
and deep learning reconstruction (ACS) to reduce exami-
nation time without significantly compromising SNR, 
CNR, image quality, or diagnostic confidence level for 
ankle MRI compared to conventional PI and CS accel-
erations. This study evaluates the utility of the above-
mentioned AI-assisted acceleration technique for routine 
clinical ankle MRI.

Conventional PI acceleration uses the spatial sensitivity 
of each receiver in a multicoil array, reconstructs images 
from undersampled k-space data, and reduces acquisi-
tion time [6, 22]. CS provides a novel approach to recover 
the image information from undersampled k-space. Pre-
vious studies showed that musculoskeletal MRI with 
CS acceleration could reduce scan time while maintain-
ing image quality for both 2D and three-dimensional 
sequences [23–26]. Our comparison between CS and PI 
also showed that CS is favored to reduce examination 
time in routine clinical practice. However, one drawbacks 
of CS is the challenge of finding appropriate sparsity for 
specific applications. The hyperparameters usually need 
to be tuned manually, which is both time-consuming and 
difficult to standardize [27, 28]. Recent developments 
in machine learning techniques that enable faster imag-
ing address CS drawbacks. These methods operate in 
image space, incorporate measured coil sensitivities in 
the reconstruction, and generalize the concept of com-
pressed sensing by learning the entire reconstruction 
procedure for MRI data [28–30]. Hammernik et al. [27] 
and Knoll et  al. [30] proposed a “variational” network 
based on CNN, essentially a deep learning extension of PI 
and CS, and demonstrated successful reconstruction of 
accelerated knee images [28, 31]. Liu et al. [28] developed 
a GAN-based reconstruction model [32] to preserve the 
natural appearance of the images, where a limitation with 
pure CNN reconstruction lies in the over smoothness of 
the generated images [33]. The ACS technique used in 
our study incorporates both CNN and GAN structures 
to enhance the quality of the reconstructed images. Our 
results further demonstrate that the deep learning-based 
reconstruction method has superior potential to reduce 
MRI examination time compared to conventional PI and 
CS in routine clinical practice.

The ACS technique has been previously reported in 
the clinical applications for fast T2-weighted abdominal 
imaging of the liver and kidney. Much shorter scan times 
compared to conventional abdominal imaging sequences 
significantly reduced motion artifacts, hence providing 
better image quality and diagnostic confidence level [9, 
14]. In this study, we showed that not only T2-weighted 
sequences but also T1- and PD-weighted sequences 
benefit from the novel deep learning-based accelera-
tion technique. This study has also extended the clinical 
applications to musculoskeletal MRI, where high-resolu-
tion images are crucial for depicting different anatomical 
structures and pathologies.

In accordance with our hypothesis, the ACS sequences 
yielded almost the same image quality as the conven-
tional PI and CS sequences. Moreover, slightly higher 
average subjective image quality ratings for ligaments 
were found in ACS images than in CS and PI images. 
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The quantitative analysis also indicated that the ACS 
sequences could yield better SNR and CNR for most tis-
sues than CS and PI sequences. However, the differences 
in SNR and CNR (< 3 arbitrary units) and image quality 
ratings (< 5%) were minor, resulting in a high agreement 

in the assessment of pathologies of the ankles between 
acceleration methods.

Unlike previous studies on the combined CS and PI 
acceleration for ankle imaging that mainly were performed 
on healthy volunteers [24, 25], this study assessed ACS 

Fig. 4 Axial PD-weighted fat-sat images acquired using ACS (a, d), CS (b, e), and PI (c, f). The quality of images showing the anterior talofibular 
ligament (arrows in a, b, and c) and the calcaneofibular ligament (arrows in d, e, and f) was rated equally (score 5) on all the images by both readers. 
ACS Artificial intelligence-assisted compressed sensing, CS Compressed sensing, PD Proton density, PI Parallel imaging
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acceleration with ankle-injured patients in actual clini-
cal practice. In a related study [11] aimed at evaluating 
the efficacy of AI framework in accelerating ankle imag-
ing, a comparable time reduction of the overall scan dura-
tion as our study was demonstrated, although diagnostic 
image quality was not consistently maintained. There is 
a large difference between the acceleration factor used in 
this study and our acceleration factor. However, the direct 
comparison of acceleration factors would be difficult con-
sidering several aspects such as different sequence designs, 
scanner hardware, and coils. Both acceleration methods 
employ CNN models addition to CS framework. The itera-
tive reconstruction in ACS is for the whole CS framework 

with the trained AI module as an additional constraint, 
while in the architecture of the previous study, iterations 
are mimicked by deep learning network in ISTA-Net [34].

Common lesions within the anterior talofibular liga-
ment, calcaneofibular ligament, and cartilage were eval-
uated separately in our study, leading to results that are 
more specific. Our results provide reliable and compre-
hensive evidence supporting the potential clinical appli-
cation of this method.

The primary limitation of this study is that arthros-
copy was not used to confirm the imaging-based diag-
nosis. In practice, very few patients required diagnostic 
arthroscopy, particularly in light of the widespread use 

Fig. 5 Axial PD-weighted fast-sat images acquired using ACS (a), CS (b), and PI (c) and axial T2-weighted images acquired using ACS (d), CS (e), 
and PI (f) showing the ankle of a 34-year-old male patient with anterior talofibular ligament rupture (arrows). ACS Artificial intelligence-assisted 
compressed sensing, CS Compressed sensing, PD Proton density, PI Parallel imaging
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Fig. 6 Coronal PD-weighted fat-sat and T1-weighted images acquired using ACS (a, d), CS (b, e), and PI (c, f) showing the ankle of a 34-year-old 
male patient with an osteochondral lesion (arrows, grade 4). Sagittal PD-weighted fat-sat images acquired with ACS (g), CS (h), and PI (i) showing 
bone marrow changes adjacent to the osteochondral lesion (arrows). ACS Artificial intelligence-assisted compressed sensing, CS Compressed 
sensing, PD Proton density, PI Parallel imaging
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of MRI in routine clinical practice. The main goal of 
this study was to evaluate the image quality of ACS 
accelerated 2D routine sequences for the diagnosis of 
ankle injuries. Additional research with larger sample 
size and arthroscopy confirmation may be necessary to 
confirm whether there is a difference between the clini-
cal findings identified using the ACS versus PI and CS 
sequences. Additionally, it was not investigated whether 
these ACS sequences could be applied to MRI systems 
with a weaker magnet.

To summarize, this study presented a structured 
approach to reduce scan time for MRI of the ankle. We 
concluded that using ACS acceleration factors of 3.2–
3.3× to acquire 2D FSE sequences of the ankle is feasi-
ble, with a reduction in scan time of 32–43 % comparing 
to CS 2.1× and PI 2.0×, without significant decrease in 
diagnostic performance. The ACS acceleration is a reli-
able alternative to conventional PI and CS and could 
potentially enhance the productivity of MRI systems 
and patient comfort in musculoskeletal radiological 
practices.
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