Yacoub E, Shmuel A, Pfeuffer J, et al (2001) Imaging brain function in humans at 7 tesla. Magn Reson Med 45:588–594. https://doi.org/10.1002/mrm.1080
Article
CAS
PubMed
Google Scholar
Ultra-high field MRI scanners. https://www.google.com/maps/d/viewer. Accessed 10 June 2021
Budinger TF, Bird MD (2018) MRI and MRS of the human brain at magnetic fields of 14 T to 20 T: technical feasibility, safety, and neuroscience horizons. Neuroimage 68:509–531. https://doi.org/10.1016/j.neuroimage.2017.01.067
Article
Google Scholar
Siemens Healthineers. With 7 Tesla scanner Magnetom Terra, Siemens Healthineers introduces new clinical field strength in MR imaging. https://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/2017/healthineers/pr2017080391hcen.htm&content[]=HC2017. Accessed 10 June 2021
FDA clears first 7T magnetic resonance imaging device 2017. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm580154.htm. Accessed 10 June 2021
Bringing ultra-high field MR imaging from research to clinical: SIGNA 7.0T FDA cleared https://www.ge.com/news/press-releases/bringing-ultra-high-field-mr-imaging-from-research-to-clinical-signa-70t-fda-cleared. Accessed 10 June 2021
Ladd ME, Bachert P, Meyerspeer M, et al (2018) Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 109:1–50. https://doi.org/10.1016/j.pnmrs.2018.06.001
Article
CAS
PubMed
Google Scholar
Dumoulin SO, Fracasso A, van der Zwaag W, Siero JCW, Petridou N (2018) Ultra-high field MRI: advancing systems neuroscience towards mesoscopic human brain function. Neuroimage 168:345–357. https://doi.org/10.1016/j.neuroimage.2017.01.028
Article
PubMed
Google Scholar
Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V (2018) Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 68:345–357. https://doi.org/10.1016/j.neuroimage.2017.02.052
Article
Google Scholar
Vachha B, Huang SY (2021) MRI with ultrahigh field strength and high performance gradients: challenges and opportunities for clinical neuroimaging at 7T and beyond. Eur Radiol Exp. https://doi.org/10.1186/s41747-021-00216-2
Webb AG, Collins CM (2010) Parallel transmit and receive technology in high-field magnetic resonance neuroimaging. Int J Imaging Syst Technol 20:2–13. https://doi.org/10.1002/ima.20219
Article
Google Scholar
Wiesinger F, Boesiger P, Pruessmann KP (2004) Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 52:376–390. https://doi.org/10.1002/mrm.20183
Article
PubMed
Google Scholar
Ziegelberger G, Croft R, Feychting M et al (2020) Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys 105:483–524. https://doi.org/10.1097/HP.0000000000001210
Article
CAS
Google Scholar
Tiberi G, Costagli M, Biagi L, et al (2016) SAR prediction in adults and children by combining measured B1+ maps and simulations at 7.0 Tesla. J Magn Reson Imaging 44:1048–1055. https://doi.org/10.1002/jmri.25241
Article
PubMed
Google Scholar
Wald LL, Setsompop K (2012) Method for reducing local specific absorption rate in magnetic resonance imaging using radiofrequency coil array dark modes, April 23 2012. US Patent App. 13/453,208
Google Scholar
Rauschenberg J, Nagel AM, Ladd SC, et al (2014) Multicenter study of subjective acceptance during magnetic resonance imaging at 7 and 9.4 T. Invest Radiol 9:249–259. https://doi.org/10.1097/RLI.0000000000000035
Article
Google Scholar
Dula AN, Virostko J, Shellock FG (2014) Assessment of MRI issues at 7 T for 28 implants and other objects. AJR Am J Roentgenol 202:401–405. https://doi.org/10.2214/AJR.13.10777
Article
PubMed
Google Scholar
Fagan AJ, Bitz AK, Björkman-Burtscher IM, et al (2021) 7T MR safety. J Magn Reson Imaging 53:333–346. https://doi.org/10.1002/jmri.27319
Article
PubMed
Google Scholar
Bruschi N, Boffa G, Inglese M (2020) Ultra-high-field 7-T MRI in multiple sclerosis and other demyelinating diseases: from pathology to clinical practice. Eur Radiol 4:59. https://doi.org/10.1186/s41747-020-00186-x
Article
Google Scholar
Absinta M, Sati P, Reich DS (2016) Advanced MRI and staging of multiple sclerosis lesions. Nat Rev Neurol 12:358–368. https://doi.org/10.1038/nrneurol.2016.59
Article
CAS
PubMed
PubMed Central
Google Scholar
Cocozza S, Cosottini M, Signori A, et al (2020) A clinically feasible 7-Tesla protocol for the identification of cortical lesions in multiple sclerosis. Eur Radiol 30:4586–4594. https://doi.org/10.1007/s00330-020-06803-y
Article
PubMed
Google Scholar
Maggi P, Absinta M, Grammatico M, et al (2018) Central vein sign differentiates multiple sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol 83:283–294. https://doi.org/10.1002/ana.25146
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang I, Oh S, Blümcke I, et al (2020) Value of 7T MRI and post-processing in patients with nonlesional 3T MRI undergoing epilepsy presurgical evaluation. Epilepsia 61:2509–2520. https://doi.org/10.1111/epi.16682
Article
PubMed
Google Scholar
Opheim G, van der Kolk A, Bloch KM, et al (2021) 7T Epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice. Neurology 96:327–341. https://doi.org/10.1212/WNL.0000000000011413
Article
PubMed
Google Scholar
Düzel E, Costagli M, Donatelli G, Speck O, Cosottini M (2021) Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance. Eur Radiol Exp. https://doi.org/10.1186/s41747-021-00221-5
Lehéricy S, Bardinet E, Poupon C, Vidailhet M, François C (2014) 7 tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson’s disease. Mov Disord 29:1574–1581. https://doi.org/10.1002/mds.26043
Article
CAS
PubMed
Google Scholar
Cho ZH, Oh SH, Kim JM, et al (2011) Direct visualization of Parkinson’s disease by in vivo human brain imaging using 7.0T magnetic resonance imaging. Mov Disord 26:713–718. https://doi.org/10.1002/mds.23465
Article
PubMed
Google Scholar
Cho ZH, Min HK, Oh SH, et al (2010) Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging: clinical article. J Neurosurg 113:639–647. https://doi.org/10.3171/2010.3.JNS091385
Article
PubMed
PubMed Central
Google Scholar
van Laar PJ, Oterdoom DLM, ter Horst GJ, et al (2016) Surgical accuracy of 3-tesla versus 7-tesla magnetic resonance imaging in deep brain stimulation for Parkinson disease. World Neurosurg 93:410–412. https://doi.org/10.1016/j.wneu.2016.06.084
Article
PubMed
Google Scholar
Cosottini M, Donatelli G, Costagli M, et al (2016) High-resolution 7T MR imaging of the motor cortex in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 37:455–461. https://doi.org/10.3174/ajnr.A4562
Article
CAS
PubMed
PubMed Central
Google Scholar
Wisse LEM, Kuijf HJ, Honingh AM, et al (2016) Automated hippocampal subfield segmentation at 7T MRI. AJNR Am J Neuroradiol 37:1050–1057. https://doi.org/10.3174/ajnr.A4659
Article
CAS
PubMed
PubMed Central
Google Scholar
Solano-Castiella E, Schäfer A, Reimer E, et al (2011) Parcellation of human amygdala in vivo using ultra high field structural MRI. Neuroimage 58:741–748. https://doi.org/10.1016/j.neuroimage.2011.06.047
Article
PubMed
Google Scholar
Rotta J, Perosa V, Yakupov R, et al (2021) Detection of cerebral microbleeds with venous connection at 7-tesla MRI. Neurology 96:e2048–e2057. https://doi.org/10.1212/wnl.0000000000011790
Article
PubMed
Google Scholar
De Rotte AAJ, Koning W, Den Hartog AG et al (2014) 7.0 T MRI detection of cerebral microinfarcts in patients with a symptomatic high-grade carotid artery stenosis. J Cereb Blood Flow Metab 34:1715–1719. https://doi.org/10.1038/jcbfm.2014.141
Article
PubMed
PubMed Central
Google Scholar
Harteveld AA, De Cocker LJL, Dieleman N et al (2015) High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 tesla. PLoS One 10:e0121051. https://doi.org/10.1371/journal.pone.0121051
Article
CAS
PubMed
PubMed Central
Google Scholar
Harteveld AA, van der Kolk AG, van der Worp HB, et al (2017) High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T. Eur Radiol 27:1585–1595. https://doi.org/10.1007/s00330-016-4483-3
Article
PubMed
Google Scholar
Sato T, Matsushige T, Chen B, et al (2019) Wall contrast enhancement of thrombosed intracranial aneurysms at 7T MRI. AJNR Am J Neuroradiol 40:1106–1111. https://doi.org/10.3174/ajnr.A6084
Article
CAS
PubMed
PubMed Central
Google Scholar
Harteveld AA, Van Der Kolk AG, Zwanenburg JJM et al (2016) 7-T MRI in cerebrovascular diseases: challenges to overcome and initial results. Top Magn Reson Imaging 25:89–100. https://doi.org/10.1097/RMR.0000000000000080
Article
PubMed
Google Scholar
Rutland JW, Delman BN, Gill CM, Zhu C, Shrivastava RK, Balchandani P (2020) Emerging use of ultra-high-field 7T MRI in the study of intracranial vascularity: state of the field and future directions. AJNR Am J Neuroradiol 41:2–9. https://doi.org/10.3174/ajnr.A6344
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross JS (2004) The high-field-strength curmudgeon. AJNR Am J Neuroradiol 2:168–169
Google Scholar
Tanenbaum LN (2004) 3-T MR imaging: ready for clinical practice. AJNR Am J Neuroradiol 25:1626–1627 author reply 1629
PubMed
PubMed Central
Google Scholar
Shapiro MD, Magee T, Williams D, Ramnath R, Ross JS (2004) The time for 3T clinical imaging is now. AJNR Am J Neuroradiol 25:1628–1629 author reply 1629
PubMed
PubMed Central
Google Scholar