Galbusera F, Niemeyer F (2018) Chapter 14. Mathematical and finite element modeling. In: Galbusera F, Wilke H-J (eds) Biomechanics of the spine. Academic Press, Cambridge, pp 239–255. https://doi.org/10.1016/B978-0-12-812851-0.00014-8
Chapter
Google Scholar
Gilbertson LG, Goel VK, Kong WZ, Clausen JD (1995) Finite element methods in spine biomechanics research. Crit Rev Biomed Eng 23:411–473. https://doi.org/10.1615/critrevbiomedeng.v23.i5-6.20
Article
CAS
PubMed
Google Scholar
Zienkiewicz OC, Taylor RL, Nithiarasu P, Zhu JZ (1977) The finite element method. McGraw-Hill, London
Google Scholar
Reddy JN (1993) An introduction to the finite element method. McGraw-Hill Education, New York
Google Scholar
Lalitha M, Kiruthiga M, Loganathan C (2013) A survey on image segmentation through clustering algorithm. Int J Sci Res 2:348–358
Google Scholar
Eckstein F, Kent Kwoh C, Boudreau RM et al (2013) Quantitative MRI measures of cartilage predict knee replacement: a case–control study from the Osteoarthritis Initiative. Ann Rheum Dis 72:707–714. https://doi.org/10.1136/annrheumdis-2011-201164
Article
PubMed
Google Scholar
Kaur D, Kaur Y (2014) Various image segmentation techniques: a review. IJCSMC 3:809–814
Google Scholar
El-Baz A, Jiang X, Suri JS (2016) Biomedical image segmentation: advances and trends. CRC Press, Boca Raton
Book
Google Scholar
Pedoia V, Majumdar S, Link TM (2016) Segmentation of joint and musculoskeletal tissue in the study of arthritis. MAGMA 29:207–221. https://doi.org/10.1007/s10334-016-0532-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R (2018) Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med 79:2379–2391. https://doi.org/10.1002/mrm.26841
Zhang J, Hu J (2008) Image segmentation based on 2D Otsu method with histogram analysis. In: 2008 International Conference on Computer Science and Software Engineering. ieeexplore.ieee.org, pp 105–108. https://doi.org/10.1109/CSSE.2008.206
Naghdy F, Todd C, Tarabichi M, Kirilloy M (2009) A computer-based, interactive tool for semi-automatic extraction, visualization and pre-operative assessment of the inner ear. Paper presented at the Joint Conference on Medical Informatics in Taiwan (JCMIT 2009), Tapei Medical University, Taipei, Taiwan, pp 1–8
Google Scholar
Scheys L, Jonkers I, Schutyser F, Pans S, Spaepen A, Suetens P (2005) Image based methods to generate subject-specific musculoskeletal models for gait analysis. Int Congr Ser 1281:62–67. https://doi.org/10.1016/j.ics.2005.03.076
Horsfield MA, Sala S, Neema M et al (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. Neuroimage 50:446–455. https://doi.org/10.1016/j.neuroimage.2009.12.121
Article
PubMed
PubMed Central
Google Scholar
Ryba T, Krnoul Z (2019) Segmentation of shoulder MRI data for musculoskeletal model adaptation. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019), Lisboa, 2019
Stammberger T, Eckstein F, Michaelis M, Englmeier KH, Reiser M (1999) Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation. Magn Reson Imaging 17:1033–1042. https://doi.org/10.1016/s0730-725x(99)00040-5
Liukkonen MK, Mononen ME, Tanska P, Saarakkala S, Nieminen MT, Korhonen RK (2017) Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint. Comput Methods Biomech Biomed Engin 20:1453–1463. https://doi.org/10.1080/10255842.2017.1375477
Al-amri SS, Kalyankar NV, Khamitkar SD (2010) Image segmentation by using threshold techniques. https://arxiv.org/abs/1005.4020.
Gilles B, Magnenat-Thalmann N (2010) Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med Image Anal 14:291–302. https://doi.org/10.1016/j.media.2010.01.006
Article
PubMed
Google Scholar
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66. https://doi.org/10.1109/TSMC.1979.4310076
Article
Google Scholar
Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29:273–285. https://doi.org/10.1016/0734-189X(85)90125-2
Article
Google Scholar
Abutaleb AS (1989) Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput Vis Graph Image Process 47:22–32. https://doi.org/10.1016/0734-189X(89)90051-0
Article
Google Scholar
Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recognit 19:41–47. https://doi.org/10.1016/0031-3203(86)90030-0
Article
Google Scholar
Sekuboyina A, Kukačka J, Kirschke JS et al (2018) Attention-driven deep learning for pathological spine segmentation. In: Computational Methods and Clinical Applications in Musculoskeletal Imaging. Springer International Publishing, Cham, pp 108–119
Chapter
Google Scholar
Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13:471–482. https://doi.org/10.1016/j.media.2009.02.004
Jabbar SI, Day CR, Heinz N, Chadwick EK (2016) Using convolutional neural network for edge detection in musculoskeletal ultrasound images. Paper presented at the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, 24-29 July 2016
Canny J (1987) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698. https://doi.org/10.1109/TPAMI.1986.4767851
Hiasa Y, Otake Y, Takao M, Ogawa T, Sugano N, Sato Y (2019) Automated muscle segmentation from clinical CT using bayesian U-Net for personalized musculoskeletal modeling. https://arxiv.org/abs/1907.08915.
Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302. https://doi.org/10.2307/1932409
Article
Google Scholar
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. Paper presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7-12 Jun 2015
Chen X, Pawlowski N, Rajchl M, Glocker B, Konukoglu E (2018) Deep generative models in the real-world: an open challenge from medical imaging. https://arxiv.org/abs/1806.05452.
Vania M, Mureja D, Lee D (2017) Automatic spine segmentation using convolutional neural network via redundant generation of class labels for 3D spine modeling. J Comput Des Eng 6:224–232
Google Scholar
Kallemeyn NA, Tadepalli SC, Shivanna KH, Grosland NM (2009) An interactive multiblock approach to meshing the spine. Comput Methods Programs Biomed 95:227–235. https://doi.org/10.1016/j.cmpb.2009.03.005
Article
PubMed
Google Scholar
Yoganandan N, Kumaresan S, Voo L, Pintar FA (1997) Finite element model of the human lower cervical spine: parametric analysis of the C4-C6 unit. J Biomech Eng 119:87–92. https://doi.org/10.1115/1.2796070
Article
CAS
PubMed
Google Scholar
Jones MT, Plassmann PE (1997) Adaptive refinement of unstructured finite-element meshes. Finite Elem Anal Des 25:41–60. https://doi.org/10.1016/S0168-874X(96)00039-X
Article
Google Scholar
Benzley SE, Perry E, Merkley K, Clark B, Sjaardema G (1995) A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis. In: Proceedings, 4th international meshing roundtable. Sandia National Laboratories Albuquerque, pp 179–191
Huang C-Y (1997) Recent progress in multiblock hybrid structured and unstructured mesh generation. Comput Methods Appl Mech Eng 150:1–24. https://doi.org/10.1016/S0045-7825(97)00105-9
Article
Google Scholar
Teo JCM, Chui CK, Wang ZL et al (2007) Heterogeneous meshing and biomechanical modeling of human spine. Med Eng Phys 29:277–290. https://doi.org/10.1016/j.medengphy.2006.02.012
Article
CAS
PubMed
Google Scholar
Yu Z, Wang J, Gao Z, Xu M, Hoshijima M (2014) New software developments for quality mesh generation and optimization from biomedical imaging data. Comput Methods Programs Biomed 113:226–240. https://doi.org/10.1016/j.cmpb.2013.08.009
Goksel O, Salcudean SE (2011) Image-based variational meshing. IEEE Trans Med Imaging 30:11–21. https://doi.org/10.1109/TMI.2010.2055884
Article
PubMed
Google Scholar
Goksel O, Salcudean SE (2009) High-quality model generation for finite element simulation of tissue deformation. Med Image Comput Comput Assist Interv 12:248–256. https://doi.org/10.1007/978-3-642-04271-3_31
Article
PubMed
Google Scholar
Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Meth Engng 56:609–635. https://doi.org/10.1002/nme.686
Wang ZL, Teo JCM, Chui CK et al (2005) Computational biomechanical modelling of the lumbar spine using marching-cubes surface smoothened finite element voxel meshing. Comput Methods Programs Biomed 80:25–35. https://doi.org/10.1016/j.cmpb.2005.06.006
Article
CAS
PubMed
Google Scholar
Baldwin MA, Langenderfer JE, Rullkoetter PJ, Laz PJ (2010) Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Comput Methods Programs Biomed 97:232–240. https://doi.org/10.1016/j.cmpb.2009.07.005
Article
PubMed
Google Scholar
Poelert S, Valstar E, Weinans H, Zadpoor AA (2013) Patient-specific finite element modeling of bones. Proc Inst Mech Eng H 227:464–478. https://doi.org/10.1177/0954411912467884
Article
PubMed
Google Scholar
Wu Z, Sullivan JM (2003) Multiple material marching cubes algorithm. Int J Numer Meth Engng 58:189–207. https://doi.org/10.1002/nme.775
Article
Google Scholar
Lorensen WE, ClineHarvey E (1987) Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics. https://doi.org/10.1145/37402.37422
Schmidt H, Shirazi-Adl A, Galbusera F, Wilke H-J (2010) Response analysis of the lumbar spine during regular daily activities--a finite element analysis. J Biomech 43:1849–1856. https://doi.org/10.1016/j.jbiomech.2010.03.035
Article
PubMed
Google Scholar
Zannoni C, Mantovani R, Viceconti M (1998) Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys 20:735–740. https://doi.org/10.1016/S1350-4533(98)00081-2
Article
CAS
PubMed
Google Scholar
Laz PJ, Stowe JQ, Baldwin MA et al (2007) Incorporating uncertainty in mechanical properties for finite element-based evaluation of bone mechanics. J Biomech 40:2831–2836. https://doi.org/10.1016/j.jbiomech.2007.03.013
Article
PubMed
Google Scholar
Unnikrishnan GU, Morgan EF (2011) A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra. J Biomech Eng 133:071001. https://doi.org/10.1115/1.4004190
Article
PubMed
Google Scholar
Chen G, Wu FY, Liu ZC, Yang K, Cui F (2015) Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models. Med Eng Phys 37:808–812. https://doi.org/10.1016/j.medengphy.2015.05.006
Article
CAS
PubMed
Google Scholar
Gras L-L, Mitton D, Crevier-Denoix N, Laporte S (2012) The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model. Comput Methods Biomech Biomed Engin 15:13–21. https://doi.org/10.1080/10255842.2011.564162
Article
PubMed
Google Scholar
Malandrino A, Noailly J, Lacroix D (2011) The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes. PLoS Comput Biol 7:e1002112. https://doi.org/10.1371/journal.pcbi.1002112
Article
CAS
PubMed
PubMed Central
Google Scholar
Messina C, Piodi LP, Rinaudo L et al (2019) Bone strain index reproducibility and soft tissue thickness influence: a dual x-ray photon absorptiometry phantom study. Eur Radiol Exp 3:33. https://doi.org/10.1186/s41747-019-0110-9
Article
CAS
PubMed
PubMed Central
Google Scholar
de Bakker CMJ, Tseng WJ, Li Y, Zhao H, Liu XS (2017) Clinical evaluation of bone strength and fracture risk. Curr Osteoporos Rep 15:32–42. https://doi.org/10.1007/s11914-017-0346-3
Keyak JH, Sigurdsson S, Karlsdottir GS et al (2013) Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone 57:18–29. https://doi.org/10.1016/j.bone.2013.07.028
Article
CAS
PubMed
PubMed Central
Google Scholar
Allaire BT, Lu D, Johannesdottir F et al (2019) Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos Int 30:323–331. https://doi.org/10.1007/s00198-018-4716-1
Article
CAS
PubMed
Google Scholar
Imai K (2015) Analysis of vertebral bone strength, fracture pattern, and fracture location: a validation study using a computed tomography-based nonlinear finite element analysis. Aging Dis 6:180–187. https://doi.org/10.14336/AD.2014.0621
Article
PubMed
PubMed Central
Google Scholar
Pakdel A, Fialkov J, Whyne CM (2016) High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures. J Biomech 49:1454–1460. https://doi.org/10.1016/j.jbiomech.2016.03.015
Article
PubMed
Google Scholar
Lu Y, Engelke K, Glueer CC, Morlock MM, Huber G (2014) The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone. Proc Inst Mech Eng H 228:1208–1213. https://doi.org/10.1177/0954411914558654
Article
PubMed
Google Scholar
Macneil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42:1203–1213. https://doi.org/10.1016/j.bone.2008.01.017
Article
PubMed
Google Scholar
Zhou B, Wang J, Yu YE et al (2016) High-resolution peripheral quantitative computed tomography (HR-pQCT) can assess microstructural and biomechanical properties of both human distal radius and tibia: Ex vivo computational and experimental validations. Bone 86:58–67. https://doi.org/10.1016/j.bone.2016.02.016
Article
PubMed
Google Scholar
Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23:392–399. https://doi.org/10.1359/jbmr.071108
Amstrup AK, Jakobsen NF, Moser E, Sikjaer T, Mosekilde L, Rejnmark L (2016) Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J Bone Miner Metab 34:638–645. https://doi.org/10.1007/s00774-015-0708-9
Fovargue D, Nordsletten D, Sinkus R (2018) Stiffness reconstruction methods for MR elastography. NMR Biomed 31:e3935. https://doi.org/10.1002/nbm.3935
Article
PubMed
PubMed Central
Google Scholar
Ben-Abraham EI, Chen J, Felmlee JP et al (2017) Feasibility of MR elastography of the intervertebral disc. Magn Reson Imaging 39:132–137. https://doi.org/10.1016/j.mri.2015.12.037
Article
PubMed
Google Scholar
Walter BA, Mageswaran P, Mo X et al (2017) MR Elastography-derived stiffness: a biomarker for intervertebral disc degeneration. Radiology 285:167–175. https://doi.org/10.1148/radiol.2017162287
Article
PubMed
PubMed Central
Google Scholar
Chakouch MK, Pouletaut P, Charleux F, Bensamoun SF (2016) Viscoelastic shear properties of in vivo thigh muscles measured by MR elastography. J Magn Reson Imaging 43:1423–1433. https://doi.org/10.1002/jmri.25105
Article
PubMed
Google Scholar
Schrank F, Warmuth C, Görner S et al (2019) Real-time MR elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises. Magn Reson Med. https://doi.org/10.1002/mrm.28095
Chianca V, Albano D, Messina C et al (2017) Diffusion tensor imaging in the musculoskeletal and peripheral nerve systems: from experimental to clinical applications. Eur Radiol Exp 1:12. https://doi.org/10.1186/s41747-017-0018-1
Article
PubMed
PubMed Central
Google Scholar
Sconfienza LM, Albano D, Allen G et al (2018) Clinical indications for musculoskeletal ultrasound updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) consensus. Eur Radiol 28:5338–5351. https://doi.org/10.1007/s00330-018-5474-3
Article
PubMed
Google Scholar
Albano D, Messina C, Usuelli FG et al (2017) Magnetic resonance and ultrasound in achilles tendinopathy: predictive role and response assessment to platelet-rich plasma and adipose-derived stromal vascular fraction injection. Eur J Radiol 95:130–135. https://doi.org/10.1016/j.ejrad.2017.08.006
Article
PubMed
Google Scholar
Pass B, Johnson M, Hensor EM, Gupta H, Robinson P (2016) Sonoelastography of musculoskeletal soft tissue masses: a pilot study of quantitative evaluation. J Ultrasound Med 35:2209–2216. https://doi.org/10.7863/ultra.15.11065
Gruber L, Edlinger M, Gruber H, Loizides A (2015) Is strain elastography really a good adjunct for prediction of malignancy in soft tissue tumours? Ultraschall Med. 36:637. https://doi.org/10.1055/s-0041-107983
Article
CAS
PubMed
Google Scholar
Pass B, Jafari M, Rowbotham E, Hensor EM, Gupta H, Robinson P (2017) Do quantitative and qualitative shear wave elastography have a role in evaluating musculoskeletal soft tissue masses? Eur Radiol 27:723–731. https://doi.org/10.1007/s00330-016-4427-y
Bellelli A, Silvestri E, Barile A et al (2019) Position paper on magnetic resonance imaging protocols in the musculoskeletal system (excluding the spine) by the Italian College of Musculoskeletal Radiology. Radiol Med 124:522–538. https://doi.org/10.1007/s11547-019-00992-3
Article
PubMed
Google Scholar
Potter HG, Black BR, Chong LR (2009) New techniques in articular cartilage imaging. Clin Sports Med 28:77–94. https://doi.org/10.1016/j.csm.2008.08.004
Article
PubMed
Google Scholar
Sigurdsson U, Müller G, Siversson C et al (2016) Delayed gadolinium-enhanced MRI of meniscus (dGEMRIM) and cartilage (dGEMRIC) in healthy knees and in knees with different stages of meniscus pathology. BMC Musculoskelet Disord 17:406. https://doi.org/10.1186/s12891-016-1244-z
Article
PubMed
PubMed Central
Google Scholar
Ciavarro C, Caiani EG, Brayda-Bruno M et al (2012) Mid-term evaluation of the effects of dynamic neutralization system on lumbar intervertebral discs using quantitative molecular MR imaging. J Magn Reson Imaging 35:1145–1151. https://doi.org/10.1002/jmri.23525
Article
PubMed
Google Scholar
Doniselli FM, Albano D, Chianca V, Cimmino MA, Sconfienza LM (2017) Gadolinium accumulation after contrast-enhanced magnetic resonance imaging: what rheumatologists should know. Clin Rheumatol 36:977–980. https://doi.org/10.1007/s10067-017-3604-y
Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS (1997) T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med 38:863–867. https://doi.org/10.1002/mrm.1910380602
Matzat SJ, van Tiel J, Gold GE, Oei EHG (2013) Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg 3:162–174. https://doi.org/10.3978/j.issn.2223-4292.2013.06.04
Article
PubMed
PubMed Central
Google Scholar
Albano D, Chianca V, Cuocolo R et al (2018) T2-mapping of the sacroiliac joints at 1.5 Tesla: a feasibility and reproducibility study. Skeletal Radiol 47:1691–1696. https://doi.org/10.1007/s00256-018-2951-3
Article
PubMed
Google Scholar
Chianca V, Albano D, Cuocolo R et al (2020) T2 mapping of the trapeziometacarpal joint and triangular fibrocartilage complex: a feasibility and reproducibility study at 1.5 T. Radiol Med 125:306–312. https://doi.org/10.1007/s11547-019-01123-8
Article
PubMed
Google Scholar
Kim T, Min B-H, Yoon S-H et al (2014) An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference. Skeletal Radiol 43:947–954. https://doi.org/10.1007/s00256-014-1872-z
Article
PubMed
Google Scholar
Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24:1–12. https://doi.org/10.1016/j.csm.2004.08.007
Article
PubMed
Google Scholar
Cilla M, Borgiani E, Martínez J, Duda GN, Checa S (2017) Machine learning techniques for the optimization of joint replacements: application to a short-stem hip implant. PLoS One 12:e0183755. https://doi.org/10.1371/journal.pone.0183755
Article
CAS
PubMed
PubMed Central
Google Scholar
Garijo N, Verdonschot N, Engelborghs K, García-Aznar JM, Pérez MA (2017) Subject-specific musculoskeletal loading of the tibia: computational load estimation. J Mech Behav Biomed Mater 65:334–343. https://doi.org/10.1016/j.jmbbm.2016.08.026
Article
CAS
PubMed
Google Scholar