Lewczuk J, Piszko P, Jagas J, et al (2001) Prognostic factors in medically treated patients with chronic pulmonary embolism. Chest 119:81–823. https://doi.org/10.1378/chest.119.3.818
Riedel M, Stanek V, Widimsky J, Prerovsky I (1982) Longterm follow-up of patients with pulmonary thromboembolism. Late prognosis and evolution of hemodynamic and respiratory data. Chest 81:151–158. https://doi.org/10.1378/chest.81.2.151
Article
CAS
PubMed
Google Scholar
Sanchez O, Helley D, Couchon S et al (2010) Perfusion defects after pulmonary embolism: risk factors and clinical significance. J Thromb Haemost 8:1248–1255. https://doi.org/10.1111/j.1538-7836.2010.03844.x
Article
CAS
PubMed
Google Scholar
Cosmi B, Nijkeuter M, Valentino M, Huisman MV, Barozzi L, Palareti G (2011) Residual emboli on lung perfusion scan or multidetector computed tomography after a first episode of acute pulmonary embolism. Intern Emerg Med 6:521–528. https://doi.org/10.1007/s11739-011-0577-8
Article
PubMed
Google Scholar
Ruggiero A, Screaton NJ (2017) Imaging of acute and chronic thromboembolic disease: state of the art. Clin Radiol 72:375–388. https://doi.org/10.1016/j.crad.2017.02.011
Article
CAS
PubMed
Google Scholar
Moser KM, Bloor CM (1993) Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension. Chest 103:685–692. https://doi.org/10.1378/chest.103.3.685
Article
CAS
PubMed
Google Scholar
Hoeper MM, Mayer E, Simonneau G, Rubin LJ (2006) Chronic thromboembolic pulmonary hypertension. Circulation 113:2011–2020. https://doi.org/10.1161/CIRCULATIONAHA.105.602565
Article
PubMed
Google Scholar
Konstantinides SV, Meyer G, Becattini C, et al (2019) 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the task force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Heart J 41:543–603. https://doi.org/10.1093/eurheartj/ehz405
Delcroix M, Kerr K, Fedullo P (2016) Chronic thromboembolic pulmonary hypertension. Epidemiology and risk factors. Ann Am Thorac Soc 13:S201–S206. https://doi.org/10.1513/AnnalsATS.201509-621AS
Article
PubMed
Google Scholar
Pepke-Zaba J, Jansa P, Kim NH, Naeije R, Simonneau G (2013) Chronic thromboembolic pulmonary hypertension: role of medical therapy. Eur Respir J 41:985–990. https://doi.org/10.1183/09031936.00201612
Article
CAS
PubMed
Google Scholar
Auger WR, Kerr KM, Kim NH, Fedullo PF (2012) Evaluation of patients with chronic thromboembolic pulmonary hypertension for pulmonary endarterectomy. Pulm Circ 2:155–162. https://doi.org/10.4103/2045-8932.97594
Article
PubMed
PubMed Central
Google Scholar
Tunariu N, Gibbs SJR, Win Z, et al (2007) Ventilation–perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med 48:680–684. https://doi.org/10.2967/jnumed.106.039438
Keogh AM, Mayer E, Benza RL, et al (2009) Interventional and surgical modalities of treatment in pulmonary hypertension. J Am Coll Cardiol 54:S67–S77. https://doi.org/10.1016/j.jacc.2009.04.016
Coulden R (2006) State-of-the-art imaging techniques in chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc 3:577–583. https://doi.org/10.1513/pats.200605-119LR
Article
PubMed
Google Scholar
He J, Fang W, Lv B, et al (2012) Diagnosis of chronic thromboembolic pulmonary hypertension: comparison of ventilation/perfusion scanning and multidetector computed tomography pulmonary angiography with pulmonary angiography. Nucl Med Commun 33:459–463. https://doi.org/10.1097/MNM.0b013e32835085d9
Leone MB, Giannotta M, Palazzini M, et al (2017) A new CT-score as index of hemodynamic changes in patients with chronic thromboembolic pulmonary hypertension. Radiol Med 122:495–504. https://doi.org/10.1007/s11547-017-0750-x
Castañer E, Gallardo X, Ballesteros E, et al (2009) CT diagnosis of chronic pulmonary thromboembolism. Radiographics 29:31–50. https://doi.org/10.1148/rg.291085061
Mahammedi A, Oshmyansky A, Hassoun PM, Thiemann DR, Siegelman SS (2013) Pulmonary artery measurements in pulmonary hypertension: the role of computed tomography. J Thorac Imaging 28:96–103. https://doi.org/10.1097/RTI.0b013e318271c2eb
Article
PubMed
Google Scholar
Devaraj A, Wells AU, Meister MG, Corte TJ, Wort SJ, Hansell DM (2010) Detection of pulmonary hypertension with multidetector CT and echocardiography alone and in combination. Radiology 254:609–616. https://doi.org/10.1148/radiol.09090548
Article
PubMed
Google Scholar
Sugiura T, Tanabe N, Matsuura Y, et al (2013) Role of 320-slice CT imaging in the diagnostic workup of patients with chronic thromboembolic pulmonary hypertension. Chest 143:1070–1077. https://doi.org/10.1378/chest.12-0407
Gopalan D, Blanchard D, Auger WR (2016) Diagnostic evaluation of chronic thromboembolic pulmonary hypertension. Ann Am Thorac Soc 13:S222–S239. https://doi.org/10.1513/AnnalsATS.201509-623AS
Article
PubMed
Google Scholar
Rogberg AN, Gopalan D, Westerlund E, Lindholm P (2019) Do radiologists detect chronic thromboembolic disease on computed tomography? Acta Radiol 60:1576–1583. https://doi.org/10.1177/0284185119836232
Article
PubMed
Google Scholar
Fedullo PF, Auger WR, Kerr KM, Rubin LJ (2001) Chronic thromboembolic pulmonary hypertension. N Engl J Med. 345:1465–1472. https://doi.org/10.1056/NEJMra010902
Article
CAS
PubMed
Google Scholar
Pepke-Zaba J, Delcroix M, Lang I, et al (2011) Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation 124:1973–1981. https://doi.org/10.1161/CIRCULATIONAHA.110.015008
Wittenberg R, Peters JF, Sonnemans JJ, Prokop M, Schaefer-Prokop C (2010) Computer-assisted detection of pulmonary embolism: evaluation of pulmonary CT angiograms performed in an on-call setting. Eur Radiol 20:801–806. https://doi.org/10.1007/s00330-009-1628-7
Article
PubMed
Google Scholar
Chan H, Hadjiiski L, Zhou C, Sahiner B (2008) Computer-aided diagnosis of lung cancer and pulmonary embolism in computed tomography-a review. Acad Radiol 15:535–555. https://doi.org/10.1016/j.acra.2008.01.014
Article
PubMed
PubMed Central
Google Scholar
Galiè N, Humbert M, Vachiery J et al (2015) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 46:903–975. https://doi.org/10.1183/13993003.01032-2015
Article
CAS
PubMed
Google Scholar
Taboada D, Pepke-Zaba J, Jenkins DP, et al (2014) Outcome of pulmonary endarterectomy in symptomatic chronic thromboembolic disease. Eur Respir J 44:1635–1645. https://doi.org/10.1183/09031936.00050114
Marcus DS, Olsen TR, Ramaratnam M, Buckner RL (2007) The extensible neuroimaging archive toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5:11–34. https://doi.org/10.1385/ni:5:1:11
Article
PubMed
Google Scholar
Fedorov A, Beichel R, Kalpathy-Cramer J, et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001
Zukić D, Vicory J, McCormick M et al (2016) ND morphological contour interpolation. In: Insight Journal. http://hdl.handle.net/10380/3563. Accessed 9 Aug 2016
Albu A, Beugeling T, Laurendeau D (2008) A morphology-based approach for interslice interpolation of anatomical slices from volumetric images. IEEE Trans Biomed Eng 55:2022–2038. https://doi.org/10.1109/TBME.2008.921158
Article
PubMed
Google Scholar
Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) MICCAI 2015: 18th international conference on medical image computing and computer-assisted intervention, Munich, October 2015, Lecture notes in computer science, vol 9351. Springer, Cham, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
Chapter
Google Scholar
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX conference on operating systems design and implementation (OSDI'16), Savannah, 2–4 November 2016
Kingma D, Ba J (2015) Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, 7–9 May 2015
Milletari F, Navab N, Ahmadi S (2016) V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the 2016 4th international conference on 3D vision (3DV), Stanford, 25–28 October 2016
Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21:6. https://doi.org/10.1186/s12864-019-6413-7
Article
PubMed
PubMed Central
Google Scholar
Nemec SF, Bankier AA, Eisenberg RL (2013) Pulmonary hyperlucency in adults. AJR Am J Roentgenol 200:W101–W115. https://doi.org/10.2214/AJR.12.8917
Article
PubMed
Google Scholar
Huang S, Kothari T, Banerjee I et al (2020) PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digit Med 3:61. https://doi.org/10.1038/s41746-020-0266-y
Article
PubMed
PubMed Central
Google Scholar
Tajbakhsh N, Gotway M, Liang J (2015) Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks. In: MICCAI 2015: 18th international conference on medical image computing and computer-assisted intervention, Munich (October 2015) Lecture notes in computer science, vol 9350. Springer, Cham, pp 62–69
Google Scholar
Yang X, Lin Y, Su J, et al (2019) A two-stage convolutional neural network for pulmonary embolism detection from CTPA images. IEEE Access 7:84849–84857. https://doi.org/10.1109/ACCESS.2019.2925210
Liu W, Liu M, Guo X, et al (2020) Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning. Eur Radiol 30:3567–3575. https://doi.org/10.1007/s00330-020-06699-8
Öman O, Mäkelä T, Salli E, Savolainen S, Kangasniemi M (2019) 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur Radiol Exp 3:8. https://doi.org/10.1186/s41747-019-0085-6
Article
PubMed
PubMed Central
Google Scholar
Hansell DM (2010) Thin-section CT of the lungs: the hinterland of normal. Radiology 256:695–711. https://doi.org/10.1148/radiol.10092307
Article
PubMed
Google Scholar
Goerne H, Batra K, Rajiah P (2018) Imaging of pulmonary hypertension: an update. Cardiovasc Diagn Ther 8:279–296. https://doi.org/10.21037/cdt.2018.01.10
Article
PubMed
PubMed Central
Google Scholar
Arakawa H, Stern EJ, Nakamoto T, Fujioka M, Kaneko N, Harasawa H (2003) Chronic pulmonary thromboembolism. Air trapping on computed tomography and correlation with pulmonary function tests. J Comput Assist Tomogr 27:735–742. https://doi.org/10.1097/00004728-200309000-00010
Article
PubMed
Google Scholar
Bartalena T, Oboldi D, Guidalotti PL, et al (2008) Lung perfusion in patients with pulmonary hypertension: comparison between MDCT pulmonary angiography with minIP reconstructions and 99mTc-MAA perfusion scan. Invest Radiol 43:368–373. https://doi.org/10.1097/RLI.0b013e31816901e2
Sherrick AD, Swensen SJ, Hartman TE (1997) Mosaic pattern of lung attenuation on CT scans: frequency among patients with pulmonary artery hypertension of different causes. AJR Am J Roentgenol 169:79–82. https://doi.org/10.2214/ajr.169.1.9207504
Article
CAS
PubMed
Google Scholar
Kligerman SJ, Henry T, Lin CT, Franks TJ, Galvin JR (2015) Mosaic attenuation: etiology, methods of differentiation, and pitfalls. Radiographics 35:1360–1380. https://doi.org/10.1148/rg.2015140308
Article
PubMed
Google Scholar