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Abstract

Background: Aquaporin-4 is a membrane channel protein that is highly expressed in brain astrocytes and
facilitates the transport of water molecules. It has been suggested that suppression of aquaporin-4 function may be
an effective treatment for reducing cellular edema after cerebral infarction. It is therefore important to develop
clinically applicable measurement systems to evaluate and better understand the effects of aquaporin-4 suppression
on the living body.

Methods: Animal models of focal cerebral ischemia were created by surgically occluding the middle cerebral artery
of wild-type and aquaporin-4 knockout mice, after which multi-b-value multi-diffusion-time diffusion-weighted
imaging measurements were performed. Data were analyzed with both the apparent diffusion coefficient (ADC)
model and a compartmental water-exchange model.

Results: ADCs were estimated for five different b value ranges. The ADC of aquaporin-4 knockout mice in the
contralateral region was significantly higher than that of wild-type mice for each range. In contrast, aquaporin-4
knockout mice had significantly lower ADC than wild-type mice in ischemic tissue for each b-value range.
Genotype-dependent differences in the ADC were particularly significant for the lowest ranges in normal tissue and
for the highest ranges in ischemic tissue. The ADCs measured at different diffusion times were significantly different
for both genotypes. Fitting of the water-exchange model to the ischemic region data found that the water-
exchange time in aquaporin-4 knockout mice was approximately 2.5 times longer than that in wild-type mice.

Conclusions: Multi-b-value multi-diffusion-time diffusion-weighted imaging may be useful for in vivo research and
clinical diagnosis of aquaporin-4-related diseases.
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Key points

e We investigated aquaporin-4 loss and focal brain is-
chemia with diffusion-weighted magnetic resonance
imaging in a mouse animal model.

e Cell membrane water exchange time parameters
were estimated by model fitting.

e The effect of aquaporin-4 loss is opposite in healthy
and ischemic tissue.

o Diffusion-weighted magnetic resonance imaging may
be useful for research and clinical diagnosis of
aquaporin-4-related diseases.

Background

Aquaporin-4 is a membrane channel protein that allows
water molecules to be passively transported, is the most
commonly expressed aquaporin on the feet of astrocytes
in the mammalian brain [1, 2], and plays an important
function in water movement across the blood-brain bar-
rier [3-6]. It has also been reported that aquaporin-4 is
involved in brain diseases such as ischemic stroke [7, 8],
hydrocephalus [9, 10], Alzheimer’s disease [11-13],
amyotrophic lateral sclerosis [14], traumatic brain injury
[15], and epilepsy [16, 17]. These findings have led to
the design of treatment strategies that target aquaporin-
418, 19].

Cytotoxic edema, a condition where increased water in
brain cells causes swelling, is frequently observed in a
variety of brain diseases [7, 20]. Unfortunately, the mo-
lecular and cellular mechanisms underlying the forma-
tion and resolution of edema are not yet fully
understood, and there is still no clear treatment [20, 21].
In studies using animal models, aquaporin-4 expression
is sharply increased in ischemic brain edema [22, 23],
and aquaporin-4 knockout or inhibitor administration
has been shown to be effective in reducing cellular
edema [8, 24—26]. Aquaporin-4 inhibition has therefore
been proposed as a treatment for cytotoxic edema. On
the other hand, inhibition of aquaporin-4 is also known
to cause astrocyte dysfunction, preventing recovery from
ischemia [27-29]. The complex effects of aquaporin-4
on the formation of cytotoxic edema have not been fully
evaluated, nor has a clear method for in vivo evaluation
been established. A clinically applicable method that can
reliably evaluate changes in cytotoxic edema caused by
aquaporin-4 inhibition is needed for the future develop-
ment of suitable drugs and other therapies.

Diffusion-weighted imaging (DWI) has been used as
an important tool for the diagnosis of diseases such as
stroke and cancer [30]. A quantity that is often esti-
mated in DWI studies is the apparent diffusion coeffi-
cient (ADC). The ADC is said to be “apparent” because
the complexity of in vivo tissue microstructure dictates
that it is an indicator of the overall signal behavior from
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multiple diffusion-related processes, rather than the dif-
fusion coefficient of a single water compartment. In fact,
different ADCs may be attributed to different parts of an
organism depending on the nature of diffusion in that
component [31]. For example, as intracellular water dif-
fusion is strongly obstructed by the cell membrane and
many other structures inside the cell, it usually corre-
sponds to a restricted diffusion component. On the
other hand, diffusion through the extracellular space is
comparatively, but not completely, free so it contributes
to a hindered diffusion component. In addition, the dis-
ordered arrangement of the microvasculature implies
that blood-water molecules display a diffusion-like
behavior called intravoxel incoherent motion (IVIM).
Accordingly, blood signal is attributed to an IVIM
pseudo-diffusion component [32]. In general, the signals
from each of these components contribute to the overall
signal at low b values. However, the contribution from
the IVIM component is negligible for b values above 500
s/mm? and the signal from the hindered diffusion
component is relatively small for b values greater than
2,000 s/mm’ which leaves the restricted diffusion
component near the cell as the dominant contributor at
high b values [31, 33]. Therefore, observing the signal
over a wide range of b values may help to isolate the
contributions of different diffusion components, in
particular the restricted diffusion component, which is
the component most likely to reflect the effects of
aquaporin-4 on water transport.

In a previous study, we proposed and applied a DWI-
based technique to quantitatively evaluate cell mem-
brane water permeability for in vitro monoclonal cell
suspensions [34]. The technique is based on a
modification of the Andrasko-Kirger model [35-37],
which is a simple two-compartment model with inter-
compartmental compound exchange. Briefly, since the
effect of membrane permeability on DWI measurements
is highly dependent on diffusion-time [38, 39], the water
exchange-time between compartments was estimated
from differences in DWI signal attenuation at different
diffusion-times. It was shown that the technique can be
used to characterize differences in water exchange be-
tween aquaporin-4-expressing and non-expressing cells,
and the results were consistent with data measured by
coherent anti-Stokes Raman scattering microscopy [40].
This noninvasive DWI-based method may also be useful
for the evaluation of cell membrane water permeability
changes caused by aquaporin-4 abnormalities, and for
the development of medicines targeting aquaporin-4.

In this study, we performed DWI on wild-type and
aquaporin-4 knockout mice to evaluate the effects of
aquaporin-4 suppression in vivo. Animal models with
focal cerebral ischemia were surgically created by middle
cerebral artery occlusion (MCAO), and multi-b-value
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multi-diffusion-time (MbMTd) DWI measurements
were performed. ADCs were estimated and compared
between the wild-type and aquaporin-4 knockout mice
for both the ischemic and contralateral regions. The is-
chemic data was also analyzed with the two-
compartment exchange model to quantitatively compare
the water-exchange time and the other model parame-
ters between mice with and without aquaporin-4.

Methods

All experiments were performed in accordance with the
institutional guidelines on humane care and use of la-
boratory animals and were approved by the Institutional
Committee for Animal Experimentation of the National
Institutes for Quantum and Radiological Science and
Technology (QST). The datasets analyzed during the
current study are available from the corresponding au-
thor on reasonable request.

Animal preparation

A total of 6 C57BL/6] wild-type mice (both male and fe-
male, 20-30 g, 8-10 weeks; Japan SLC, Hamamatsu,
Japan), and 7 aquaporin-4 knockout mice (both male
and female, 20-30 g, 8-10 weeks) generated as de-
scribed previously [41, 42] (acc. no. CDB0758 K: http://
www.cdb.riken.jp/arg/mutant%20mice%20list.html), were
used in the magnetic resonance imaging (MRI) experi-
ments. All mice were housed individually in separate
cages with water and food ad libitum. Mouse cages were
kept at a temperature of 25 °C in a 12-h light/dark cycle.
Overall, no clear differences in body weight and size
were observed for any of the mice. MCAO was per-
formed for all animals using the Tamura method [43],
where a permanent occlusion is made at the proximal
branch of the MCA in the left cerebral cortex. In this
animal model, ischemia in the MCA region occurs soon
after MCAO, and the infarction expands and peaks at 24
hours after surgery [43-46].

MRI measurements

MRI measurements were performed at 2 h after MCAO
surgery, which is during the initial stage of cytotoxic
edema formation due to ischemia. This time window
was selected because it was anticipated that the presence
or absence of aquaporin-4 would contribute to differ-
ences in ischemic-related water movement during edema
formation and before blood-brain barrier breakdown [3—
6, 47]. All measurements were performed with a 7-T
animal MRI (Kobelco and Bruker, Tokyo, Japan). The
mice were initially anesthetized with 3.0% isoflurane
(Escain, Mylan Japan, Tokyo, Japan), and then with 1.5%
to 2.0% isoflurane and a 1:5 oxygen/room-air mixture
during the MRI experiments. Rectal temperature was
continuously —monitored with an optical fiber
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thermometer (FOT-M, FISO, Quebec, QC, Canada), and
maintained at 37.0 £ 0.5 °C (range) using a heating pad
(Temperature control unit, Rapid Biomedical, Rimpar,
Germany). Warm air was provided with a homemade
automatic heating system regulated by an electric
temperature controller (E5CN, Omron, Kyoto, Japan)
throughout all experiments. During MRI scanning, the
mice lay in a prone position on a MRI-safe cradle and
were held in place with handmade ear bars.

MbMTd DWI was obtained using a pulsed-gradient
spin-echo sequence with four-shot echo-planar acquisi-
tion (repetition time 3 s, echo time 115 ms, matrix size
128 x 128, spatial resolution 0.02 x 0.02 mm? slice
thickness 1.5 mm, gradient directions 3). The separation
of the diffusion-gradient lobes (A) was set at 40, 70, and
100 ms to vary diffusion-time while keeping echo time
constant. The diffusion-gradient duration (8) was fixed
at 7 ms for all experiments. For the pulsed-gradient
spin-echo sequence, A-8/3 is usually taken to represent
the diffusion-time. For each A, the b value was increased
from 0 to 8,000 s/mm?” in 11 steps (0, 2, 500, 1,000,
2,000, 3,000, 4,000, 5,000, 6,000, 7,000, and 8,000 s/mm?)
by increasing the gradient amplitude. The multi-b-value
DWI scan time for each A was about 6 min, which means
that it took about 18 min for one set of MbMTd DWI. To
check scan stability, 4 sets of MbMTd DWI were acquired
for each animal in the study.

DWI data processing

DWI data analysis was performed in MATLAB, version
R2019a (MathWorks, Natick, MA, USA). Regions-of-
interest (ROIs) were drawn in the ischemic and contra-
lateral regions on T2-weighted images. The DWI data
were averaged over the three gradient directions, and
ADC maps were created by fitting to the logarithmic sig-
nals with respect to b-value using ordinary least squares.
ADCs were estimated for five different b value ranges:
0-2,000 s/mm?, which is used in general clinical prac-
tice; 500—2,000 s/mm?, where it is thought the effect of
the IVIM component is suppressed; and 2,000—4,000,
4,000-6,000, and 6,000-8,000 s/mm?, which are ranges
where the restricted diffusion component is expected to
be dominant. The average value of the ADC was calcu-
lated for each ROI and then averaged over animals. The
signal-to-noise ratio (SNR) of the data was estimated
using the air signal method [48],

SNR = (g) x SSP

(Eq.1)

where S, is the signal in the ROI and S, is the signal
from a background region.

Evaluation of cell membrane water exchange-time was
performed using a two-compartmental model with inter-
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compartment exchange (Fig. S1) [34]. Briefly, the model
assumes that A is sufficiently long that the diffusion co-
efficient in the extracellular space (D,,) is approximately
constant, while the diffusion coefficient in the intracellu-
lar space (Dy,) is inversely proportional to the diffusion
time. The data was then analyzed using a constant D,
and Dy, was dependent on diffusion-time as below,

Dy, = m. (Eq.2)

In this equation, a has dimensions of length squared in
the case that § = 1, and P is a parameter inserted to test
the assumption that D;, is inversely proportional to A-8/
3. Using the modified model, the DWI-based estimate of
the exchange-time (tppy) is,

TMRI = Fex “tin = Fin X Lex, (qu)

where F, and F, are the signal fractions of the extracel-
lular and intracellular spaces, respectively, and £, and &,
are the lifetimes in the extracellular and intracellular
spaces, respectively. Since it was demonstrated that B is
close to 1 in a previous study [34], p was set to 1 in this
study. The parameters t;,, Fi,, Dex, and a were used as
the free parameters while fitting to the model. Fe,, fe,
and tyr; were then obtained using Eq. 3 and the con-
straint Fo, + Fi, = 1.

Statistical analysis

Statistical analyses were performed with the Statistics
and Machine Learning Toolbox of MATLAB, version
R2019a (MathWorks, Natick, MA, USA). Normalized
DWI signals are presented as mean + standard deviation
over animals (Fig. 1). The ADCs and exchange model
parameters are plotted for each animal with a bar indi-
cating the mean over animals (Figs. 2, 3, and 4). Two-
way analysis of variance (ANOVA), with mouse geno-
type and A as independent variables, was performed for
the ADC estimated for each b value range. In addition,
Student's ¢ test was used to compare the exchange-
model parameters between mouse genotype. The nor-
mality of each data set was confirmed with a
Kolmogorov-Smirnov test. A p value <0.05 was inter-
preted as being significant.

Results

MbMTd DWI signal changes caused by aquaporin-4
suppression and ischemia

As demonstrated by the high area on T2-weighted and
diffusion-weighted images, MCAO produced a focal is-
chemic region on the left side of the mouse brain for
both the wild-type and aquaporin-4 knockout mice (Fig.
1a). ROI-based analysis was performed on the ischemic
(Fig. 1b) and the contralateral (Fig. 1c) regions of the
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MbMTd DWI, and the normalized signal was plotted
against b value for all three values of A (40, 70, and 100
ms). In the ischemic region, the aquaporin-4 knockout
mice had less b value dependent signal attenuation than
the wild-type mice for all As (Fig. 1b). On the other
hand, in the contralateral region, the aquaporin-4 knock-
out mice had greater b value dependent signal attenu-
ation than the wild-type mice for all As (Fig. 1c). Longer
A corresponded to greater signal attenuation for both
mouse types and both regions (Fig. S2). The SNR in the
contralateral region was less than 5 for b values above
5,000 s/mm?, so that data was excluded from subsequent
analysis of that region (Fig. S3).

Apparent diffusion coefficient

To characterize diffusion in the ischemic regions of both
mouse types, ADCs were calculated for five b value pat-
terns. Representative animal ADC maps are shown in
Fig. 2a. For all b value ranges, the ADCs were signifi-
cantly lower for the aquaporin-4 knockout mice than for
the wild-type mice (Table 1). Moreover, the ADCs for
the 2,000-4,000, 4,000—6,000, and 6,000-8,000 s/mm? b
value ranges showed a significant A-dependent differ-
ence (Fig. 2b, Table 1). The ADC in the ischemic region
showed no significant interaction between mouse geno-
type and A for all b value ranges.

As the SNR was very low above b = 5,000 s/mm? (Fig.
S3), the ADC in the contralateral region was calculated
for only three of the b value ranges (02,000, 500-2,000,
and 2,000-4,000 s/mm?). Representative ADC maps are
presented in Fig. 3a. In contrast to the ischemic region,
the aquaporin-4 knockout mice showed significantly
higher ADC than the wild-type mice for each of the b
value patterns (Fig. 3b, Table 2). Only the ADC for the
2,000—4,000 s/mm? b value range showed a A-dependent
difference. The ADC for all three b value ranges showed
no significant interaction between mouse genotype and A
(Fig. 3b, Table 2).

Parameters of the compartmental exchange model
Estimates of the four parameters (typrp, @, Fin, and Dey)
obtained by fitting the exchange model to the ischemic
data are shown in Fig. 4. The aquaporin-4 knockout
mice showed a significantly longer water exchange-time
than the wild-type mice (p < 0.006). The other parame-
ters, o, Fyy, and De,, had larger values for the wild-type
mice (Fig. 4b—d), with the difference being significant (a,
p < 0.003; Fy,, p < 0.006; Dy, p < 0.044).

Discussion

In this study, we measured MbMTd DWI and compared
ADCs estimated for ischemic and normal tissue of
aquaporin-4 knockout and wild-type mice. In the ische-
mic region, aquaporin-4 knockout mice showed lower
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ADCs compared to wild-type mice, whereas higher
ADCs were observed in the contralateral region. In
addition, we compared parameter estimates obtained by
fitting a two-compartment exchange model to the DWI
signal. The cell membrane water exchange-time was ap-
proximately 2.5 times longer for the aquaporin-4 knock-
out mice than for the wild-type mice.

The observation of larger ADCs in normal tissue for
the aquaporin-4 knockout mice is consistent with a re-
port of an increase in ADC after the administration of
the aquaporin-4 inhibitor TGN-020 [49]. It has also
been reported that the volume of the extracellular space

is comparatively large in aquaporin-4 knockout mice
[50], and the suppression of aquaporin-4 expression by
siRNAs in cultured rat cells reduces the size and total
number of astrocytes [51]. As the contribution of the
hindered diffusion component is relatively small for b
values over 2,000 s/mm?, our observation of a larger dif-
ference between the contralateral ADCs of the wild-type
and aquaporin-4 knockout mice for the two sub-2,000 s/
mm? b value ranges than for the 2,000-4,000 s/mm? b
value range (Fig. 3b, Table 2) may therefore reflect dif-
ferences in the extracellular volume fraction between
wild-type and aquaporin-4 knockout mice. Furthermore,
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Fig. 2 Apparent diffusion coefficient (ADC) in the ischemic region. Typical ADC maps of wild-type (WT) (top) and aquaporin-4 knockout (AQP4-
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107 mm?/s. The plots show the mean ADC of each WT (blue) and AQP4-KO (red) mouse for each b-value range and A (b). The black bars
correspond to the mean over animals. The results of the statistical analysis are shown in Table 1

as aquaporin-4 is expressed normally in wild-type mice,
it might be hypothesized that the ADC of the restricted
diffusion component in normal tissue is larger than it is
for APQ4-KO mice. Unfortunately, we were unable to
confirm this due to the low SNR of the 4,000—6,000 and
6,000-8,000 s/mm” data on the contralateral side, but
the trend of a decreasing difference between the ADCs of
the two mouse genotypes with increasing b value range
is consistent with the hypothesis (Fig. 3b, Table 2).

In ischemic tissue, the ADCs of the aquaporin-4
knockout mice were smaller than those of the wild-type
animals for all b value ranges (Fig. 2b). Moreover, the
gap between the ADCs of the two genotypes tended to
become more significant for the higher b value ranges
(Table 1). Ischemia-induced swelling of astrocytes and
neuronal dendrites is expected to increase the volume
fraction of the restricted diffusion component regardless
of genotype [52, 53], in which case it is likely that the
contribution of that component to the overall signal has
greater weighting across all b value ranges. Therefore, it

is possible that our observations in ischemic tissue re-
flect differences in the ADC and cell membrane water
exchange-time of the restricted diffusion compartment
for the two mouse types.

As the DWI signal can be affected by cerebral blood
flow when using low b values [32, 54, 55], we compared
the ADCs estimated using the 0-2,000 and 500—-2,000 s/
mm? b value ranges. The ADCs were similar for the two
ranges, indicating that differences dependent on mouse
type were not related to the effect of cerebral blood flow
on DWIL

The exchange model parameters in the living mouse
brain were estimated by fitting to the MbMTd DWI data
in the ischemia region (Fig. 4). Exchange time was about
2.5 times and significantly longer for the aquaporin-4
knockout mice than for the wild-type mice (Fig. 4a),
which is consistent with previous in vitro studies [34,
40]. In addition, both the intracellular fraction, F;,, and
the extracellular diffusion coefficient, D.,, estimates for
the wild-type mice were greater than those for the
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APQ4-KO mice (Fig. 4c, d). This result for D, is a little
unexpected as it could be argued that the smaller extra-
cellular fraction, Fo, = 1 - Fj,, of the wild-type mice
would result in a smaller value for the extracellular dif-
fusion coefficient [56]. However, it is also possible that
D., is larger for wild-type mice due to the need to break
hydrogen bonds in clusters of water molecules so that a
single molecule can pass through an aquaporin-4 chan-
nel [57-59]. Our results suggest that cell membrane
water exchange abnormalities caused by aquaporin-4
loss might be detected in living animals.

A previous in vitro study found that signal attenuation
for aquaporin-4 non-expressed cells at high b values (=
4,000-8,000 s/mm?) consistently decreased with increas-
ing diffusion-time [34], which is similar to the behavior
expected for a system where restricted diffusion domi-
nates [60]. In the same in vitro study, attenuation of the
DWI signal for aquaporin-4-expressed cells did not show

a consistent trend with respect to increasing diffusion-
time, from which it was suggested that the permeability
of the cell membrane may have a significant effect on
the signal at high b values. In contrast to those in vitro
results, it was observed for the in vivo experiments
performed here that the signal attenuation in ischemic
tissue at high b values increased with increasing
diffusion-time for both genotypes (Figs. 1 and S2). A
similar observation was made in human subjects with
stroke lesions [38].

The in vivo measurements of water exchange-time
made for this work are shorter than those made on cul-
tured cells using the same technique [34]. The reason
for this result is not yet clear, but several factors may be
involved. First, it may simply be that the water
exchange-time of in vivo mouse cells is shorter than that
of cultured cells regardless of aquaporin-4 expression.
Also, it has been reported that acid pH increases the
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Fig. 4 Estimates of the exchange model parameters in the ischemic region. The exchange model parameters were estimated by fitting to the
diffusion-weighted imaging data in the ischemic region. Exchange-time (a), water exchange time between the intracellular and extracellular
space; a (b), a parameter reflecting the mean cell volume; Fi, (c), signal fraction from intracellular space. De, (d), apparent diffusion coefficient for
the extracellular space. The plots show the mean for each wild-type (WT) (blue) and aquaporin-4 knockout (AQP4-KO) (red) mouse, while the
black bars correspond to the mean over animals. * and ** indicate significant differences in the estimates from the WT and AQP4-KO mice
(@, p = 0.006; b, p = 0.003; ¢, p = 0.004; d, p = 0.044; unpaired t test)
J
Table 1 Two-way ANOVA results (F values and p values) for the ADC on the ipsilateral side
b value (s/mm?) 0-2,000 500-2,000 2,000-4,000 4,000-6,000 6,000-8,000
Genotype 866 (0.006)° 124 (0.001) 249 (< 0.001)* 154 (<0001)° 379 (< 0.001)*
A 0.244 (0.785) 0938 (0402) 9.92 (0.003) 15.1 (< 0.001)° 14.7 (< 0001)°

Genotype x A 0.241 (0.787) 0675 (0.531) 0684 (0.512) 1.17 (0.323) 2.08 (0.142)

The numbers within parentheses are p values, and those less than 0.05 were interpreted as being statistically significant (%). ADC Apparent diffusion coefficient,
ANOVA Analysis of variance
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Table 2 Two-way ANOVA results (F values and p values) for
the ADC on the contralateral side

b value (s/mm?)  0-2,000 500-2,000 2,000-4,000
Genotype 64.5 (<0.001)* 3885 (<0.001)* 164 (<0.001)?
A 0.171 (0.844) 1.896 (0.168) 6.86 (0.004)
Genotype x A 0.0849 (0.919) 0.811 (0.454) 0.309 (0.737)

The numbers within parentheses are p values, and those less than 0.05 were
interpreted as being statistically significant (*). ADC Apparent diffusion
coefficient, ANOVA Analysis of variance

water permeability of aquaporin [61, 62]. It is therefore
possible that the higher acidity of ischemic tissue in-
creased the water permeability of aquaporin and hence
shortened the water exchange-time [63, 64]. Finally,
water exchange times have been reported to be shorter
at higher temperatures [40], and the difference of the
water exchange time between in vitro and in vivo experi-
ments may reflect the differences in mouse body
temperature (36 °C) and room temperature (23 °C).

Our study has limitations. The relatively long echo
time required to perform long A scans results in low
SNR at high b values. Therefore, our method is limited
to conditions where the DWI signal is quite high, such
as in cerebral infarction, cancer, and white matter le-
sions. It is difficult to evaluate water permeability in the
normal brain or in diseases such as Alzheimer's that are
not associated with a high DWI signal. Other methods
that utilize the kurtosis may be more useful for low SNR
situations [65, 66]. In addition, the limitations previously
reported for the exchange model also apply here [34].
That is, the model does not consider the possibility that
T1 and T2 are different in intracellular and extracellular
spaces, nor does it consider the anisotropy of water dif-
fusion. Finally, observations were made at only one point
2 h after MCAO. Even though there was no substantial
change in signal between the four sets of MbMtd DWI
measurements taken for each mouse (a period of about
1.5 h, data not shown), the ischemic cascade is a dy-
namic process so a future longitudinal study of mem-
brane permeability changes in MCAO model mice is
important.

In conclusion, the present in vivo MbMtd DWI study
found significant differences in the ADCs estimated
across different b value ranges for animal models with
and without aquaporin-4 expression in normal and is-
chemic tissue. Genotype-dependent differences in the
ADC were particularly significant for the low b value
range in normal tissue and for the high b value ranges in
ischemic tissue. A significant difference in the ADCs
measured at different diffusion-times was detected for
both genotypes. Permeability may make a major contri-
bution to the diffusion time dependence of the ADC,
but the dependence is independent of genotype. Estima-
tion of the parameters of a water exchange model

Page 9 of 11

quantified differences in water exchange-time that might
be related to aquaporin-4 deficiency. The results suggest
that MbMtd DWI might be useful for evaluating the effi-
cacy of aquaporin-4 knockout targeted medicines and
for the clinical diagnosis of aquaporin-4-related diseases.
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