Moser E, Stahlberg F, Ladd ME, Trattnig S (2012) 7-T MR-from research to clinical applications? NMR Biomed 25:695–716 https://doi.org/10.1002/nbm.1794
Article
PubMed
Google Scholar
Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42:23–41 https://doi.org/10.1002/jmri.24768
Article
PubMed
Google Scholar
Yacoub E, Harel N, Uǧurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci U S A 105:10607–10612 https://doi.org/10.1073/pnas.0804110105
Article
CAS
PubMed
PubMed Central
Google Scholar
Fracasso A, Luijten PR, Dumoulin SO, Petridou N (2017) Laminar imaging of positive and negative BOLD in human visual cortex at 7 T. Neuroimage 164:100–111 https://doi.org/10.1016/j.neuroimage.2017.02.038
Article
PubMed
Google Scholar
Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6:156–167 https://doi.org/10.1006/nimg.1997.0289
Article
CAS
PubMed
Google Scholar
Triantafyllou C, Hoge RD, Krueger G et al (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26:243–250 https://doi.org/10.1016/j.neuroimage.2005.01.007
Article
CAS
PubMed
Google Scholar
Zaitsev M, Maclaren J, Herbst M (2015) Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging 42:887–901 https://doi.org/10.1002/jmri.24850
Article
PubMed
PubMed Central
Google Scholar
Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8:80–85. https://doi.org/10.1002/(SICI)1097-0193(1999)8:2/3<80::AID-HBM2>3.0.CO;2-C
Article
CAS
PubMed
PubMed Central
Google Scholar
Gras V, Boland M, Vignaud A et al (2017) Homogeneous non-selective and slice-selective parallel-transmit excitations at 7 Tesla with universal pulses: a validation study on two commercial RF coils. PLoS One 12:e0183562 https://doi.org/10.1371/journal.pone.0183562
Article
PubMed
PubMed Central
CAS
Google Scholar
Ladd ME, Bachert P, Meyerspeer M et al (2018) Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 109:1–50 https://doi.org/10.1016/j.pnmrs.2018.06.001
Article
CAS
PubMed
Google Scholar
Jack CR, Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562 https://doi.org/10.1016/j.jalz.2018.02.018
Article
PubMed
PubMed Central
Google Scholar
Young PNE, Estarellas M, Coomans E et al (2020) Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther 12:49 https://doi.org/10.1186/s13195-020-00612-7
Article
PubMed
PubMed Central
Google Scholar
Committee for Medicinal Products for Human Use (CHMP) (2011) Qualification opinion of low hippocampal volume (atrophy) by MRI for use in clinical trials for regulatory purpose-in pre-dementia stage of Alzheimer’s disease
Hill DLG, Schwarz AJ, Isaac M et al (2014) Coalition Against Major Diseases/European Medicines Agency biomarker qualification of hippocampal volume for enrichment of clinical trials in predementia stages of Alzheimer’s disease. Alzheimers Dement 10:421–429.e3 https://doi.org/10.1016/j.jalz.2013.07.003
Article
PubMed
Google Scholar
Rohrer JD, Nicholas JM, Cash DM et al (2015) Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 14:253–262 https://doi.org/10.1016/S1474-4422(14)70324-2
Article
PubMed
PubMed Central
Google Scholar
Jack CR, Barnes J, Bernstein MA et al (2015) Magnetic resonance imaging in Alzheimer’s disease neuroimaging initiative 2. Alzheimers Dement 11:740–756 https://doi.org/10.1016/j.jalz.2015.05.002
Article
PubMed
PubMed Central
Google Scholar
Wisse LEM, Chételat G, Daugherty AM et al (2020) Hippocampal subfield volumetry from structural isotropic 1 mm3 MRI scans: a note of caution. Hum Brain Mapp 42:539–550 https://doi.org/10.1002/hbm.25234
Article
PubMed
PubMed Central
Google Scholar
Düzel E, Acosta-Cabronero J, Berron D et al (2019) European Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND). Alzheimers Dement Diagn Assess Dis Monit 11:538–549 https://doi.org/10.1016/j.dadm.2019.04.010
Google Scholar
Berron D, Vieweg P, Hochkeppler A et al (2017) A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. Neuroimage Clin 15:466–482 https://doi.org/10.1016/j.nicl.2017.05.022
Article
CAS
PubMed
PubMed Central
Google Scholar
Maass A, Berron D, Libby LA, Ranganath C, Düzel E (2015) Functional subregions of the human entorhinal cortex. Elife 4:1–20 https://doi.org/10.7554/eLife.06426
Article
Google Scholar
Maass A, Berron D, Harrison TM et al (2019) Alzheimer’s pathology targets distinct memory networks in the ageing brain. Brain 142:2492–2509 https://doi.org/10.1093/brain/awz154
Article
PubMed
PubMed Central
Google Scholar
Braak H, Del Tredici K (2015) The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138:2814–2833 https://doi.org/10.1093/brain/awv236
Article
PubMed
Google Scholar
Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O (2020) Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 143:1233–1248 https://doi.org/10.1093/brain/awaa068
Article
PubMed
PubMed Central
Google Scholar
de Flores R, Berron D, Ding SL et al (2020) Characterization of hippocampal subfields using ex vivo MRI and histology data: lessons for in vivo segmentation. Hippocampus 30:545–564 https://doi.org/10.1002/hipo.23172
Article
PubMed
Google Scholar
Maclaren J, Herbst M, Speck O, Zaitsev M (2013) Prospective motion correction in brain imaging: a review. Magn Reson Med 69:621–636 https://doi.org/10.1002/mrm.24314
Article
PubMed
Google Scholar
Newton A, McGugin R, Gauthier I (2019) Behavioral correlates to laminar thickness within the cortex. In: International society for magnetic resonance in medicine, p 0338
Google Scholar
Kulason S, Tward DJ, Brown T et al (2019) Cortical thickness atrophy in the transentorhinal cortex in mild cognitive impairment. Neuroimage Clin 21:101617 https://doi.org/10.1016/j.nicl.2018.101617
Article
PubMed
Google Scholar
Kuehn E, Sereno MI (2018) Modelling the human cortex in three dimensions. Trends Cogn Sci 22:1073–1075 https://doi.org/10.1016/j.tics.2018.08.010
Article
PubMed
Google Scholar
Betts MJ, Kirilina E, Otaduy MCG et al (2019) Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 142:2558–2571 https://doi.org/10.1093/brain/awz193
Article
PubMed
PubMed Central
Google Scholar
Betts MJ, Cardenas-Blanco A, Kanowski M et al (2019) Locus coeruleus MRI contrast is reduced in Alzheimer’s disease dementia and correlates with CSF Aβ levels. Alzheimers Dement Diagn Assess Dis Monit 11:281–285 https://doi.org/10.1016/j.dadm.2019.02.001
Google Scholar
Priovoulos N, Jacobs HIL, Ivanov D, Uludağ K, Verhey FRJ, Poser BA (2018) High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3 T and 7 T. Neuroimage 168:427–436 https://doi.org/10.1016/j.neuroimage.2017.07.045
Article
PubMed
Google Scholar
Dichgans M (2019) Dementia risk after transient ischaemic attack and stroke. Lancet Neurol 18:223–225 https://doi.org/10.1016/S1474-4422(18)30497-6
Article
PubMed
Google Scholar
Salman RA-S, McGoohan K, Rodrigues M, Dichgans M (2016) Dementia after stroke due to intracerebral haemorrhage. Lancet Neurol 15:779–780 https://doi.org/10.1016/S1474-4422(16)30092-8
Article
Google Scholar
Conijn MMA, Geerlings MI, Biessels GJ et al (2011) Cerebral microbleeds on MR imaging: comparison between 1.5 and 7 T. AJNR Am J Neuroradiol 32:1043–1049 https://doi.org/10.3174/ajnr.A2450
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuijf HJ, de Bresser J, Geerlings MI et al (2012) Efficient detection of cerebral microbleeds on 7.0t mr images using the radial symmetry transform. Neuroimage 59:2266–2273 https://doi.org/10.1016/j.neuroimage.2011.09.061
Article
PubMed
Google Scholar
Jouvent E, Poupon C, Gray F et al (2011) Intracortical infarcts in small vessel disease: a combined 7-T postmortem MRI and neuropathological case study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 42:e27–e30 https://doi.org/10.1161/STROKEAHA.110.594218
Article
PubMed
Google Scholar
van Veluw SJ, Shih AY, Smith EE et al (2017) Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol 16:730–740 https://doi.org/10.1016/S1474-4422(17)30196-5
Article
PubMed
PubMed Central
Google Scholar
Bouvy WH, Kuijf HJ, Zwanenburg JJM et al (2017) Abnormalities of cerebral deep medullary veins on 7 Tesla MRI in amnestic mild cognitive impairment and early Alzheimer’s disease: a pilot study. J Alzheimers Dis 57:705–710 https://doi.org/10.3233/JAD-160952
Article
CAS
PubMed
Google Scholar
Geurts L, Biessels GJ, Luijten P, Zwanenburg J (2018) Better and faster velocity pulsatility assessment in cerebral white matter perforating arteries with 7 T quantitative flow MRI through improved slice profile, acquisition scheme, and postprocessing. Magn Reson Med 79:1473–1482 https://doi.org/10.1002/mrm.26821
Article
PubMed
Google Scholar
Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J (2018) The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 286:12–28 https://doi.org/10.1148/radiol.2017162096
Article
PubMed
Google Scholar
Zwanenburg JJM, van Osch MJP (2017) Targeting cerebral small vessel disease with MRI. Stroke 48:3175–3182 https://doi.org/10.1161/STROKEAHA.117.016996
Article
PubMed
Google Scholar
Bouvy WH, Geurts LJ, Kuijf HJ et al (2016) Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-T quantitative flow MRI. NMR Biomed 29:1295–1304 https://doi.org/10.1002/nbm.3306
Article
CAS
PubMed
Google Scholar
Perosa V, Priester A, Ziegler G et al (2020) Hippocampal vascular reserve associated with cognitive performance and hippocampal volume. Brain 143:622–634 https://doi.org/10.1093/brain/awz383
Article
PubMed
PubMed Central
Google Scholar
Spallazzi M, Dobisch L, Becke A et al (2019) Hippocampal vascularization patterns: a high-resolution 7 Tesla time-of-flight magnetic resonance angiography study. Neuroimage Clin 21:101609 https://doi.org/10.1016/j.nicl.2018.11.019
Article
PubMed
Google Scholar
Jochems ACC, Blair GW, Stringer MS et al (2020) Relationship between venules and perivascular spaces in sporadic small vessel diseases. Stroke 51:1503–1506 https://doi.org/10.1161/STROKEAHA.120.029163
Article
CAS
PubMed
PubMed Central
Google Scholar
Francis F, Ballerini L, Wardlaw JM (2019) Perivascular spaces and their associations with risk factors, clinical disorders and neuroimaging features: a systematic review and meta-analysis. Int J Stroke 14:359–371 https://doi.org/10.1177/1747493019830321
Article
PubMed
Google Scholar
Valdés Hernández MD, Ballerini L, Glatz A et al (2020) Perivascular spaces in the centrum semiovale at the beginning of the 8th decade of life: effect on cognition and associations with mineral deposition. Brain Imaging Behav 14:1865–1875 https://doi.org/10.1007/s11682-019-00128-1
Article
PubMed
Google Scholar
Wardlaw JM, Benveniste H, Nedergaard M et al (2020) Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol 16:137–153 https://doi.org/10.1038/s41582-020-0312-z
Article
PubMed
Google Scholar
Mattern H, Sciarra A, Godenschweger F et al (2018) Prospective motion correction enables highest resolution time-of-flight angiography at 7 T. Magn Reson Med 80:248–258 https://doi.org/10.1002/mrm.27033
Article
PubMed
Google Scholar
Mattern H, Sciarra A, Lüsebrink F, Acosta-Cabronero J, Speck O (2019) Prospective motion correction improves high-resolution quantitative susceptibility mapping at 7 T. Magn Reson Med 81:1605–1619 https://doi.org/10.1002/mrm.27509
Article
PubMed
Google Scholar
Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580 https://doi.org/10.1002/ana.410300410
Article
CAS
PubMed
Google Scholar
Zhou L, McInnes J, Wierda K et al (2017) Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun 8:15295 https://doi.org/10.1038/ncomms15295
Article
PubMed
PubMed Central
Google Scholar
Hoover BR, Reed MN, Su J et al (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68:1067–1081 https://doi.org/10.1016/j.neuron.2010.11.030
Article
CAS
PubMed
PubMed Central
Google Scholar
Menkes-Caspi N, Yamin HG, Kellner V, Spires-Jones TL, Cohen D, Stern EA (2015) Pathological tau disrupts ongoing network activity. Neuron 85:959–966 https://doi.org/10.1016/j.neuron.2015.01.025
Article
CAS
PubMed
Google Scholar
Düzel E, Berron D, Schütze H et al (2018) CSF total tau levels are associated with hippocampal novelty irrespective of hippocampal volume. Alzheimers Dement Diagn Assess Dis Monit 10:782–790 https://doi.org/10.1016/j.dadm.2018.10.003
Google Scholar
Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113 https://doi.org/10.1016/j.bbr.2008.02.016
Article
CAS
PubMed
PubMed Central
Google Scholar
Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2:a006338 https://doi.org/10.1101/cshperspect.a006338
Article
PubMed
PubMed Central
CAS
Google Scholar
Palmqvist S, Schöll M, Strandberg O et al (2017) Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun 8:1214 https://doi.org/10.1038/s41467-017-01150-x
Article
PubMed
PubMed Central
CAS
Google Scholar
Pohmann R, Speck O, Scheffler K (2016) Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn Reson Med 75:801–809 https://doi.org/10.1002/mrm.25677
Article
PubMed
Google Scholar
Uludaǧ K, Müller-Bierl B, Uǧurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165 https://doi.org/10.1016/j.neuroimage.2009.05.051
Article
PubMed
Google Scholar
Šišková Z, Justus D, Kaneko H et al (2014) Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of alzheimer’s disease. Neuron 84:1023–1033 https://doi.org/10.1016/j.neuron.2014.10.024
Article
PubMed
CAS
Google Scholar
Palop JJ, Mucke L (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17:777–792 https://doi.org/10.1038/nrn.2016.141
Article
CAS
PubMed
PubMed Central
Google Scholar
Maass A, Lockhart SN, Harrison TM et al (2018) Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. J Neurosci 38:530–543 https://doi.org/10.1523/JNEUROSCI.2028-17.2017
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith MA, Harris PLR, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 94:9866–9868 https://doi.org/10.1073/pnas.94.18.9866
Article
CAS
PubMed
PubMed Central
Google Scholar
Sian-Hülsmann J, Mandel S, Youdim MBH, Riederer P (2011) The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 118:939–957 https://doi.org/10.1111/j.1471-4159.2010.07132.x
Article
PubMed
CAS
Google Scholar
Lovejoy DB, Guillemin GJ (2014) The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 6:6 https://doi.org/10.3389/fnagi.2014.00173
Article
CAS
Google Scholar
Brettschneider J, Del Tredici K, Toledo JB et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38 https://doi.org/10.1002/ana.23937
Article
CAS
PubMed
PubMed Central
Google Scholar
McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24:574–576 https://doi.org/10.1002/ana.410240415
Article
CAS
PubMed
Google Scholar
Kwan JY, Jeong SY, Van Gelderen P et al (2012) Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 7:e35241 https://doi.org/10.1371/journal.pone.0035241
Article
CAS
PubMed
PubMed Central
Google Scholar
Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31:327–335 https://doi.org/10.1002/jnr.490310214
Article
CAS
PubMed
Google Scholar
Wang Y, Liu T (2015) Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 73:82–101 https://doi.org/10.1002/mrm.25358
Article
CAS
PubMed
Google Scholar
Daugherty AM, Haacke EM, Raz N (2015) Striatal iron content predicts its shrinkage and changes in verbal working memory after two years in healthy adults. J Neurosci 35:6731–6743 https://doi.org/10.1523/JNEUROSCI.4717-14.2015
Article
CAS
PubMed
PubMed Central
Google Scholar
Callaghan MF, Freund P, Draganski B et al (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 35:1862–1872 https://doi.org/10.1016/j.neurobiolaging.2014.02.008
Article
PubMed
PubMed Central
Google Scholar
Li W, Wu B, Batrachenko A et al (2014) Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Hum Brain Mapp 35:2698–2713 https://doi.org/10.1002/hbm.22360
Article
CAS
PubMed
Google Scholar
Betts MJ, Cardenas-Blanco A, Kanowski M, Jessen F, Düzel E (2017) In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage 163:150–159 https://doi.org/10.1016/j.neuroimage.2017.09.042
Article
PubMed
Google Scholar
Acosta-Cabronero J, Betts MJ, Cardenas-Blanco A, Yang S, Nestor PJ (2016) In vivo MRI mapping of brain iron deposition across the adult lifespan. J Neurosci 36:364–374 https://doi.org/10.1523/JNEUROSCI.1907-15.2016
Article
CAS
PubMed
PubMed Central
Google Scholar
Acosta-Cabronero J, Williams GB, Cardenas-Blanco A, Arnold RJ, Lupson V, Nestor PJ (2013) In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PLoS One 8:e81093 https://doi.org/10.1371/journal.pone.0081093
Article
PubMed
PubMed Central
Google Scholar
van Bergen JMG, Li X, Quevenco FC et al (2018) Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age. Neuroimage 174:308–316 https://doi.org/10.1016/j.neuroimage.2018.03.021
Article
PubMed
CAS
Google Scholar
Ayton S, Fazlollahi A, Bourgeat P et al (2017) Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain 140:2112–2119 https://doi.org/10.1093/brain/awx137
Article
PubMed
Google Scholar
Bechten A, Wattjes MP, Purcell DD et al (2017) Validation of an MRI rating scale for amyloid-related imaging abnormalities. J Neuroimaging 27:318–325 https://doi.org/10.1111/jon.12422
Article
PubMed
Google Scholar
Brashear HR, Ketter N, Bogert J, Di J, Salloway SP, Sperling R (2018) Clinical evaluation of amyloid-related imaging abnormalities in bapineuzumab phase III studies. J Alzheimers Dis 66:1409–1424 https://doi.org/10.3233/JAD-180675
Article
CAS
PubMed
Google Scholar
Heuer E, Jacobs J, Du R et al (2017) Amyloid-related imaging abnormalities in an aged squirrel monkey with cerebral amyloid angiopathy. J Alzheimers Dis 57:519–530 https://doi.org/10.3233/JAD-160981
Article
CAS
PubMed
PubMed Central
Google Scholar
Ketter N, Brashear HR, Bogert J et al (2017) Central review of amyloid-related imaging abnormalities in two phase III clinical trials of bapineuzumab in mild-to-moderate alzheimer’s disease patients. J Alzheimers Dis 57:557–573 https://doi.org/10.3233/JAD-160216
Article
CAS
PubMed
Google Scholar
Martens RM, Bechten A, Ingala S et al (2018) The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer’s patients: an interobserver study. Eur Radiol 28:1215–1226 https://doi.org/10.1007/s00330-017-5022-6
Article
PubMed
Google Scholar
Péran P, Cherubini A, Assogna F et al (2010) Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain 133:3423–3433 https://doi.org/10.1093/brain/awq212
Article
PubMed
Google Scholar
Hutchinson M, Raff U, Lebedev S (2003) MRI correlates of pathology in parkinsonism: segmented inversion recovery ratio imaging (SIRRIM). Neuroimage 20:1899–1902 https://doi.org/10.1016/j.neuroimage.2003.07.012
Article
PubMed
Google Scholar
Martin WRW, Wieler M, Gee M (2008) Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 70:1411–1417 https://doi.org/10.1212/01.wnl.0000286384.31050.b5
Article
CAS
PubMed
Google Scholar
Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA (1994) Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 32:335–341 https://doi.org/10.1002/mrm.1910320309
Article
CAS
PubMed
Google Scholar
Vaillancourt DE, Prodoehl J, Abraham I et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72:1378–1384 https://doi.org/10.1212/01.wnl.0000340982.01727.6e
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehéricy S, Sharman MA, Dos Santos CL et al (2012) Magnetic resonance imaging of the substantia nigra in Parkinson’s disease. Mov Disord 27:822–830 https://doi.org/10.1002/mds.25015
Article
PubMed
Google Scholar
Hirata FCC, Sato JR, Vieira G et al (2017) Substantia nigra fractional anisotropy is not a diagnostic biomarker of Parkinson’s disease: a diagnostic performance study and meta-analysis. Eur Radiol 27:2640–2648 https://doi.org/10.1007/s00330-016-4611-0
Article
PubMed
Google Scholar
Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V (2018) Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 168:412–426 https://doi.org/10.1016/j.neuroimage.2017.02.052
Article
PubMed
Google Scholar
Balchandani P, Naidich TP (2015) Ultra-high-field MR neuroimaging. AJNR Am J Neuroradiol 36:1204–1215 https://doi.org/10.3174/ajnr.A4180
Article
CAS
PubMed
PubMed Central
Google Scholar
Deistung A, Schäfer A, Schweser F et al (2013) High-resolution MR imaging of the human brainstem in vivo at 7 Tesla. Front Hum Neurosci 7:710 https://doi.org/10.3389/fnhum.2013.00710
Article
PubMed
PubMed Central
Google Scholar
Cosottini M, Frosini D, Pesaresi I et al (2014) MR imaging of the substantia nigra at 7 T enables diagnosis of Parkinson disease. Radiology 271:831–838 https://doi.org/10.1148/radiol.14131448
Article
PubMed
Google Scholar
Blazejewska AI, Schwarz ST, Pitiot A et al (2013) Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology 81:534–540 https://doi.org/10.1212/WNL.0b013e31829e6fd2
Article
PubMed
PubMed Central
Google Scholar
Kwon D-H, Kim J-M, Oh S-H et al (2012) Seven-tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol 71:267–277 https://doi.org/10.1002/ana.22592
Article
PubMed
Google Scholar
Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. Brain 122:1421–1436 https://doi.org/10.1093/brain/122.8.1421
Article
PubMed
Google Scholar
Kim J-M, Jeong H-J, Bae YJ et al (2016) Loss of substantia nigra hyperintensity on 7 Tesla MRI of Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Parkinsonism Relat Disord 26:47–54 https://doi.org/10.1016/j.parkreldis.2016.01.023
Article
CAS
PubMed
Google Scholar
Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP (2014) The “swallow tail” appearance of the healthy nigrosome - a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3 T. PLoS One 9:e93814 https://doi.org/10.1371/journal.pone.0093814
Article
PubMed
PubMed Central
CAS
Google Scholar
Schmidt MA, Engelhorn T, Marxreiter F et al (2017) Ultra high-field SWI of the substantia nigra at 7 T: Reliability and consistency of the swallow-tail sign. BMC Neurol 17:194 https://doi.org/10.1186/s12883-017-0975-2
Article
PubMed
PubMed Central
Google Scholar
Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. Brain 122:1437–1448 https://doi.org/10.1093/brain/122.8.1437
Article
PubMed
Google Scholar
Gramsch C, Reuter I, Kraff O et al (2017) Nigrosome 1 visibility at susceptibility weighted 7 T MRI—A dependable diagnostic marker for Parkinson’s disease or merely an inconsistent, age-dependent imaging finding? PLoS One 12:e0185489 https://doi.org/10.1371/journal.pone.0185489
Article
PubMed
PubMed Central
CAS
Google Scholar
Duguid JR, De La Paz R, DeGroot J (1986) Magnetic resonance imaging of the midbrain in Parkinson’s disease. Ann Neurol 20:744–747 https://doi.org/10.1002/ana.410200618
Article
CAS
PubMed
Google Scholar
Massey L, Miranda M, Al-Helli O et al (2017) 9.4 T MR microscopy of the substantia nigra with pathological validation in controls and disease. NeuroImage Clin 13:154–163 https://doi.org/10.1016/j.nicl.2016.11.015
Article
CAS
PubMed
Google Scholar
Noh Y, Sung YH, Lee J, Kim EY (2015) Nigrosome 1 detection at 3 T MRI for the diagnosis of early-stage idiopathic Parkinson disease: assessment of diagnostic accuracy and agreement on imaging asymmetry and clinical laterality. AJNR Am J Neuroradiol 36:2010–2016 https://doi.org/10.3174/ajnr.A4412
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehericy S, Vaillancourt DE, Seppi K et al (2017) The role of high-field magnetic resonance imaging in parkinsonian disorders: pushing the boundaries forward. Mov Disord 32:510–525 https://doi.org/10.1002/mds.26968
Article
PubMed
Google Scholar
Cosottini M, Frosini D, Pesaresi I et al (2015) Comparison of 3 T and 7 T susceptibility-weighted angiography of the substantia nigra in diagnosing Parkinson disease. AJNR Am J Neuroradiol 36:461–466 https://doi.org/10.3174/ajnr.A4158
Article
CAS
PubMed
PubMed Central
Google Scholar
Lotfipour AK, Wharton S, Schwarz ST et al (2012) High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson’s disease. J Magn Reson Imaging 35:48–55 https://doi.org/10.1002/jmri.22752
Article
PubMed
Google Scholar
Bae YJ, Kim J-M, Kim E et al (2016) Loss of nigral hyperintensity on 3 Tesla MRI of Parkinsonism: comparison with 123 I-FP-CIT SPECT. Mov Disord 31:684–692 https://doi.org/10.1002/mds.26584
Article
CAS
PubMed
Google Scholar
Schwarz ST, Mougin O, Xing Y et al (2018) Parkinson’s disease related signal change in the nigrosomes 1–5 and the substantia nigra using T2* weighted 7 T MRI. Neuroimage Clin 19:683–689 https://doi.org/10.1016/j.nicl.2018.05.027
Article
PubMed
PubMed Central
Google Scholar
Ceravolo R, Antonini A, Frosini D et al (2015) Nigral anatomy and striatal denervation in genetic Parkinsonism: a family report. Mov Disord 30:1148–1149 https://doi.org/10.1002/mds.26255
Article
PubMed
Google Scholar
Frosini D, Cosottini M, Donatelli G et al (2017) Seven tesla MRI of the substantia nigra in patients with rapid eye movement sleep behavior disorder. Parkinsonism Relat Disord 43:105–109 https://doi.org/10.1016/j.parkreldis.2017.08.002
Article
PubMed
Google Scholar
Barber TR, Griffanti L, Bradley KM et al (2020) Nigrosome 1 imaging in REM sleep behavior disorder and its association with dopaminergic decline. Ann Clin Transl Neurol 7:26–35 https://doi.org/10.1002/acn3.50962
Article
CAS
PubMed
Google Scholar
Sung YH, Noh Y, Lee J, Kim EY (2016) Drug-induced Parkinsonism versus idiopathic Parkinson disease: utility of Nigrosome 1 with 3-T Imaging. Radiology 279:849–858 https://doi.org/10.1148/radiol.2015151466
Article
PubMed
Google Scholar
Perez Akly MS, Stefani CV, Ciancaglini L et al (2019) Accuracy of nigrosome-1 detection to discriminate patients with Parkinson’s disease and essential tremor. Neuroradiol J 32:395–400 https://doi.org/10.1177/1971400919853787
Article
PubMed
PubMed Central
Google Scholar
Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5:75–86 https://doi.org/10.1016/S1474-4422(05)70285-4
Article
PubMed
Google Scholar
Munoz E, Iranzo A, Rauek S et al (2011) Subclinical nigrostriatal dopaminergic denervation in the cerebellar subtype of multiple system atrophy (MSA-C). J Neurol 258:2248–2253 https://doi.org/10.1007/s00415-011-6108-8
Article
PubMed
Google Scholar
Cilia R, Rossi C, Frosini D et al (2011) Dopamine transporter SPECT imaging in Corticobasal Syndrome. PLoS One 6:e18301 https://doi.org/10.1371/journal.pone.0018301
Article
CAS
PubMed
PubMed Central
Google Scholar
Frosini D, Ceravolo R, Tosetti M, Bonuccelli U, Cosottini M (2016) Nigral involvement in atypical parkinsonisms: evidence from a pilot study with ultra-high field MRI. J Neural Transm 123:509–513 https://doi.org/10.1007/s00702-016-1529-2
Article
PubMed
Google Scholar
Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301 https://doi.org/10.1093/brain/114.5.2283
Article
PubMed
Google Scholar
Pavese N, Tai YF (2018) Nigrosome imaging and neuromelanin sensitive MRI in diagnostic evaluation of Parkinsonism. Mov Disord Clin Pract 5:131–140 https://doi.org/10.1002/mdc3.12590
Article
PubMed
PubMed Central
Google Scholar
Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341 https://doi.org/10.1001/archneur.60.3.337
Article
PubMed
Google Scholar
Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F (2000) The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev 24:655–668 https://doi.org/10.1016/S0149-7634(00)00028-2
Article
CAS
PubMed
Google Scholar
Ohtsuka C, Sasaki M, Konno K et al (2013) Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging. Neurosci Lett 541:93–98 https://doi.org/10.1016/j.neulet.2013.02.012
Article
CAS
PubMed
Google Scholar
Sasaki M, Shibata E, Tohyama K et al (2006) Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 17:1215–1218 https://doi.org/10.1097/01.wnr.0000227984.84927.a7
Article
PubMed
Google Scholar
Tona K-D, van Osch MJP, Nieuwenhuis S, Keuken MC (2019) Quantifying the contrast of the human locus coeruleus in vivo at 7 Tesla MRI. PLoS One 14:e0209842 https://doi.org/10.1371/journal.pone.0209842
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye R, O’Callaghan C, Rua C et al (2019) Imaging the locus coeruleus in Parkinson’s disease with ultra-high 7 T MRI. In: Annual Meeting of the Organization for Human Brain Mapping, p W272
Google Scholar
Tkáč I, Gruetter R (2005) Methodology of 1H NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson 29:139–157 https://doi.org/10.1007/BF03166960
Article
PubMed
PubMed Central
Google Scholar
Emir UE, Auerbach EJ, Van De Moortele P-F et al (2012) Regional neurochemical profiles in the human brain measured by 1H MRS at 7 T using local B1 shimming. NMR Biomed 25:152–160 https://doi.org/10.1002/nbm.1727
Article
CAS
PubMed
Google Scholar
Watanabe H, Fukatsu H, Katsuno M et al (2004) Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol Neurosurg Psychiatry 75:103–109
CAS
PubMed
PubMed Central
Google Scholar
Emir UE, Tuite PJ, Öz G (2012) Elevated pontine and putamenal gaba levels in mild-moderate parkinson disease detected by 7 tesla proton mrs. PLoS One 7:e30918 https://doi.org/10.1371/journal.pone.0030918
Article
CAS
PubMed
PubMed Central
Google Scholar
Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211 https://doi.org/10.1016/S0197-4580(02)00065-9
Article
PubMed
Google Scholar
Abosch A, Yacoub E, Ugurbil K, Harel N (2010) An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 Tesla. Neurosurgery 67:1745–1756 https://doi.org/10.1227/NEU.0b013e3181f74105
Article
PubMed
Google Scholar
Duchin Y, Abosch A, Yacoub E, Sapiro G, Harel N (2012) Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One 7:e37328 https://doi.org/10.1371/journal.pone.0037328
Article
CAS
PubMed
PubMed Central
Google Scholar
Patriat R, Cooper SE, Duchin Y et al (2018) Individualized tractography-based parcellation of the globus pallidus pars interna using 7 T MRI in movement disorder patients prior to DBS surgery. Neuroimage 178:198–209 https://doi.org/10.1016/j.Neuroimage.2018.05.048
Article
PubMed
Google Scholar
Shamir RR, Duchin Y, Kim J et al (2019) Microelectrode recordings validate the clinical visualization of subthalamic-nucleus based on 7 T magnetic resonance imaging and machine learning for deep brain stimulation surgery. Neurosurgery 84:749–757 https://doi.org/10.1093/neuros/nyy212
Article
PubMed
Google Scholar
Chiò A, Calvo A, Moglia C et al (2011) Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 82:740–746 https://doi.org/10.1136/jnnp.2010.235952
Article
PubMed
Google Scholar
Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955 https://doi.org/10.1016/S0140-6736(10)61156-7
Article
CAS
PubMed
Google Scholar
Montuschi A, Iazzolino B, Calvo A et al (2015) Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. J Neurol Neurosurg Psychiatry 86:168–173 https://doi.org/10.1136/jnnp-2013-307223
Article
PubMed
Google Scholar
Riancho J, Bosque-Varela P, Perez-Pereda S, Povedano M, de Munaín AL, Santurtun A (2018) The increasing importance of environmental conditions in amyotrophic lateral sclerosis. Int J Biometeorol 62:1361–1374 https://doi.org/10.1007/s00484-018-1550-2
Article
PubMed
Google Scholar
Corcia P, Tauber C, Vercoullie J et al (2012) Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One 7:e52941 https://doi.org/10.1371/journal.pone.0052941
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner MR, Bowser R, Bruijn L et al (2013) Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Front Degener 14:19–32 https://doi.org/10.3109/21678421.2013.778554
Article
Google Scholar
Liu J, Wang F (2017) Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol 8:1005 https://doi.org/10.3389/fimmu.2017.01005
Article
PubMed
PubMed Central
CAS
Google Scholar
Kawamata T, Akiyama H, Yamada T, McGeer PL (1992) Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol 140:691–707
CAS
PubMed
PubMed Central
Google Scholar
Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3 https://doi.org/10.1186/1750-1172-4-3
Article
PubMed
PubMed Central
Google Scholar
Filippi M, Agosta F, Abrahams S et al (2010) EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases. Eur J Neurol 17:526–e20 https://doi.org/10.1111/j.1468-1331.2010.02951.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Atkinson AJ, Colburn WA, DeGruttola VG et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95 https://doi.org/10.1067/mcp.2001.113989
Article
Google Scholar
Agosta F, Spinelli EG, Filippi M (2018) Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 18:395–406 https://doi.org/10.1080/14737175.2018.1463160
Article
CAS
PubMed
Google Scholar
Cosottini M, Donatelli G, Costagli M et al (2016) High-resolution 7 T MR imaging of the motor cortex in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 37:455–461 https://doi.org/10.3174/ajnr.A4562
Article
CAS
PubMed
PubMed Central
Google Scholar
Oba H, Araki T, Ohtomo K et al (1993) Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 189:843–846 https://doi.org/10.1148/radiology.189.3.8234713
Article
CAS
PubMed
Google Scholar
Ishikawa K, Nagura H, Yokota T, Yamanouchi H (1993) Signal loss in the motor cortex on magnetic resonance images in amyotrophic lateral sclerosis. Ann Neurol 33:218–222 https://doi.org/10.1002/ana.410330214
Article
CAS
PubMed
Google Scholar
Ignjatović A, Stević Z, Lavrnić S, Daković M, Bačić G (2013) Brain iron MRI: a biomarker for amyotrophic lateral sclerosis. J Magn Reson Imaging 38:1472–1479 https://doi.org/10.1002/jmri.24121
Article
PubMed
Google Scholar
Adachi Y, Sato N, Saito Y et al (2015) Usefulness of SWI for the detection of iron in the motor cortex in amyotrophic lateral sclerosis. J Neuroimaging 25:443–451 https://doi.org/10.1111/jon.12127
Article
PubMed
Google Scholar
Donatelli G, Retico A, Ienco EC et al (2018) Semiautomated evaluation of the primary motor cortex in patients with amyotrophic lateral sclerosis at 3 T. AJNR Am J Neuroradiol 39:63–69 https://doi.org/10.3174/ajnr.A5423
Article
CAS
PubMed
PubMed Central
Google Scholar
Obusez EC, Lowe M, Oh SH et al (2018) 7 T MR of intracranial pathology: preliminary observations and comparisons to 3 T and 1.5T. Neuroimage 168:459–476 https://doi.org/10.1016/j.Neuroimage.2016.11.030
Article
PubMed
Google Scholar
Fukunaga M, Li TQ, Van Gelderen P et al (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 107:3834–3839 https://doi.org/10.1073/pnas.0911177107
Article
CAS
PubMed
PubMed Central
Google Scholar
Costagli M, Donatelli G, Biagi L et al (2016) Magnetic susceptibility in the deep layers of the primary motor cortex in amyotrophic lateral sclerosis. Neuroimage Clin 12:965–969 https://doi.org/10.1016/j.nicl.2016.04.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Pallebage-Gamarallage M, Foxley S, Menke RAL et al (2018) Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: a post mortem whole brain sampling strategy for the integration of ultra-high-field MRI and quantitative neuropathology. BMC Neurosci 19:1–24 https://doi.org/10.1186/s12868-018-0416-1
Article
Google Scholar
Schweitzer AD, Liu T, Gupta A et al (2015) Quantitative susceptibility mapping of the motor cortex in amyotrophic lateral sclerosis and primary lateral sclerosis. AJR Am J Roentgenol 204:1086–1092 https://doi.org/10.2214/AJR.14.13459
Article
PubMed
PubMed Central
Google Scholar
Walhout R, Westeneng HJ, Verstraete E et al (2015) Cortical thickness in ALS: towards a marker for upper motor neuron involvement. J Neurol Neurosurg Psychiatry 86:288–294 https://doi.org/10.1136/jnnp-2013-306839
Article
PubMed
Google Scholar
Acosta-Cabronero J, Machts J, Schreiber S et al (2018) Quantitative susceptibility MRI to detect brain iron in amyotrophic lateral sclerosis. Radiology 289:195–203 https://doi.org/10.1148/radiol.2018180112
Article
PubMed
Google Scholar
Donatelli G, Caldarazzo Ienco E, Costagli M et al (2019) MRI cortical feature of bulbar impairment in patients with amyotrophic lateral sclerosis. Neuroimage Clin 24:101934 https://doi.org/10.1016/j.nicl.2019.101934
Article
PubMed
PubMed Central
Google Scholar
Tkáč I, Öz G, Adriany G, Uğurbil K, Gruetter R (2009) In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7 T. Magn Reson Med 62:868–879 https://doi.org/10.1002/mrm.22086
Article
PubMed
PubMed Central
CAS
Google Scholar
Ebisu T, Rooney WD, Graham SH, Weiner MW, Maudsley AA (1994) N-acetylaspartate as an in vivo marker of neuronal viability in kainate- induced status epilepticus: 1H magnetic resonance spectroscopic imaging. J Cereb Blood Flow Metab 14:373–382 https://doi.org/10.1038/jcbfm.1994.48
Article
CAS
PubMed
Google Scholar
Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298 https://doi.org/10.1159/000111347
Article
CAS
PubMed
Google Scholar
Atassi N, Xu M, Triantafyllou C et al (2017) Ultra high-field (7 Tesla) magnetic resonance spectroscopy in Amyotrophic Lateral Sclerosis. PLoS One 12:e0177680 https://doi.org/10.1371/journal.pone.0177680
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheong I, Marjańska M, Deelchand DK, Eberly LE, Walk D, Öz G (2017) Ultra-high field proton MR spectroscopy in early-stage amyotrophic lateral sclerosis. Neurochem Res 42:1833–1844 https://doi.org/10.1007/s11064-017-2248-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Doble A (1996) The pharmacology and mechanism of action of riluzole. Neurology 47:233S–241S https://doi.org/10.1212/WNL.47.6_Suppl_4.233S
Article
Google Scholar
Mantz J, Laudenbach V, Lecharny JB, Henzel D, Desmonts JM (1994) Riluzole, a novel antiglutamate, blocks GABA uptake by striatal synaptosomes. Eur J Pharmacol 257:R7–R8 https://doi.org/10.1016/0014-2999(94)90716-1
Article
CAS
PubMed
Google Scholar
Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105 https://doi.org/10.1016/S0301-0082(00)00067-8
Article
CAS
PubMed
Google Scholar
Majounie E, Renton AE, Mok K et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330 https://doi.org/10.1016/S1474-4422(12)70043-1
Article
CAS
PubMed
PubMed Central
Google Scholar
DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256 https://doi.org/10.1016/j.neuron.2011.09.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Westeneng H-J, Wismans C, Nitert AD et al (2017) Metabolic differences between asymptomatic C9orf72 carriers and non-carriers assessed by brain 7 T MRSI. In: Annual Meeting of the International Society for Magnetic Resonance in Medicine, p 0028
Google Scholar
Donatelli G, Westeneng H-J, van Veenhuijzen K et al (2018) 31P MRSI of asymptomatic C9orf72 carriers and non-carriers at 7 Tesla. In: Joint Annual Meeting ISMRM-ESMRMB, p 0583
Google Scholar
Agosta F, Chiò A, Cosottini M et al (2010) The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJR Am J Neuroradiol 31:1769–1777 https://doi.org/10.3174/ajnr.A2043
Article
CAS
Google Scholar
Verstraete E, Polders DL, Mandl RCW et al (2014) Multimodal tract-based analysis in ALS patients at 7 T: a specific white matter profile? Amyotroph Lateral Scler Front Degener 15:84–92 https://doi.org/10.3109/21678421.2013.844168
Article
Google Scholar
Barry RL, Vannesjo SJ, By S, Gore JC, Smith SA (2018) Spinal cord MRI at 7 T. Neuroimage 168:437–451 https://doi.org/10.1016/j.Neuroimage.2017.07.003
Article
PubMed
Google Scholar
Sigmund EE, Suero GA, Hu C et al (2012) High-resolution human cervical spinal cord imaging at 7 T. NMR Biomed 25:891–899 https://doi.org/10.1002/nbm.1809
Article
CAS
PubMed
Google Scholar
Henning A, Koning W, Fuchs A et al (2016) 1H MRS in the human spinal cord at 7 T using a dielectric waveguide transmitter, RF shimming and a high density receive array. NMR Biomed 29:1231–1239 https://doi.org/10.1002/nbm.3541
Article
CAS
PubMed
Google Scholar
Kogan F, Singh A, Debrosse C et al (2013) Imaging of glutamate in the spinal cord using GluCEST. Neuroimage 77:262–267 https://doi.org/10.1016/j.NeuroImage.2013.03.072
Article
CAS
PubMed
Google Scholar
Massire A, Rasoanandrianina H, Taso M et al (2018) Feasibility of single-shot multi-level multi-angle diffusion tensor imaging of the human cervical spinal cord at 7 T. Magn Reson Med 80:947–957 https://doi.org/10.1002/mrm.27087
Article
PubMed
Google Scholar
Cohen-Adad J, Zhao W, Keil B et al (2013) 7-T MRI of the spinal cord can detect lateral corticospinal tract abnormality in amyotrophic lateral sclerosis. Muscle Nerve 47:760–762 https://doi.org/10.1002/mus.23720
Article
PubMed
Google Scholar