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Reproducibility of radiomic features in CT
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Abstract

Background: We investigated to what extent tube voltage, scanner model, and reconstruction algorithm affect
radiomic feature reproducibility in a single-institution retrospective database of computed tomography images of
non-small-cell lung cancer patients.

Methods: This study was approved by the Institutional Review Board (UID 2412). Images of 103 patients were
considered, being acquired on either among two scanners, at 100 or 120 kVp. For each patient, images were
reconstructed with six iterative blending levels, and 1414 features were extracted from each reconstruction. At
univariate analysis, Wilcoxon-Mann-Whitney test was applied to evaluate feature differences within scanners and
voltages, whereas the impact of the reconstruction was established with the overall concordance correlation
coefficient (OCCC). A multivariable mixed model was also applied to investigate the independent contribution of
each acquisition/reconstruction parameter. Univariate and multivariable analyses were combined to analyse feature
behaviour.

Results: Scanner model and voltage did not affect features significantly. The reconstruction blending level showed
a significant impact at both univariate analysis (154/1414 features yielding an OCCC < 0.85) and multivariable
analysis, with most features (1042/1414) revealing a systematic trend with the blending level (multiple comparisons
adjusted p < 0.05). Reproducibility increased in association to image processing with smooth filters, nonetheless
specific investigation in relation to clinical endpoints should be performed to ensure that textural information is not
removed.

Conclusions: Combining univariate and multivariable models is allowed to identify features for which corrections
may be applied to reduce the trend with the algorithm and increase reproducibility. Subsequent clustering may be
applied to eliminate residual redundancy.

Keywords: Carcinoma (non-small-cell lung), Image processing (computer-assisted), Machine learning, Reproducibility
of results, Tomography (x-ray computed)
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Key points

� Scanner and voltage did not affect features
significantly.

� Reconstruction algorithm blending levels impact on
the reproducibility of features.

� Combination of multiple analyses may help to
characterise feature behaviour.

Background
Current clinical practice relies on radiological imaging
for the diagnosis, evaluation, and monitoring of diseases.
Radiomics is an emerging discipline which aims to add
further quantitative objectivity to the visual interpret-
ation of the medical images performed by the physicians
[1, 2]. A huge variety of mathematical descriptors,
named radiomic features, can be calculated from images
quantifying different aspects of the tumour shape and
texture. Radiomics investigates the ability of some of
such features to characterise clinical properties of the le-
sions [3]. Under the assumption that the features might
capture relevant information not discriminated by the
human eye [4], radiomics attempts to become a precious
tool to support personalised clinical decisions [5].
Importantly, radiomics can be applied successfully in

the clinical practice only if the radiomic-based predictive
models are robust and generalisable. To this aim, radio-
mic features must not be biased by any variation in the
image signal except for that ascribable to actual bio-
logical processes [6, 7]. Conversely, it was extensively
observed that the use of different parameters during ac-
quisition and post-acquisition may modify the image sig-
nal with a significant impact on the value of the
radiomic features, even when the diagnostic quality of
the image is maintained [8–11].
Quite often image databases collected for radiomic re-

search are highly heterogeneous, including images ob-
tained with different scanners, acquisition protocols and
post-acquisition techniques [1, 12, 13]. Among others, a
recent study from our group [14] confirmed the possible
confounding factor of reconstruction algorithms. In this
study, we built a predictive model, identifying a possible
association of the radiomic and clinical information with
the lymph node status and the overall survival in 270 pa-
tients with lung cancer. Through an analysis of the vari-
ance on 422 selected radiomic features, we found that
254 of them differed significantly between the two types
of reconstruction algorithm: iterative reconstruction (IR)
and filtered backprojection (FBP). In these cases, it is
fundamental to take the reproducibility issue into ac-
count, by either disregarding or properly correcting and
harmonising the features significantly affected by the dif-
ferent imaging procedures [15–17].

Focusing on computed tomography (CT), previous
studies investigated the radiomic features variability re-
lated to different acquisition parameters (tube current
[18], slice thickness [19–22] and tube voltage peak [18]),
reconstruction techniques [19, 20, 22–26], segmentation
of the volume of interest [27–29], and post-processing
techniques [30–33]. Quite often, however, the list of re-
producible features obtained in one study is not fully
provided or is not directly exportable to a different data-
base of images, if obtained with different equipment or
image settings.
In this paper, we faced the reproducibility issue in a

retrospective database of CT images available at our In-
stitute for patients affected by non-small-cell lung cancer
(NSCLC). We aimed to contribute to the existing litera-
ture first by identifying the list of reproducible features
for radiomic analysis of NSCLC CT studies, and, most
importantly, by suggesting an integration of different
metrics, which can improve the interpretation of repro-
ducibility results and can be replicated in other
scenarios.

Methods
Patients and ethics issues
Patients undergoing diagnostic chest contrast-enhanced
CT imaging at our Institute between January 2019 and
December 2019 were retrospectively selected. Inclusion
criteria were the availability of CT raw-data, CT being
acquired with the institutional standard protocol and
with beam energy set to either 100 or 120 kVp, and his-
tologically proven diagnosis of NSCLC. Exclusion cri-
teria were tumour volume smaller than 5 cm3 or larger
than 200 cm3. The Institutional Review Board approved
the study (UID 2412) waiving the need for informed
consent.

Image acquisition and reconstruction
Contrast-enhanced CT images were acquired using ei-
ther Discovery CT750 HD or Optima CT660 scanner
(General Electric Healthcare, Wisconsin, USA) accord-
ing to the current institutional standard protocol (acqui-
sition: helical acquisition, 2.5 mm slice thickness and
spacing, automatic tube current modulation, tube volt-
age set to 100, 120 or 140 kVp according to patient body
mass index, noise index suitably optimised for each volt-
age to provide comparable image quality; reconstruction
with standard convolution kernel, adaptive statistical it-
erative reconstruction (ASIR) algorithm with 60% blend-
ing level on Discovery CT750 HD and 50% blending
level on Optima CT660). At our institute, two types of
iodinated-contrast medium are usually injected, Visipa-
que® 320 (General Electric Healthcare, Wisconsin, USA)
or Ultravist® 370 (Bayer Healthcare, Leverkusen,
Germany), and the volume of the contrast medium is
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selected depending on contrast medium concentration
and patient weight.
Previously, during the optimisation process, different

blending levels were tested and appear in our retrospect-
ive databases. To replicate and investigate this variability,
the CT images (portal phase series) of the patients in-
cluded in this study were reconstructed applying each
time a different IR blending level: 0% (equivalent to
FBP), 20%, 40%, 50%, 60% and 80% (referred to as IR20,
IR40, IR50, IR60 and IR80, respectively).

Tumour segmentation
One pulmonary lesion for each patient was contoured manu-
ally slice by slice on the series used for clinical reporting
(AWServer 3.2 Ext. 2.0 tool, General Electric Healthcare,
Wisconsin, USA). The so obtained volume of interest was
used for the radiomic analysis of all the six reconstructions,
inherently co-registered. This allowed us to investigate the
impact of reconstruction algorithms avoiding possible biases
that might have occurred if the segmentation was repeated
separately on each reconstructed image.
Tumours were contoured by three operators with

similar experience (more than 7 years of experience)
after agreement on segmentation criteria and settings.
Radiologists trained among each other to reach a con-
sensus on the segmentation procedure, including win-
dow setting for visualisation (1500 Hounsfield units, HU,
width and − 600 HU level for lung window, 350 HU
width and 40 HU level for mediastinal window, depend-
ing on lesion localisation), exclusion of the vessels, and
inclusion of opacity on the lesion edge.

Radiomic feature extraction
The radiomic features were computed through the
open-source package Pyradiomics v. 2.2.0 [34], from
each of the six reconstructed images for each patient.
Radiomic features were extracted considering the follow-
ing seven categories: shape; first order; grey level co-
occurrence matrix; grey level run length matrix; grey
level size zone matrix; neighbouring grey tone difference
matrix; and grey level dependence matrix.
According to IBSI recommendations [35], before fea-

ture computation image resampling in the axial plane
(Pyradiomics B-Spline interpolator, ‘sitkBSpline’ [36, 37])
and voxel intensity discretisation (25 HU fixed bin [7,
34, 38, 39]) were applied.
Shape, intensity (first order) and texture features were

calculated, both from original images without filtering
and after applying the wavelet filter (order 1 Coiflet, Pyr-
adiomics default [1, 7, 34, 40]) and Laplacian of Gauss-
ian (LoG) filter with different values of Gaussian
standard deviation (sigma: 0.5, 1.0, 1.5, 2.5 and 5.0 mm
[20, 34, 41–43]). The names of the features will be pre-
sented with the suffix “original”, “Wavelet” or “LoG”,

followed by the feature category and the feature name.
Additional details on extracted feature categories and
parameters set for calculation are reported in Supple-
mentary Methods.
Features from the shape category will be included only

in the “original” group since they are identical for ori-
ginal and filtered images.

Statistical analysis
Clinical similarity between patient and tumour charac-
teristics (age, volume, gender, side, position, tumour
type, previous therapy and pTNM stage), according to
scanner and tube voltage, was evaluated with χ2 or
Fisher exact test for categorical variables, and with
Wilcoxon-Mann-Whitney test for continuous variables.
Univariate analysis to evaluate differences in feature

values within CT scanners (Optima CT660 versus Dis-
covery CT750 HD) and within tube voltages (100 ver-
sus 120 kVp) was performed with Wilcoxon-Mann-
Whitney test using feature values obtained from FBP
and IR60 images (this latter chosen as representative, be-
ing in the middle of the IR blending level interval
investigated).
The overall concordance between the six different set-

tings for the reconstruction algorithm on the same patient
was evaluated for each feature with the overall concord-
ance correlation coefficient (OCCC) [44]. An OCCC
threshold equal to 0.85 was used to classify features af-
fected (OCCC < 0.85) or not (OCCC ≥ 0.85) by the IR
blending level applied during reconstruction [20, 45, 46].
Additionally, to investigate the independent contribu-

tion of each acquisition and reconstruction parameter
on feature variation, a multivariable mixed model was
used, including subjects as random effect to take into ac-
count within-subject variation for the six reconstruc-
tions, and adjusting by clinical volume. For this analysis,
FBP was set as reference category, and one model coeffi-
cient and p value for each IR blending level was calcu-
lated for comparison with FBP. All p values were
corrected with the false discovery rate (FDR) method
[47] to properly account for multiple testing; adjusted p
values < 0.05 were considered statistically significant.
For a deeper understanding of feature dependence on

reconstruction algorithm settings, features were classi-
fied in four groups.
Group 1, with OCCC ≥ 0.85 and mixed model FDR-

adjusted p value < 0.05. Over-threshold OCCC indicates that
feature variations among the different reconstruction settings
for each patient are small in comparison to the variations ob-
served in the entire dataset (differences among patients). The
significant p value of the multivariable mixed model indicates
that such small variations follow systematically the same
trend for almost all the patients in the dataset. Hence, fea-
tures belonging to this category change slightly when
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modifying the reconstruction setting, and the trend of such
variation can be predicted and corrected, since it is similar
for almost all patients.
Group 2, with OCCC ≥ 0.85 and mixed model FDR-

adjusted p value ≥ 0.05. When changing the reconstruc-
tion setting, the features vary slightly (or do not vary at
all if OCCC = 1) in comparison to the whole dataset var-
iations, but the non-significant p value of the mixed
model indicates that the trend of such variation (if any)
is not systematic among patients, but random.
Group 3, with OCCC < 0.85 and mixed model FDR-

adjusted p value < 0.05. The low OCCC value indicates
that the feature variation when changing the reconstruc-
tion setting is not negligible in comparison to the varia-
tions observed in the whole dataset. The trend of such
variations is systematically the same for almost all
patients.
Group 4, with OCCC < 0.85 and mixed model FDR-

adjusted p value ≥ 0.05. The features exhibit a relevant
variation in comparison to the variations observed in the
whole dataset, but the sign and entity of such variations
change randomly among patients.
As sensitivity analysis, pair differences were calculated

with Wilcoxon signed rank-test to compare algorithms
among them (not necessarily with FBP as reference).
The whole analysis was also performed on a subgroup

of IR blending levels (IR40, IR50, IR60 and IR80), taking
the IR40 as a reference, in order to provide results also
in a setting more representative of the current clinical
applications.
Finally, the features extracted from original images

were clustered according to a minimum intra-cluster
correlation criterion (Spearman’s |ρ| ≥ 0.75) to quantify
feature redundancy.
All analyses were performed with R (v. 4.0.0) [48], and

tests were two-sided.

Results
Among 163 patients selected for the availability of CT
raw-data, 103 (59 men, mean age 71 years; 44 women,
mean age 67 years) fulfilled the remaining enrolment cri-
teria and were included in the study: 50 (49%) imaged on
Optima CT660 scanner (50% at 100 kVp, 50% at 120
kVp); 53 (51%) imaged on Discovery CT750 HD scanner
(51% at 100 kVp, 49% at 120 kVp), resulting in four popu-
lations according to scanner and tube voltage (Figure S1).
The baseline clinical characteristics are summarised in

Table 1, as long as the p values for the comparison of
clinical characteristics between the two scanners and the
two tube voltage patient populations. No statistically sig-
nificant difference was found, confirming clinical simi-
larity of the four populations. For the subgroup of
patients with available information on pTNM stage and

grading, no statistically significant difference was ob-
served among the populations (results not shown).
A total of 1414 radiomic features were extracted, in-

cluding 154 from original images (14 shape, 17 first
order and 123 texture features), 560 from wavelet-
filtered images (68 first order and 492 texture) and 700
from LoG-filtered images (85 first order and 615 tex-
ture). The full feature list is reported in Table S1 along
with the 33 groups in which the original image features
were clustered.

Scanner model and tube voltage
Forty-four features were significantly different according
to scanner and/or tube voltage, either at univariate or
multivariable (mixed model) analysis or both (Table S2).
Focusing on multivariable analysis, only 5 features (1
from shape category and 4 from texture category and
wavelet-filtered images) showed significant dependence
on tube voltage, and 1 (shape_SurfaceArea) on scanner
(Table 2).

Reconstruction algorithm
In order to evidence the impact of the reconstruction al-
gorithm on the image texture, we reported an example
of two reconstructions (FBP and IR80) of the same le-
sion (Fig. 1).
From the concordance analysis between the different

reconstruction settings, we obtained that 16/154 features
(10%) had small reproducibility (OCCC < 0.85), all in
texture categories, in case of features from original im-
ages (Fig. 2a). Features from grey level run length matrix
category were mostly affected by reconstruction algo-
rithm setting. In case of wavelet-filtered images (Fig. 2b),
116/560 features (21%) yielded OCCC < 0.85, mostly
(51%) from the HH-wavelet group, whereas LL-wavelet
features exhibited the highest concordance. Features
from LoG-filtered images showed the highest reproduci-
bility in all feature categories and for each value of sigma
parameter (Fig. 2c): only 22/700 features (3%) yielded
OCCC < 0.85. The analogous results obtained when
restricting the analysis to the IR40-IR80 range are re-
ported in Figure S2, with 6/154 (4%), 22/560 (4%) and 6/
700 (1%) features yielding OCCC < 0.85 for the original,
wavelet and LoG features, respectively. Table 3 reports
the median OCCC for each image type and feature cat-
egory, both for the main analysis and, in parentheses, for
the subanalysis restricted to the IR40-IR80 range. Full
results (OCCC value obtained for each feature) are re-
ported in Tables S3, S4 and S5 along with the FDR-
adjusted p values obtained from the multivariable mixed
model.
According to the multivariable mixed model, 110/140

(78.5%) features from original images (shape features ex-
cluded), 462/560 (82.5%) from wavelet-filtered images and
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Table 1 Baseline characteristics of the study population.

Variables Overall
cohort
(n = 103)

Scanner Optima
CT660
(n = 50)

Scanner Discovery
CT750 HD
(n = 53)

p value
(scanner)

Tube
voltage
120 kVp
(n = 51)

Tube
voltage
100 kVp
(n = 52)

p value
(kVp)

Gender

Male
Female

59 (57%)
44 (43%)

28 (56%)
22 (44%)

31 (58%)
22 (42%)

0.798a 33 (65%)
18 (35%)

26 (50%)
26 (50%)

0.131a

Age

Mean (median)
IQR

69.2 (70)
(64–75)

69.4 (70)
(65–75.3)

68.9 (69)
(62–74.5)

0.498c 69.8 (70)
(64–76)

68.6 (68.5)
(62–74.8)

0.251c

Side
Right
Left

60 (58%)
43 (42%)

31 (62%)
19 (38%)

29 (55%)
24 (45%)

0.454a 31 (61%)
20 (39%)

29 (56%)
23 (44%)

0.606a

Position
Upper
Medium
Lower
Mixed

63 (64%)
1 (1%)
29 (30%)
5 (5%)

33 (69%)
1 (2%)
13 (27%)
1 (2%)

30 (60%)
0 (0%)
16 (32%)
4 (8%)

0.360b 30 (61%)
1 (2%)
16 (33%)
2 (4%)

33 (67%)
0 (0%)
13 (27%)
3 (6%)

0.731b

Volume (cm3)

Mean (median)
IQR

46.4 (39.1)
(19.1–62.8)

44.2 (40.6)
(19–54.7)

48.5 (38.1)
(19.5–71.9)

0.843c 52.1 (42)
(20.7–67.9)

40.9 (36.7)
(18.4–56.2)

0.181c

Histological type

Adenocarcinoma
Squamous cell carcinoma
Neuroendocrine

83 (82%)
16 (16%)
2 (2%)

38 (78%)
10 (20%)
1 (2%)

45 (87%)
6 (11%)
1 (2%)

0.580b 40 (78%)
9 (18%)
2 (4%)

43 (86%)
7 (14%)
0 (0%)

0.380b

Previous therapy

No
Yes

75 (74%)
26 (26%)

38 (76%)
12 (24%)

37 (73%)
14 (27%)

0.692a 33 (66%)
17 (34%)

42 (82%)
9 (18%)

0.060a

Scanner

Optima CT660
Discovery CT750 HD

50 (49%)
53 (51%)

– – – 25 (49%)
26 (51%)

25 (48%)
27 (52%)

0.924a

Tube voltage (kVp)

120
100

51 (50%)
52 (50%)

25 (50%)
25 (50%)

26 (49%)
27 (51%)

0.924a – – –

aχ2 test
bFisher’s exact test
cWilcoxon-Mann-Whitney test. Missing data: histological type (n = 2); previous therapy (n = 2); position (n = 5). IQR Interquartile range

Table 2 FDR-adjusted p values for univariate and multivariable analysis for the effect of scanner and tube voltage

Features Scanner
(univar) FBP

Scanner
(univar) IR60

Tube voltage
(univar)
FBP

Tube voltage
(univar)
IR60

Scanner
(mixed)

Tube voltage
(mixed)

shape_SurfaceArea 0.897 0.960 0.735 0.695 0.027 0.886

shape_VoxelVolume 0.936 0.960 0.784 0.695 0.190° < 0.001°

Wavelet-glszm_SizeZoneNonUniformityNormalized* 0.264 0.905 0.005 0.016 0.996 0.005

Wavelet-glszm_SmallAreaEmphasis* 0.264 0.905 0.006 0.016 0.996 0.005

Wavelet-glcm1_Correlation* 0.462 0.905 0.144 0.130 0.561 0.018

Wavelet-glcm1_InverseVariance* 0.231 0.905 0.004 0.097 0.309 0.012

Only the features with significant FDR-adjusted p values at multivariate analysis
*HH filter
°In the model with VoxelVolume as the dependent variable, clinical volume was not used as independent predictor. FBP filtered backprojection, FDR false
discovery rate, IR iterative reconstruction
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470/700 (67%) from LoG-filtered images were significantly
affected by IR setting (mixed model FDR-adjusted p value
< 0.05). Similar results were obtained for the subanalysis
restricted to the IR40-IR80 range: 112/140 (80%) for ori-
ginal images, 457/560 (82%) for wavelet-filtered images
and 421/700 (60%) for LoG-filtered images.
We combined the results of the two metrics adopted

for the reproducibility analysis and divided the features
in four groups, as described in the “Methods” section
(“Statistical analysis” section). One representative feature
for each group was selected and displayed in Fig. 3 to
highlight the different behaviours of the features falling
in the different groups. To this aim, we plotted the
absolute value of these features when increasing the re-
construction blending levels for the four patient popula-
tions, each line representing a different patient.
We found that the majority of the features fall in

group 1 (OCCC ≥ 0.85 and p value < 0.05), suggesting
the capability of the features to capture the gradual
smoothing effect of the increasing IR strength on the
image texture, with a similar trend for all the patients. In
contrast, group 4 is the less populated. In Fig. 4, we re-
ported some examples of these findings, by plotting the
OCCC value versus the mixed model FDR-adjusted p
value (each point in the graph representing a feature) for
six cases: original (Fig. 4a), wavelet-filtered (Fig. 4b) and
LoG-filtered (Fig. 4c) images, in each case including the
two extreme configurations of IR blending level (IR20
and IR80) versus FBP. The red lines divide each plot in
four quadrants, corresponding to the four groups de-
scribed in the “Methods” section (“Statistical analysis”
section). The percentage of features falling in each group

for the six cases is reported in Table 4, whereas Table S6
reports the corresponding results for the subanalysis
(IR50 and IR80 versus IR40).
The pair comparisons among reconstruction settings

are reported in Figure S3 for the features obtained from
original images. The number of features with signifi-
cantly different values between two algorithms ranges
from 117 (84%, excluding shape category) to 128 (91%),
with the number of poorly reproducible features increas-
ing when increasing the IR blending level interval (con-
sidering FBP as more similar to IR20).

Discussion
The main findings of this study are related to the influ-
ence of reconstruction setting on the value of radiomic
features, and its interpretation. Our findings in relation
to the dependence on scanner and tube voltage (not sta-
tistically significant in our sample) basically confirm pre-
vious results [18, 49–51].
Besides confirming that the IR blending level has a sig-

nificant impact on the value of a set of features extracted
from CT images of patients affected by NSCLC [20, 23,
24, 52], we provided feature-by-feature results which
might be conveniently compared with similar findings
obtained on different dataset (images of clinically com-
parable cases obtained at different Institutes, with differ-
ent scanner models, acquisition and reconstruction
settings) to verify if the subset of reproducible radiomic
features is coherent among different samples.
In addition, we introduced a novel approach to investi-

gate and handle the dependency of each feature value on
the reconstruction setting. By joining two different

Fig. 1 Visual comparison of computed tomography images of the same patient reconstructed with two blending levels. The image on the left
shows the thorax of the patient with the encircled lesion, displayed using the lung window. The same lesion is isolated in the right figures,
displaying the filtered backprojection (FBP) reconstruction and the iterative algorithm with ASIR 80% (IR80) with a mediastinal window

Rinaldi et al. European Radiology Experimental             (2022) 6:2 Page 6 of 13



Fig. 2 Overall concordance correlation coefficient (OCCC) among the different reconstruction algorithms. The OCCC is plotted within each
subtype of feature and for feature extracted from the original images (a), and the wavelet- (b) and LoG-filtered (c) images

Rinaldi et al. European Radiology Experimental             (2022) 6:2 Page 7 of 13



statistical analyses (concordance analysis and multivari-
able mixed model), we showed how radiomic features
can be classified in four different groups exhibiting dif-
ferent behaviour in relation to the reconstruction set-
tings, which might require different selection or
correction strategies to guarantee robustness and

reproducibility of radiomic results. We believe that such
combined approach is useful to provide more complete
information as compared to the use of one model alone,
and it might allow a more comprehensive handling of
the reproducibility issue.

Table 3 Median OCCC values calculated for each image type and feature category

Image
type

Image
subtype

Feature category

Shape First order ngtdm glcm glszm gldm glrlm

Original All 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.99 (1.00) 0.96 (0.98) 0.93 (0.97) 0.88 (0.95)

Wavelet All – 0.97 (0.99) 0.94 (0.97) 0.95 (0.98) 0.87 (0.94) 0.92 (0.95) 0.88 (0.95)

LH – 0.93 (0.98) 0.94 (0.97) 0.93 (0.98) 0.80 (0.93) 0.89 (0.94) 0.85 (0.94)

HL – 0.96 (0.98) 0.94 (0.98) 0.96 (0.99) 0.88 (0.94) 0.90 (0.95) 0.88 (0.95)

HH – 0.88 (0.96) 0.84 (0.92) 0.89 (0.95) 0.81 (0.92) 0.88 (0.95) 0.87 (0.94)

LL – 1.00 (1.00) 1.00 (1.00) 0.99 (1.00) 0.97 (0.99) 0.96 (0.99) 0.94 (0.97)

LoG All – 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.99 (1.00) 0.99 (1.00) 0.99 (1.00)

0.5 mm – 0.97 (0.99) 0.96 (0.98) 0.96 (0.99) 0.87 (0.95) 0.86 (0.93) 0.85 (0.93)

1.0 mm – 1.00 (1.00) 0.98 (0.99) 0.99 (1.00) 0.98 (0.99) 0.98 (0.99) 0.97 (0.98)

1.5 mm – 1.00 (1.00) 0.99 (1.00) 1.00 (1.00) 0.99 (1.00) 1.00 (1.00) 0.99 (1.00)

2.5 mm – 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

5.0 mm – 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

In parentheses, the results obtained when restricting the analysis to the settings most used in clinics (IR40, IR50, IR60 and IR80). IR iterative reconstruction, glcm
grey level co-occurrence matrix, gldm grey level dependence matrix, glrlm grey level run length matrix, glszm grey level size zone matrix, ngtdm neighbouring
grey tone difference matrix, LoG Laplacian of Gaussian, OCCC overall concordance correlation coefficient

Fig. 3 Feature variation according to reconstruction algorithm, scanner and tube voltage parameters, for all the investigated patients. One feature is selected as
representative for each of the four groups of features identified, according to the overall concordance correlation coefficient (OCCC) and multivariable
analysis results
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Indeed, if considering the results of univariate con-
cordance analysis alone, 1260/1414 features (89%)
exhibiting OCCC ≥ 0.85 would be considered as re-
producible and usable, without additional correction,
for a radiomic analysis performed on a clinical data-
base with similar characteristics as the one considered
here. Conversely, the remaining 154/1414 features
(11%) exhibiting OCCC < 0.85 would be excluded.
Nonetheless, the subset of such excluded features fall-
ing in group 3 (OCCC < 0.85 and mixed model FDR-
adjusted p value < 0.05) could be retrieved and

included back in the analysis after properly account-
ing for the fact that their dependence on reconstruc-
tion setting is systematic among patients. The
parameters needed to apply such correction are given
as output by the multivariable model itself. To pro-
vide an example, we applied such correction to a fea-
ture belonging to group 3, original_glrlm_
RunVariance, and compared the values obtained for
different reconstruction settings before and after the
correction (Figure S4). The systematic trend observed
when varying the reconstruction setting is reduced,

(a-1) (a-2)

(b-1) (b-2)

(c-1) (c-2)
Fig. 4 Comparison between the overall concordance correlation coefficient (OCCC) and the p value from the multivariable mixed models for reconstruction
algorithm analysis. The plots report two analysed cases of iterative reconstruction (IR20 and IR80), as an example, for original, Wavelet and LoG features: original-
IR20 (a-1), original-IR80 (a-2), Wavelet-IR20 (b-1), Wavelet-IR80 (b-2), LoG-IR20 (c-1) and LoG-IR80 (c-2). The triangles indicate first order features, while the circles
stand for texture features. The red dotted lines divide the plots in the four parts, according to the threshold chosen for OCCC and p value, equal to 0.85 and
0.05, respectively
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which might allow to retain the feature (and its po-
tential informative content) for the radiomic analysis.
Similarly, among the features exhibiting OCCC ≥ 0.85,

the subgroup falling in group 1 (OCCC ≥ 0.85 and
mixed model FDR-adjusted p value < 0.05) might re-
quire a correction before being considered reproducible.
The real necessity of such correction might depend on
the clinical question that the radiomic analysis is sup-
posed to answer. For example, if the aim is to discrimin-
ate two patient populations for which the difference—in
terms of radiomic features—exists but is very small, even
the slight feature variation introduced by different IR
blending levels may have a relevant impact, confounding
the data and impairing the ability of radiomics to reach
its goal. In this case, the feature correction should be ap-
plied, similarly for features in group 3, despite the
OCCC ≥ 0.85 would suggest feature reproducibility. If
instead the difference between the features of two popu-
lations is far larger than the fluctuations due to the dif-
ferent reconstruction settings, it might be irrelevant to
perform the correction or not. We plan to investigate
these aspects in future studies for different clinical end-
points on the NSCLC population.
It must be noted that, in our sample the features fall-

ing in the above cited groups 1 and 3 are the vast major-
ity, with highest prevalence in group 1 as compared to
group 3 (Fig. 4 and Table 4). These features are the ones
for which a trend among reconstruction blending levels
has been observed and an appropriate correction may be
thus applied to take into account these differences. This
is of importance, because it suggests that possible differ-
ences in radiomic features according to different blend-
ing levels may be properly corrected for the majority of

the features, thus avoiding discharging them from fur-
ther statistical analyses. A similar behaviour was identi-
fied by Prezzi et al., analysing CT images of 28 patients
with primary colorectal cancer with multilevel linear re-
gression [25]. They studied the impact of the reconstruc-
tion strength by applying an ASIR algorithm in steps of
20% from 0 to 100%, in a controlled acquisition setting.
Similar to our results, they found that the majority of the
features extracted from original images had a systematic
trend (increasing or decreasing linear behaviour) with the
reconstruction strength. The features belonging to group
2 (OCCC ≥ 0.85 and p value ≥ 0.05) for all the IR blending
levels can be definitively considered reproducible without
need of any correction for any clinical endpoint, but in
our sample their number is very small: 7 features extracted
from the original images, 11 from the wavelet-filtered im-
ages and 55 from the LoG-filtered images.
Lastly, the features in group 4 (OCCC < 0.85 and p

value ≥ 0.05) should be rejected without possibility of
correction. In our sample, however, this group was
poorly populated.
It should be highlighted that the data discussed so far

refer to a heterogeneous database including all the six
reconstruction settings from FBP to IR80. The full data
reported in Tables S3, S4, S5 allow to derive conclusions
for database including only FBP and a subset of the IR
blending levels here considered, and the results of our
subanalysis (including only IR40, IR50, IR60 and IR80)
can be taken as reference for the current clinical sce-
nario where FBP is progressively replaced by iterative al-
gorithms. As expectable, the results of such subanalysis
are quite similar to the ones of the main analysis, but
with a general increase in feature reproducibility.

Table 4 Percentage of features falling in each of the four groups

Image
type

Image subtype Group 1 Group 2 Group 3 Group 4

IR20 IR80 IR20 IR80 IR20 IR80 IR20 IR80

Original All
(shape excluded)

70.0 82.9 18.6 5.7 9.3 11.4 2.1 0.0

Wavelet All 65.0 75.9 14.3 3.4 18.4 20.5 2.3 0.2

LH 16.8 19.3 2.9 0.4 4.6 5.3 0.7 0.0

HL 18.0 20.7 4.1 1.4 2.7 2.9 0.2 0.0

HH 10.9 13.9 3.6 0.5 9.8 10.3 0.7 0.2

LL 19.3 22.0 3.7 1.1 1.3 2.0 0.7 0.0

LoG All 64.6 87.6 32.3 9.3 2.7 3.1 0.4 0.0

0.5 mm 13.4 16.0 3.6 1.0 2.6 3.0 0.4 0.0

1.0 mm 15.5 19.0 4.4 0.9 0.1 0.1 0.0 0.0

1.5 mm 13.1 18.4 6.9 1.6 0.0 0.0 0.0 0.0

2.5 mm 11.6 17.6 8.4 2.4 0.0 0.0 0.0 0.0

5.0 mm 11.0 16.6 9.0 3.4 0.0 0.0 0.0 0.0

The results are reported for the IR20 and the IR80 reconstructions. The percentage for the original images is evaluated excluding the shape features. IR iterative
reconstruction, LoG Laplacian of Gaussian
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In addition, the result of the comparison of pairwise
reconstruction algorithms for the original images (Figure
S3) shows that if we changed the reference IR blending
level in the multivariable model, the number of features
whose value changes significantly between two IR blend-
ing levels would not vary considerably; hence, the above
considerations hold valid independently on this choice.
It is also important to note that, even after applying the
feature selection and correction described so far, the
number of reproducible features is likely to be very high,
but many of them are highly correlated, so their number
would be further reduced by clustering procedures
(Table S1).
As possible limitations of the present study, we ac-

knowledge the relatively small number of patients, the
impossibility to investigate radiomic feature repeatability,
the lack of an external validation of our results, and the
inability to specifically account for the possible effect of
segmentation performed by different operators. In this
study, the segmentation by multiple operators should
have had a negligible impact when focusing on the effect
of reconstruction algorithm intra-patient, since in this
case the region of interest was fixed across the different
reconstruction settings. However, it might have slightly
affected the assessment of inter-patients’ behaviour and
the analysis on scanner and tube voltage dependence.
An interesting future alternative may be applying auto-
matic approach based on deep learning. Regarding re-
peatability, we plan to account for this effect in future
studies either on clinical images as previously performed
by Zwanenburg et al. [53], or relying on dedicated phan-
toms under development in our group. Another limita-
tion of our study is the use of two different iodinated-
contrast media (Ultravist® 370 and Visipaque® 320).
While all the patients scanned on the Discovery CT750
HD scanner received the Ultravist® 370, in the two popu-
lations scanned on the Optima 660 scanner this type of
contrast was injected only in about half of the patients
(the 52% and the 56% at 100 kVp and 120 kVp, respect-
ively). The administration of two different contrast
media may have affected the texture of the CT image.
However, a previous study of our group performed on
CT images of NSCLC patients [14] showed that the
radiomic features were not significantly influenced by
the different contrast media, and therefore this factor
was not investigated in this study.
In conclusion, the present study confirmed that the

use of different blending levels during CT reconstruction
may introduce confounding factors in a radiomic ana-
lysis of NSCLC population, especially when a wide range
of different blending levels are present in the dataset.
Aiming to improve the robustness and efficacy of radio-
mic studies, a novel approach for the identification of re-
producible features in a given dataset is proposed, to be

applied before redundancy reduction and correlation
analysis with clinical endpoints.
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