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Abstract

Airways segmentation is important for research about pulmonary disease but require a large amount of time by
trained specialists. We used an openly available software to improve airways segmentations obtained from an
artificial intelligence (AI) tool and retrained the tool to get a better performance. Fifteen initial airway
segmentations from low-dose chest computed tomography scans were obtained with a 3D-Unet AI tool previously
trained on Danish Lung Cancer Screening Trial and Erasmus-MC Sophia datasets. Segmentations were manually
corrected in 3D Slicer. The corrected airway segmentations were used to retrain the 3D-Unet. Airway measurements
were automatically obtained and included count, airway length and luminal diameter per generation from the
segmentations. Correcting segmentations required 2–4 h per scan. Manually corrected segmentations had more
branches (p < 0.001), longer airways (p < 0.001) and smaller luminal diameters (p = 0.004) than initial segmentations.
Segmentations from retrained 3D-Unets trended towards more branches and longer airways compared to the initial
segmentations. The largest changes were seen in airways from 6th generation onwards. Manual correction results
in significantly improved segmentations and is potentially a useful and time-efficient method to improve the AI
tool performance on a specific hospital or research dataset.
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Key points

� Artificial intelligence (AI) segmentation tools require
high-quality training data matching the population
and scanning parameters of the use case.

� Manually correcting initial airway segmentations
based on free tools is an efficient way to create an
optimal dataset for AI training purposes.

� Performance of an existing AI model trended
towards more complete airways following retraining
with corrected data.

Background
Airway segmentation from computed tomography (CT)
scans is important in the study of pulmonary disease
such as chronic obstructive pulmonary disease (COPD)
[1]. High-quality airway segmentation datasets are diffi-
cult to create, yet they are necessary for the training of
artificial intelligence (AI) tools. Manually segmenting
airways from noisy low-dose CT scans is time consum-
ing and error prone, and methods that can provide ad-
equate large airway segmentation via region growing
may fail and require manual correction [2, 3].
The volume of thoracic CT scans in clinical care will

increase due to an increasing respiratory disease burden
and the introduction of imaging-based cancer screening
[4]. Computer assistance will become increasingly

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: i.dudurych@umcg.nl
1Department of Radiology, University of Groningen, University Medical
Centre Groningen, Groningen, Netherlands
Full list of author information is available at the end of the article

European Radiology
Experimental

Dudurych et al. European Radiology Experimental            (2021) 5:54 
https://doi.org/10.1186/s41747-021-00247-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s41747-021-00247-9&domain=pdf
http://orcid.org/0000-0002-7747-156X
http://creativecommons.org/licenses/by/4.0/
mailto:i.dudurych@umcg.nl


important in the radiology workflow. This should be
supplemented with robust AI tools that can increase the
accuracy and speed of diagnosis. Medical datasets used
to train AI tools are typically small, due to the limited
availability of imaging data and ground-truth annota-
tions. In contrast, there is a wide range in possible CT
scanning and population characteristics. Thus, pre-
trained AI tools have issues generalising when tested on
new data, with typically different characteristics. In such
a setting, the need for quickly adapting an existing AI
model trained on different data may prove very useful.
AI segmentation tools are being widely studied for

their potential in automation, accuracy, and reliability;
however, their use comes at the cost of flexibility inher-
ent in AI systems. To achieve the highest accuracy, AI
requires training on scans like those it will be used on.
X-ray tube current, voltage, reconstruction methods and
other parameters change the resulting CT image and
may have an impact on segmentation performance [5].
So far, the methodology for obtaining high quality

ground truth segmentations of airways using openly
available tools is lacking. Whilst many airway segmenta-
tion tools already exist, those that provide a highly de-
tailed segmentation may be only available for sale, are
run as a service or tied to specific CT scanner brands
and hospital/research setup [6, 7].
In this study, we propose a solution to prepare good

ground-truth segmentations by improving the airway
segmentations that were obtained using openly available
tools and investigate the change in AI performance on
our low-dose chest CT protocol following re-training
using the corrected segmentations [8].

Methods
Initial segmentations
We used a 3D-Unet method [9, 10] designed for auto-
matic airway segmentation. The 3D-Unet is a deep-
learning model for biomedical image segmentation,
which classifies image voxels as airway/non-airway. The
image filters in the convolution layers of the method
were optimised automatically using training images and
reference segmentations. For all our experiments, we
used the same 3D-Unet model layout and hyperpara-
meters as in [9], which were found to be well-suited for
airway segmentation.
The current 3D-Unet was trained on Danish Lung

Cancer Screening Trial (DLCST) [11] and Erasmus MC-
Sophia data (paediatric cystic fibrosis patients) [12]. This
model was used to obtain initial airway segmentations
from scans of fifteen randomly selected participants
from the ImaLife study [8]. The CT scans used were
low-dose unenhanced, obtained using a 16-slice CT
scanner (Somatom Sensation 16, Siemens Medical Solu-
tions) with a pitch of 3 (with FOV 350) or 2.5 (with

FOV 400) and 1mm increments at a tube voltage of 120
kVp and reference current of 20 mAs [13].. Images were
reconstructed with overlapping 0.7-mm increments
using the Qr59 kernel. The ImaLife study is part of the
northern Netherlands’ study and includes participants of
at least 45 years of age from the general population.
Complete details on ImaLife patient characteristics can
be found in Table S1 and the referenced material [8].
Differences in population and scanning parameters for
DLCST and ErasmusMC datasets compared to ImaLife
dataset contributed to incomplete initial segmentations.
The prediction threshold of the 3D-Unet probability
maps was set to 0.5, which resulted in a low number of
false positive airways in the initial segmentations so that
most corrections required addition of missing branches,
rather than removal of false branches.

Manual correction of segmentations
Initial segmentations were imported into 3D Slicer 4.1
(http://www.slicer.org) [14]. Window settings were set to
a width of 800 and a level of − 625 to better visualise the
airway lumen. One medical doctor with 6 months of
work and training in pulmonology (I. D.) performed the
manual corrections of segmentations.
The workflow screen displayed the coronal, sagittal and

transverse and three-dimensional (3D) views (Fig. 1). Cor-
rections were performed using the segment editor tool in
3D Slicer [14]. The binary segmentation provided by the
3D-Unet was imported into the segment editor. Next, the
airways segmentations were completed using the paint
tool, with a spherical brush and brush size dynamically set
to 1–3% of the active window size, based on the size of
the airway. 3D Slicer provides tools to follow along an in-
complete airway in the 3D view and identify it on the
three views. In this manner, it was possible to quickly
complete airway segmentations as they were identified on
all three orientations simultaneously, with the results in-
stantly visible on the 3D view.
The initial segmentation was combined with the

corrections and exported as a set of DICOM slices. A
standard operating procedure is provided in the sup-
plemental materials, explaining the process in detail
(Electronic Supplementary Material Manual).

3D-Unet evaluation
We used the 15 corrected ImaLife scan segmentations to
train a new 3D-Unet, referred to as ‘retrained’ model.
For training and evaluation, we used a 5-fold cross-
validation setting, splitting the dataset into 5 groups of
equal size, and training 5 different models, assigning for
each model one split group as testing set, and using the
remaining 4 of the 5 data as training set. Within each
training fold, 83% of data is used for model weight up-
dating, and the remaining 17% for model selection. We
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evaluate each trained model on their corresponding in-
dependent testing set. Each training fold contains 12
scans. Despite the small number, the 3D-Unet [9] was
validated with varying sizes of training sets and the
learning curves show good performance with similar
numbers of scans.
To assess the AI performance by introducing a larger

set of heterogeneous data, we trained a second model
with a combination of ImaLife, DLCST and ErasmusMC
data, referred to as ‘combined’ model. We used the same
5-fold cross-validation split of the ImaLife data as for
the ‘retrained’ model above, adding 20 scans each from
DLCST and ErasmusMC to the training folds. Trained
models were used to segment airways from ImaLife
scans for comparison to the initial segmentations. The
overall process is summarised in the flowchart shown in
Fig. S1.

Analysis of segmentations and statistical analysis
From the segmentations obtained by the 3D-Unet,
branches and their generation number were extracted
automatically, similarly to methods used in the EXACT
’09 paper [2]. The airway generation was defined as the
number of branch bifurcations counted in the path link-
ing the given branch and the first branch in the airway
tree, i.e., the trachea. Thus, the trachea is generation 0,
main bronchi generation 1, etc. Automatic measure-
ments of lumen diameter were obtained every 1 mm
along the centreline of and averaged per branch. The
branch length was calculated as the distance between bi-
furcations along the centreline of a branch.
Comparison was made between the initial segmenta-

tions and segmentations from the retrained and com-
bined models trained with the manually corrected

segmentations. Results were analysed using Python (Py-
thon Software Foundation, https://www.python.org/) and
the SciPy package [15]. Wilcoxon signed rank test with
Bonferroni correction was used for analysis. All compari-
sons were to the initial, incomplete segmentations. A p
value lower than 0.05 was considered significant.

Results
Segmentations
Fifteen ImaLife scans were segmented by the initial
3DUnet and manually corrected (Fig. 2). In two cases of
large mucous plugging, the 3D-Unet continued to seg-
ment the airways beyond the blockage without the need
for manual interaction (Fig. 3). The time to complete a
manual correction ranged from 2 to 4 h.

Airway count
The initial, incomplete segmentations had the lowest
median count of 151 airways (interquartile range [IQR]
131–169) followed by the retrained model segmentation
with 170 airways (IQR 161–197) (p = 0.098, initial vs
retrained), the combined model segmentation with 174
airways (IQR 146-201) (p = 0.089, initial vs. combined).
The manually corrected segmentation had the highest me-
dian number of airways with 179 airways (IQR 167–215)
(p < 0.001, initial vs. manual) (Fig. 4a). The largest differ-
ences were seen in airways from 6th generation onwards
(Fig. S2). The tabulated data is presented in Table S2.

Airway length
Airway length increased with manual correction and
retraining. The initial segmentation had a total airway
length of 2,319.6 mm (IQR 1905.4–2588.7 mm) which
was the lowest amongst all segmentations. This was

Fig. 1 A 3D Slicer workspace for fast identification and correction of incomplete airways. Yellow: incomplete airway segmentation of an ImaLife
participant. Red: manual correction of the airway
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followed by the combined model segmentation, retrained
model segmentation and corrected segmentation, with
airway lengths of 2561mm (IQR 2309.2–3067.3 mm) (p
= 0.079, initial vs. combined), 2622.2 mm (IQR 2296.1–
3492.8 mm) (p = 0.051, initial vs. retrained) and 2917.3
mm (IQR 2508.8–3492.8 mm) (p < 0.001, initial vs. cor-
rected), respectively (Fig. 4). Airways from the 6th gener-
ation onwards showed the largest differences (Fig. S3).

Airway lumen
Relative to the initial segmentation airway lumen diameters
of 5.5mm (IQR 5.0–5.9mm), the airway lumen diameters
decreased with correction to 5.3mm (IQR 4.9–5.6mm) (p
= 0.009, initial vs. corrected) and the retrained model
lumen diameters decreased to 4.9mm (IQR 4.7–5.5mm) (p
= 0.004, initial vs. retrained); however, there was no signifi-
cant difference between the initial segmentation diameters
and the combined model segmentation diameters of 5.0
mm (IQR 4.6–6.1mm) (p = 0.172, initial vs. combined)
(Fig. 4c). Detailed breakdown per generation is available in
Fig. S4.

Discussion
We outlined the process for correcting airway segmenta-
tions from initial, incomplete segmentations on low-
dose CT scans for the purpose of training AI tools. Man-
ual correction resulted into a significantly more
complete airway segmentation, and retraining the 3D-
Unet resulted into improved segmentations, with the
greatest changes seen from the 6th generation onwards.
Notably, small airways play an important role in lung
diseases such as asthma, COPD, and cystic fibrosis and
their accurate detection can be important for the accur-
ate diagnosis and sensitive monitoring of respiratory ill-
ness [16, 17]. A focus on improving the segmentation of
smaller airways could therefore help in the research of
bronchial parameters of early disease [18]. With our
methods, it is possible to quickly improve airway seg-
mentations and retrain an AI model.
The research for robust bronchial parameters some-

times includes the evaluation of aggregate measures,
such as total airway count and airway tapering [19, 20].
If these measures are obtained from incomplete

Fig. 2 An example of an incomplete segmentation of an ImaLife participant’s airway tree (in yellow) of the left lung and a manually corrected
segmentation (in red) of the right lung

Fig. 3 Two examples of large mucous plugging with total focal occlusion of the airway of an ImaLife participant. The 3D-Unet completed
segmentation of branches distal to the occlusion without supervision
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segmentations, the summary measure may be incorrect.
This is illustrated in our study by the decrease in median
lumen diameter after correction and retraining. The ini-
tial segmentation included too much of the lumen wall
and did not include enough of the smaller airways that
were visible on the CT scan. This resulted in a signifi-
cantly larger median airway lumen aggregate measure.
One of the main challenges for AI training in radiology

is that often only small, specific datasets from a narrow
range of scanning parameters and population characteris-
tics are available for model training and current manual
segmentation methods can take up to 15 h to complete
for one patient [12]. This makes the design of AI tools that
generalise well to data from a broader range of scan pa-
rameters and population characteristics very difficult to be
built. In turn, pretrained AI models tasked with segmenta-
tion may fail when used on data dissimilar to their training
dataset. Several AI airway segmentation tools have been
reported in the literature, which are typically trained and
tested on their own in-house datasets and reference seg-
mentation [21, 22]. However, when deploying the trained
AI methods on other data with different characteristics
and scanning parameters, their performance may drop
drastically [23]. Retraining with use-case specific data al-
lows for the use of AI models in institutions with different
scanning techniques.

The aim of DLCST and Erasmus MC-Sophia dataset
addition was to improve the AI performance with het-
erogeneous data, as DLCST scanning protocol differs
slightly, and Erasmus MC-Sophia includes paediatric
Cystic Fibrosis patients. However, the combined model
did not significantly improve AI performance for ImaLife
scans.
To segment small airways in low-dose scans or airways

beyond occlusions, it typically requires manual interven-
tion. A couple of the scans in our study contained mu-
cous plugging, which prevents segmentation of the
airways beyond it when using traditional methods. How-
ever, we observed the continuation of segmentation des-
pite large blockages.
A strength of this paper is the use of openly available

tools for the methodology. Whilst this technical note fo-
cuses on airway segmentations, the same methods can
be used to optimise potentially any other segmentation.
Our methods are also much less time costly than prepar-
ing fully manual airway reference segmentations.
The limitations of this study are the investigation of

just one dataset, with a small sample size, based on low-
dose CT acquired at high-pitch in a general adult popu-
lation. Despite the small data-set previous investigation
of this, previous investigations of 3D-Unet learning
curves shows that models trained with small datasets of

Fig. 4 Boxplots for retrained and for combined retrained 3D-Unets. a Total airway count per segmentation. b Total airway length per
segmentation. c Median luminal diameter per segmentation. ns not significant, *p < 0.05, **p < 0.01, ***p < 0.001
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just 14 images had just slightly lower performance than
the model with 28 images [9]. The manual corrections
have been performed by one researcher; within the con-
text of this project, we did not assess the impact of
inter-observer variability on the completeness of
segmentations.
In conclusion, we showed that openly available soft-

ware can be used to manually correct initial, incomplete
airway segmentations with significant improvement. The
resulting segmentations can be used to retrain AI
models to increase their efficacy for different scanning
protocols and applications. This allows for the quick cre-
ation of datasets for AI training that match their use
case.
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