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Abstract 

Background Different volume of interest (VOI) sizes influence radiomic features. This study examined if translating images 
into feature maps before feature sampling could compensate for these effects in liver magnetic resonance imaging (MRI).

Methods T1‑ and T2‑weighted sequences from three different scanners (two 3‑T scanners, one 1.5‑T scanner) of 66 
patients with normal abdominal MRI were included retrospectively. Three differently sized VOIs (10, 20, and 30 mm 
in diameter) were drawn in the liver parenchyma (right lobe), excluding adjacent structures. Ninety‑three features 
were extracted conventionally using PyRadiomics. All images were also converted to 93 parametric feature maps 
using a pretested software. Agreement between the three VOI sizes was assessed with overall concordance correla‑
tion coefficients (OCCCs), while OCCCs > 0.85 were rated reproducible. OCCCs were calculated twice: for the VOI sizes 
of 10, 20, and 30 mm and for those of 20 and 30 mm.

Results When extracted from original images, only 4 out of the 93 features were reproducible across all VOI sizes 
in T1‑ and T2‑weighted images. When the smallest VOI was excluded, 5 features (T1‑weighted) and 7 features 
(T2‑weighted) were reproducible. Extraction from parametric maps increased the number of reproducible features 
to 9 (T1‑ and T2‑weighted) across all VOIs. Excluding the 10‑mm VOI, reproducibility improved to 16 (T1‑weighted) 
and 55 features (T2‑weighted). The stability of all other features also increased in feature maps.

Conclusions Translating images into parametric maps before feature extraction improves reproducibility across dif‑
ferent VOI sizes in normal liver MRI.

Relevance statement The size of the segmented VOI influences the feature quantity of radiomics, while software‑
based conversion of images into parametric feature maps before feature sampling improves reproducibility across dif‑
ferent VOI sizes in MRI of normal liver tissue.

Key points  
• Parametric feature maps can compensate for different VOI sizes.

• The effect seems dependent on the VOI sizes and the MRI sequence.

• Feature maps can visualize features throughout the entire image stack.

†Laura Jacqueline Jensen and Damon Kim contributed equally to this work.

*Correspondence:
Laura Jacqueline Jensen
laura‑jacqueline.jensen@charite.de
Damon Kim
damon.kim@helios‑gesundheit.de
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41747-023-00362-9&domain=pdf
http://orcid.org/0000-0002-6436-5733


Page 2 of 11Jensen et al. European Radiology Experimental            (2023) 7:48 

Keywords Magnetic resonance imaging, Liver, Radiomics, Reproducibility of results, Software

Graphical Abstract

Background
To gain high-dimensional data invisible to the human eye 
from radiological images with the “radiomics” approach 
and use these as quantitative imaging biomarkers appears 
promising [1, 2]. In this process, multiple quantitative 
features, based on texture, intensity, shape, and size, are 
extracted from digital images aiming to develop decision-
supporting tools in medicine [2]. For example, a recent 
study found a correlation between textural features of mice 
livers with intrahepatic tumor growth after injecting colon 
cancer cells before the metastases became visible to the 
human eye [3]. Another group could predict malignancy 
in fat-suppressed T1-weighted magnetic resonance imag-
ing (MRI) sequences of soft tissue tumors [4]. A growing 
body of other studies showed correlations between feature 
behavior and different diagnostic endpoints such as tumor 
biology, tumor response, or therapy response [3, 5–7].

A translational gap exists between evolving scientific 
results and the still lacking application of radiomics in 
clinical practice [8]. Poor reproducibility is the primary 

limitation of introducing radiomics into the clinical rou-
tine [8–10]. Both the intrinsic properties of the images, 
like different acquisition parameters, reconstruction 
algorithms, image noise, and resolution, and the post-
processing steps, like segmentation and applied software, 
affect feature reproducibility [11–14]. In particular, also 
the size of the segmented volume of interest (VOI) influ-
ences feature quantity [15–19]. Phantom and in vivo 
studies corroborated that differences in VOI size could 
cause significantly different results for many features, 
conceivably falsifying links between radiomics and bio-
logical endpoints [15, 16].

A recent phantom study proposed preprocessing radio-
logical images into parametric feature maps to reduce the 
confounding effects of different VOI sizes [20]. Paramet-
ric feature maps can be created with a pretested software 
tool that computes the whole image stack into a feature 
map stack. Separate feature maps are calculated for every 
feature analyzed. More precisely, the software divides 
the image into voxels of a defined voxel size so that all 
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features are calculated for small, equally sized VOIs (i.e., 
the voxels). The resulting feature quantities are stored in 
the maps, where the gray levels reflect the quantity of the 
feature, e.g., regions in the maps with high quantities for 
the respective feature appear bright. Feature values can 
then be directly retrieved from the map in the same man-
ner as Hounsfield units in a standard image viewer [21].

The aim of this study was to evaluate if parametric 
maps can correct for different VOI sizes in MRI of non-
pathological livers.

Methods
Study group
The patient group was already included in a previous 
study with the approval of the institutional review board 
[EA1/104/19] [16]. The study group comprised 66 patients 
examined in clinical routine between April 2012 and 
August 2020 to exclude a chronic inflammatory bowel 
disease. Examinations from three different MRI scanners 
were included. Only patients without disease were con-
sidered (i.e., the patient’s record had to be devoid of dis-
orders). Also, patients with liver lesions or parenchymal 
abnormalities (e.g., signal alteration between in-phase 
and opposed phase) and patients with metal implants 
(e.g., dorsal instrumentation or hip replacement) were 
excluded to avoid disturbing factors. Details of the patient 
population are summarized in Table 1.

MRI scanners and examination
Examinations were retrospectively screened from three 
different scanners: two 3-T scanners of the same model 
(Magnetom Skyra, Siemens Healthineers, Erlangen, 
Germany) and one 1.5-T scanner (Magnetom Aera, 
Siemens Healthineers, Erlangen, Germany). All scan-
ners were calibrated regularly. The patients fasted for 
4  h before the examination and were examined for 
40  min with MRI enterography protocol after fraction-
ally drinking 0.75 L of 2.5% mannitol solution within 1 h. 
Transverse T2-weighted turbo spin-echo (Half Fourier 
acquisition single-shot turbo spin-echo − HASTE) and 
the transverse T1-weighted gradient-echo (fast low angle 
shot − FLASH) sequences were analyzed in this study. 
Both sequences were acquired within the first 10  min 
of scanning before administering intravenous contrast 
in a fixed examination protocol. The field of view was 
adjusted to the individual patient’s size. Technical details 
of the MRI scanning parameters are listed in Table 2.

Segmentation
Sphere-shaped VOIs were drawn using 3D Slicer (Version 
4.10.0, http:// www. slicer. org) [22]. VOIs were placed in 
liver segments 5, 6, 7, or 8 by a radiologist with over 4 years 
of experience in MRI (L.J.J.), aiming to exclude large blood 
vessels. We chose the right lobe of the liver due to less 
motion artifacts from cardiac pulsations [23]. VOI diam-
eters were set to 10, 20, and 30 mm since these are sizes to 
be expected for focal lesions such as metastases. Figure 1 
shows an example of VOI placement in the original images.

Computing parametric feature maps
Parametric feature maps were computed using the 
pretested software tool of Kim et  al. [21]. This tool 

Table 1 Details on the study population

Scanner number 1 2 3

Patients 25 19 22

Sex (female/male) 15/10 13/6 14/8

Age (years): mean (range) 34.3 (17–62) 28.1 (15–49) 30.9 (15–49)

Table 2 Details of the scanning parameters

GRE Gradient-echo, T1w T1-weighted, T2w T2-weighted, TE Echo time, TR Repetition time, TSE Turbo spin-echo

Scanner number 1 2 3

Field strength 3 T 3 T 1.5 T

Sequence T1w GRE T2w TSE T1w GRE T2w TSE T1w GRE T2w TSE

TR/TE (ms) 168/2.46 1,000/95 168/2.46 1,600/95 167/2.39 850/81

Flip angle (degree) 70 150 70 180 70 180

Slice thickness (mm) 5 5 5 5 6 6

Spacing between slices (mm) 0.5 0.5 0.5 0.5 0.6 0.6

Pixel spacing (typical range) 1.125/1.125 1.125/1.125 1.125/1.125 1.125/1.125 1.09375/
1.09375

1.09375/
1.09375

Acquisition matrix 320 × 158 320 × 194 320 × 210 320 × 194 320 × 203 256 × 167

Number of phase encoding steps 158 124 210 124 203 111

In plane phase encoding direction Anterior–posterior

Patient position Head first

Surface coil Phased‑array body coil

Breathing regimen Multi‑breath‑hold

http://www.slicer.org


Page 4 of 11Jensen et al. European Radiology Experimental            (2023) 7:48 

can create parametric maps for any feature available in 
PyRadiomics [24]. Maps for 93 features were created 
per patient. Outsourced computing capacity accessible 
within the facility was used to shorten computation 
time. The voxel size and, therefore, the resolution of 
the maps was set to 5  mm for the computation since 
all chosen VOI diameters are multiples of this. With 
the x, y, and z-dimensions, the height and width of 
the voxels (which represent a grid of small VOIs) in 
the parametric maps can be defined, thus allowing 
the map’s resolution to be adjusted. The z-resolution 
was adapted to match the slice thickness (5 mm). The 
x- and y-dimensions were set to 5  mm aiming for an 
adequate resolution of the images. The script contain-
ing the settings can be found in the Supplementary 
material (textfile S1). Figure 2 shows exemplary slices 
of different feature maps.

Feature extraction from the original images and from the 
feature maps
All feature classes available in PyRadiomics (Version 3.0.1) 
except “shape features” were included [24]. Settings for 
the feature extraction were adjusted as recommended 
by the developers of PyRadiomics (see Supplemen-
tary material  S2), and following the instructions of the 
Image Biomarker Standardization Initiative (see Sup-
plementary material  S3) [25]. Ninety-three features were 
extracted: 18 first-order features (energy, total energy, 
entropy, kurtosis, maximum, minimum, mean, median, 

interquartile range, skewness, range, mean absolute devia-
tion, robust mean absolute deviation, root mean squared, 
variance, uniformity, 10th percentile, and 90th percen-
tile) and 75  second- and higher-order features (24  gray 
level co-occurrence matrix − GLCM features, 14 gray level 
dependence matrix − GLDM features, 16  gray level run-
length matrix − GLRLM features, 16  gray level size zone 
matrix − GLSZM features, and five neighboring gray tone 
difference matrix − NGTDM features) [24]. Shape features 
were not considered since VOI size was altered deliberately.

For extraction from the parametric maps, the VOIs were 
copied from the original images into the maps of each 
patient. The mean of each VOI was directly retrieved and 
described the feature quantity of the respective map. Figure 3 
shows the VOI placement in exemplary feature maps.

Statistical analysis
Statistical analysis was performed using R (version 
4.2.1, R Foundation for Statistical Computing) [26]. A 
p value < 0.05 was considered to indicate statistical sig-
nificance. To assess the multivariable agreement, overall 
concordance correlation coefficients (OCCCs), accord-
ing to Lin et al. [27] and Barnhart et al. [28], were calcu-
lated with the epiR package [29]. Like Rinaldi et al. [11], 
we considered features with an OCCC ≥ 0.85 stable and  
an OCCC < 0.85 nonreproducible. Reproducibility test-
ing was applied to the results of the conventional feature 
extraction and the results of the parametric maps. Results 
were considered separately for each scanner.

Fig. 1 Volume of interest placement in the original images. Sphere‑shaped volumes of interest of 10 mm (a, d), 20 mm (b, e), and 30 mm (c, 
f) diameter were placed in the right liver lobe attempting to exclude adjacent vessels. a–c T2‑weighted turbo spin‑echo sequences and (d–f) 
T1‑weighted gradient‑echo sequences, both of the same patient acquired on a 3‑T scanner (scanner #2)
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Fig. 2 Exemplary feature maps. The original images were acquired on the 1.5‑T scanner (scanner #3). The examples show the T2‑weighted 
image and slices of the corresponding feature maps for first‑order mean, first‑order interquartile range, GLCM inverse variance, GLDM gray level 
non uniformity, and NGTDM complexity. Ninety‑three features were included in our analysis, resulting in 93 parametric feature maps per patient 
for the T1‑weighted and for the T2‑weighted images

Fig. 3 Volume of interest copy in the feature maps. Map of the feature first‑order uniformity of the same patient as shown in Fig. 1. a–c Maps 
derived from T2‑weighted images and (d–f) from the T1‑weighted images. The volumes of interest (VOIs) of the conventional extraction were 
copied to the maps. The mean was extracted from the VOIs, resulting in the feature value for uniformity for the three different VOI sizes
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Results
Conventional feature extraction from the original images
Across the VOI sizes 10, 20, and 30  mm, features with 
an OCCC ≥ 0.85 were limited to first-order features but 
without consistency across scanners. Only the features 
mean, median, root mean squared, and 10th percen-
tile were stable across scanners and T1-weighted and 
T2-weighted sequences. Supplementary material S4 con-
tains OCCC data of the conventional extraction for all 
features, sequences, and scanners. To provide the reader 
with an overview of grayscale behavior in the images, 
simple statistics for each case (minimum, maximum, 
range) are provided in Supplementary material 5.

Feature reproducibility increased when OCCCs were 
calculated without the smallest VOI of 10 mm diameter. 
In T1-weighted and T2-weighted sequences, also 90th 
percentile was stable across scanners. In T2-weighted 
images, three GLDM-features (glcm_Id, glcm_Inverse-
Variance, glcm_Idm) also showed OCCCs ≥ 0.85. For 
both the 3-T scanners, 13 other features were repro-
ducible in T1-weighted images but not in T2-weighted 
images. Also, on each scanner, other features were repro-
ducible. Supplementary material  S6 summarizes data 
for the OCCCs calculated without the 10  mm diameter 
VOIs. The results of the conventional extraction were 
already reported in a previous study [16].

Feature extraction from the parametric maps
By directly extracting the feature quantities from the 
maps, OCCCs across the VOI sizes 10, 20, and 30  mm 
were above or equal to 0.85 for the same nine first-order 
features in T1-weighted and T2-weighted images. For 
both 3-T scanners, two second-/higher-order features 
(glrlm_RunLengthNonUniformity, glcm_JointEntropy) 
were reproducible in T1-weighted images. In addition, 
feature reproducibility increased overall, as shown in bar 
plots of the OCCCs in Supplementary material S7 sepa-
rated per scanner for all VOI sizes. Supplementary mate-
rial S8 contains numerical values of the OCCCs across 
the VOI sizes 10, 20, and 30 mm, and S9 across 20 and 
30  mm. Although grayscale statistics can no longer be 
extracted from the maps, we also provide simple statistics 
for each case in supplementary material  S10, where the 
minimum and maximum values were extracted from the 
corresponding map.

By excluding the smallest VOI from the OCCCs, sta-
bility improved in both T1-weighted and T2-weighted 
images. Nine first-order features were still reproducible 
in T1-weighted and 10 in T2-weighted images across all 
scanners. Seven additional second-/higher-order fea-
tures became stable in T1-weighted, and 45 features in 
T2-weighted images. Agreement across the two 3-T scan-
ners further increased with 39 additional reproducible 

features in T1-weighted and two additional features in 
T2-weighted  images. OCCCs for the VOI sizes 20 and 
30 mm separated per scanner are shown in Supplemen-
tary S11. Supplementary file S12 overviews the reproduc-
ible features for conventional and map extraction for the 
different scanners and sequences. Exemplary bar plots 
for OCCCs of 20 and 30  mm VOI sizes separated per 
scanner are shown in Fig. 4. In Fig. 5 boxplots of the con-
ventional extraction and the map extraction of two exam-
ples across all three VOI sizes are compared.

Reproducibility across scanners and scanning parameters
Overall, the consistency of reproducible features between 
the two 3-T scanners was higher than the 1.5-T scan-
ner in the conventional and map extraction (as shown in 
Supplementary file S12). As shown in Table 2, scanning 
parameters like matrix, phase encoding steps, repetition 
time (TR), and flip angle differed on all three scanners. 
When comparing the T2-weighted images on the two 
3-T scanners, TR and flip angle were higher on scanner 
2. Of note, more T2-weighted features were reproducible 
in the map extraction on scanner 2 (see Supplementary 
file S12).

Discussion
This study showed that the agreement of feature quan-
tity across the VOI sizes improved when features were 
extracted from the parametric feature maps. When all 
VOI sizes were included, 4 out of the 93 features were 
reproducible in the conventional extraction and 9 in 
the map extraction across all sequences and scanners. 
When the smallest VOI size of 10  mm was excluded, 
reproducibility across the 20 and 30 mm VOIs showed 
a maximum of 18 features when extracted conven-
tionally and a maximum of 57 features when sampled 
from the maps, with differences between T1-weighted 
or T2-weighted and field strength. Therefore, when 
the smallest VOI size was excluded, reproducibility 
increased in both the conventional extraction from the 
original images and particularly in the maps. Of note, 
agreement of features with OCCCs < 0.85 still improved 
in the map extraction (as shown in Fig. 4). Greater con-
sistency of reproducible features existed across the two 
3-T scanners, in contrast to the 1.5-T scanner. Even 
though feature reproducibility improved on all scan-
ners, the individual feature behavior did not resemble 
across different scanning parameters.

In other words, converting MRI liver images to para-
metric feature maps before feature extraction increases 
the reproducibility of radiomics across different VOI 
sizes of nonpathological liver tissue. Many features 
gained stability (OCCCs ≥ 0.85), while others notably 
improved. Results were even better when the smallest 
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VOI size (10 mm diameter) was excluded, possibly indi-
cating that the maps perform better with increasing VOI 
size. The findings of our study make an essential contri-
bution to the reproducibility and application of radiomics 
in clinical routine.

Other groups already discussed different volumes 
of interest as a possible constraint for reproducibility. 
Santinha et  al. [30] proposed a volume threshold for 
radiomics in their MRI phantom study. They reported a 
loss of informative content when features were extracted 
from small VOIs, while their volumes ranged from 0.8 to 
29.8   cm3. Further studies presented efforts to mitigate 
volume-confounding effects. Saltybaeva et  al. [31] per-
formed predictive modeling in a multicenter MRI study 
on glioblastoma multiforme. They used intra-class cor-
relation coefficients to eliminate features correlating 
with tumor volume from their analysis. Fave et  al. [32] 
detected volume-dependent features with Spearman cor-
relation coefficients in their study on non-small cell lung 

cancer tumors with volumes ranging from 5 to 567  cm3. 
Aiming to correct the five features with strong volume 
correlation in their study, they divided the values by the 
total number of voxels in the region of interest. Roy et al. 
[17] investigated the correlation between tumor volume 
and features in breast cancer lesions on MRI. In their 
approach, features with linear correlations were divided 
by the tumor volume, and inversely proportional features 
were multiplied. Features with nonlinear correlations 
were processed with principal component analysis, but 
some features were still volume-dependent even after 
dimension reduction. Shafiq-ul-Hassan et  al. [33, 34] 
improved the reproducibility of radiomics by normaliza-
tion of voxel size. Two other groups resampled the VOIs 
to isometric voxels before the feature extraction [35, 
36]. In other studies, features prone to different volumes 
were excluded stepwise from the applied feature set [13, 
37, 38]. In the present study, the calculation of paramet-
ric maps before feature extraction renders mathematical 

Fig. 4 Overall concordance correlation coefficients (OCCCs) comparing GLSZM features from the original images and parametric maps. Bar 
plots of the OCCCs across volumes of interest (VOIs) with 20 and 30 mm diameter for each scanner. GLSZM features from T2‑weighted images 
from the three scanners are shown with OCCC = 0.85 indicating feature reproducibility. The conventional extraction from the original image 
is shown in blue bars, and the map extraction in green bars. Feature reproducibility increased across the VOI sizes when features were extracted 
from the parametric maps
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corrections of volume dependencies unnecessary. As a 
side effect, parametric maps also allow visualization of 
feature behavior.

Improving volume independence for liver-derived 
features could have been valuable to other study 
designs. For example, Zhang et  al. [39] attempted to 
predict therapy response in patients with colorectal 
liver metastases. They delineated free-hand regions of 
interest around the largest cross-sectional area of the 
liver lesions in T2-weighted images acquired on a 3-T 
scanner. Lesions with a diameter greater than 1  cm 
were selected. They extracted five features (mean, vari-
ance, skewness, kurtosis, and entropy). Calculating 
parametric feature maps might have been beneficial 

in their study since variance, skewness, kurtosis, and 
entropy showed increased reproducibility across VOI 
sizes when extracted from the feature maps (yet, mean 
is also reproducible when derived conventionally from 
the original images). Another group [40] analyzed links 
between textural features and microvascular invasion 
in hepatocellular carcinoma in post-contrast-enhanced 
T1-weighted images. Resected specimens served as 
the reference standard. Features were also extracted 
based on the largest cross-sectional area of each lesion. 
Increasing the feature reproducibility by preprocessing 
images to parametric maps might also have been help-
ful, despite the influence of contrast media on the maps 
would still remain unclear.

Fig. 5 Boxplots of the conventional and the map extraction. Boxplots of the conventional and the map extraction for two examples are shown. 
In the map extraction, the boxplots are more congruous for the three volumes of interest (10, 20, and 30 mm) and the values are grouped closer 
around the mean
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Although by the map extraction, feature reproducibil-
ity improved throughout all three included scanners (two 
3-T scanners and one 1.5-T scanner) scanner-wise, it is 
worth mentioning that the behavior of the individual fea-
tures did not resemble across field strengths and scanning 
parameters. Different scanning parameters were applied 
on each scanner (e.g., phase encoding steps, matrix, TR, 
and flip angle), as shown in Table 2. Of note, in the map 
extraction, most features were reproducible on scan-
ner #2 (one of the 3-T scanners, as indicated in Table 2), 
holding the highest flip angle and TR on T2-weighted 
sequences, conceivably indicating an enhancement of 
feature reproducibility through a better signal-to-noise 
ratio [41]. The influence of different scanners and ven-
dors, field strength, and scanning parameters are known 
obstacles concerning the reproducibility of MRI-derived 
radiomics and cannot be bypassed by the parametric fea-
ture maps [17, 42–44].

Our study has some limitations. Verification of the 
results in a larger patient cohort would have been desir-
able. Since enrollment was conducted strictly and only 
patients without liver lesions and abnormal signal altera-
tions to the liver parenchyma were included, only 66 
patients were eligible for a long retrospective screening 
period. Repeating the analysis in other organs would also 
have been interesting, but the spacious variation of the 
VOI would have been challenging in smaller organs like 
the spleen or pancreas. The limitation of the parametric 
feature maps is the required computing power. Calculat-
ing one feature map stack requires several hours of com-
puting time. The computation process might have been 
accelerated if the original image stack had been cropped, 
which could possess a future applicability mode. Strictly 
limiting the map to the VOI, however, would lead to 
errors along the edges. But cropping the original image 
to a few voxels close to the VOI and then extracting 
the mean from the VOI in the map would reduce the 
required computing power and enhance effectiveness. 
Therefore, implementing a cropping step seems inevita-
ble in further applications. It might be seen as a drawback 
that VOIs were drawn manually in our study. Since we 
aimed for control and transparency of the results, we pre-
ferred manual segmentation.

Software-based conversion of images into parametric fea-
ture maps before feature extraction improves feature repro-
ducibility across different VOI sizes in normal liver tissue. 
Since the graphical presentation of the features in the maps 
provides insights into their behavior, disturbing factors 
such as artifacts may be elucidated. The general applicabil-
ity of parametric maps to radiological images could also 
enable correction for differently sized VOIs in further stud-
ies on radiomics. Testing the applicability of the feature 
maps on focal liver lesions would be a future perspective.

Abbreviations
MRI  Magnetic resonance imaging
OCCC   Overall concordance correlation coefficient
TR  Repetition time
VOI  Volume of interest
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