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Digital subtraction of temporally sequential
mammograms for improved detection and
classification of microcalcifications
Kosmia Loizidou1* , Galateia Skouroumouni2, Costas Pitris1 and Christos Nikolaou3

Abstract

Background: Our aim was to demonstrate that automated detection and classification of breast microcalcifications,
according to Breast Imaging Reporting and Data System (BI-RADS) categorisation, can be improved with the
subtraction of sequential mammograms as opposed to using the most recent image only.

Methods: One hundred pairs of mammograms were retrospectively collected from two temporally sequential
rounds. Fifty percent of the images included no (BI-RADS 1) or benign (BI-RADS 2) microcalcifications. The
remaining exhibited suspicious findings (BI-RADS 4-5) in the recent image. Mammograms cannot be directly
subtracted, due to tissue changes over time and breast deformation during mammography. To overcome this
challenge, optimised preprocessing, image registration, and postprocessing procedures were developed. Machine
learning techniques were employed to eliminate false positives (normal tissue misclassified as microcalcifications)
and to classify the true microcalcifications as BI-RADS benign or suspicious. Ninety-six features were extracted and
nine classifiers were evaluated with and without temporal subtraction. The performance was assessed by measuring
sensitivity, specificity, accuracy, and area under the curve (AUC) at receiver operator characteristics analysis.

Results: Using temporal subtraction, the contrast ratio improved ~ 57 times compared to the most recent
mammograms, enhancing the detection of the radiologic changes. Classifying as BI-RADS benign versus suspicious
microcalcifications, resulted in 90.3% accuracy and 0.87 AUC, compared to 82.7% and 0.81 using just the most
recent mammogram (p = 0.003).

Conclusion: Compared to using the most recent mammogram alone, temporal subtraction is more effective in the
microcalcifications detection and classification and may play a role in automated diagnosis systems.

Keywords: Breast cancer, Mammography, Radiographic image interpretation (computer-assisted), Retrospective
studies, Machine learning
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Key points

� The contrast ratio of the subtracted images was
improved ~ 57 times, compared to that of the
recent images without preprocessing.

� Eighteen per cent of pre-existing Breast Imaging
Reporting and Data System (BI-RADS) category 2
findings were effectively removed and the remaining
were detected with an accuracy of 94.1%.

� Accuracy and area under the curve of the
classification of microcalcifications as BI-RADS 2
versus BI-RADS 4 or 5 were significantly higher with
the use of temporal subtraction, compared to using
only the most recent mammogram (p = 0.003).

Background
Breast cancer screening with mammography is an effect-
ive approach to reduce breast cancer mortality. How-
ever, the large population involved and the use of double
reading increases the workload and can limit the effi-
ciency of the screening process [1]. To further exacer-
bate the challenge, various types of abnormalities are
associated with breast cancer, including microcalcifica-
tions [2]. They can be benign or form microcalcification
clusters possibly suspicious, to be managed appropri-
ately. For the BI-RADS classification of microcalcifica-
tions as benign or suspicious, morphology, distribution,
and change over time are key parameters [3]. Computer-
aided diagnosis (CAD) systems are being explored as a
means to improve the specificity of the classification of
mammographic anomalies without compromising the
sensitivity [4]. Several groups [5–7] have assessed the
use of CAD systems for the detection of microcalcifica-
tions present in the most recent mammographic views,
with sensitivity and specificity in the range of 82−89%
and 87−88%, respectively, when discriminating between
benign and suspicious microcalcifications. The main
drawback of those systems is the considerable number
of false positives (FPs) per image, that can range up to
1–3, which reduces their clinical applicability [8]. In
addition, they provide no information regarding the
presence of those abnormalities in previous mammo-
graphic sessions.
In temporal analysis, mammograms from multiple prior

examinations are utilised. When prior information is avail-
able for direct comparison, abnormalities can be detected
at an earlier stage and the radiologists feel more confident
of their assessment [9]. Some studies have attempted to
combine information from prior and recent mammo-
graphic views to reduce the FP and recall rates [9–14].
Prior and recent images were coarsely registered based on
anatomical features (e.g., nipple, skin, centre of mass
which is the mean value across each dimension), and the
locations of recently identified microcalcifications in the

prior image were identified by regional registration, i.e.,
searching around the location of the recent finding. Com-
bining the features from both images resulted in an im-
proved specificity, specificity, and reduced FPs rates.
However, temporal analysis offers no benefit, over using
just the recent mammographic view, when the findings
are new with no traces of abnormality in the prior screen-
ing [11].
Going a step further, temporal subtraction begins with

using both global and local features to register the entire
breast areas of the recent and prior mammographic
views. This allows direct subtraction of the images, digit-
ally removing unchanged regions from the recent mam-
mographic view, further delineating subtle recent
changes, including microcalcifications [15, 16]. The ob-
jective of this study was to evaluate the effect of the sub-
traction of temporally sequential mammograms to
eliminate unchanged features and improve the detection
and classification of microcalcifications into benign and
suspicious, based on their BI-RADS category. For com-
parison, the detection and classification methodologies
were also applied to the most recent images without
temporal subtraction.

Methods
Study population
The current study expands on prior published work
[16]. From the 100 participants that were eventually in-
cluded, 80 were previously used for the purposes of de-
scribing the technical details of the algorithms
employed. For this retrospective study, 100 pairs of full-
field digital mammograms were collected, between 2012
and 2020, from various local hospitals (Nicosia General
Hospital, Limassol General Hospital, Cyprus population
screening program Aglantzia and Linopetra), performed
by women (38 to 83 years of age, 60.07 ± 7.09, mean ±
standard deviation) with either no microcalcifications or
BI-RADS benign (normal population) or BI-RADS suspi-
cious microcalcifications (suspicious population) in their
current mammograms. A BI-RADS normal or benign
prior mammogram (average interval of 2.2 years) was re-
quired for inclusion in the study (Fig. 1). The normal
population was selected to form an age-matched group
compared to the patients with BI-RADS suspicious
microcalcifications. The study was approved by the ap-
propriate Institutional Review Board (Cyprus National
Bioethics Committee #EEBK ΕΠ 2020.01.144) and in-
formed consent was retrospectively collected.
For every participant, two mammographic views (cra-

nio-caudal and medio-lateral oblique) of the breast
showing the presence of micorcalcifications, from two
sequential screening rounds, were included for a total of
400 images. A radiologist (C.N. with 10 years of experi-
ence) identified the patients to be included, according to
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Fig. 1 Flowchart of study population selection. MCs Microcalcifications

Table 1 Characteristics of the population and digital mammography examinations selected for the study

Variable Population

BI-RADS normal
(n = 50)

BI-RADS suspicious
(n = 50)

Total
(n = 100)

Patient age

Mean ± standard deviation 59.42 ± 5.97 60.72 ± 8.00 60.07 ± 7.09

Median 59 61.5 59.5

Range 47−75 38−83 38−83

Interquartile range 55−64 55.75−66.25 55−65

BI-RADS breast density

a 5 5 10

b 33 24 57

c 10 18 28

d 2 3 5

BI-RADS classification

1 22 0 22

2 28 0 28

3 0 0 0

4a 0 27 27

4b 0 15 15

4c 0 6 6

5 0 2 2
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the criteria specified above, and along with a second
radiologist (G.S. with 2 years of experience), assessed the
mammograms for assigning the BI-RADS category and
marked the location of the microcalcifications. Interob-
server agreement, i.e., microcalcifications marked by
both observers, was estimated at 97.1% for benign (BI-
RADS 2) and 98.2% for suspicious (BI-RADS 4-5) micro-
calcifications; differences were resolved by consensus. A
summary of the study population is shown in Table 1.
Fifty percent of the mammograms came from healthy
participants (28 with only BI-RADS benign microcalcifi-
cations in the prior and recent mammographic views
and 22 with no visible microcalcifications). In the
remaining 50%, at least one new BI-RADS suspicious
microcalcification was present in the most recent mam-
mographic view. The ground truth was based on the BI-
RADS category, as evaluated by the radiologists, without
any confirmation by follow-up (for “benign” lesions), or
biopsy (for “suspicious” lesions). This data set not only
included temporally sequential mammograms, but also
precise annotation of each individual microcalcification
to be used as a reference (Fig. 2). The data set included
a total of 629 microcalcifications, 515 BI-RADS 2 and

114 BI-RADS 4 or 5. The size of the mammographic
views was 4096 × 3328 pixels, in an 8-bit DICOM for-
mat. This data is publicly available (https://doi.org/10.
5281/zenodo.5036062).

Image registration, subtraction, and segmentation
Supplemental Fig. S1 shows the diagram of the proposed
methodology for detection and BI-RADS classification of
microcalcifications. The procedure began with image
preprocessing for normalisation, border removal [17],
and gamma correction [18]. Next, each prior mammo-
graphic view was co-registered to the most recent one.
Image registration is a critical step in temporal subtrac-
tion, since it corrects for the changes that occur in the
breast over time and due to deformation between mam-
mograms. Demons registration [19], a non-rigid method
based on local flows, was employed due to superior per-
formance compared to other common approaches [20].
The prior registered mammographic view was subse-
quently subtracted from the recent, effectively removing
the regions that have remained unchanged since the pre-
vious exam. The contrast ratio of the subtracted image,
i.e., the ratio of the maximum divided by the average

Fig. 2 Dataset examples. a Most recent mammographic view of a woman (BI-RADS breast density class b) with BI-RADS benign
microcalcifications. b Most recent mammographic view of woman (BI-RADS breast density class c) with BI-RADS benign and suspicious
microcalcifications. c, d Zoomed regions from a and b showing microcalcifications. e, f The regions in c and d with precise marking of the
location of microcalcifications, as annotated by two expert radiologists. The arrowhead in f points to a BI-RADS suspicious microcalcifications
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intensity, was compared to that of the recent mammo-
graphic view to evaluate the effectiveness of the removal
of the background. Furthermore, the capability of the
subtraction to remove unchanged microcalcifications,
thus reducing the FP rate, was also assessed. After range
filtering [21], the intensity values of each image were
converted to binary, i.e., 0 or 1, using an intensity
threshold, obtained by optimising the global BI-RADS
classification rate. The binary image was further proc-
essed morphologically. The operations of closing (re-
moving small unconnected regions) and opening (filling
small gaps) were applied and the remaining regions were
considered as possible microcalcifications.

Feature extraction and selection for classification
To differentiate the true microcalcifications from other
tissue and, subsequently, the BI-RADS benign from the
BI-RADS suspicious microcalcifications, using machine
learning algorithms, several features were estimated
from every possible region containing microcalcifica-
tions. Ninety-six, shape, intensity first order statistic, and
grey-level co-occurrence matrix (GLCM) features were
extracted [22–24]. The GLCM was calculated at 0°, 45°,
90°, and 135° and 5-, 15-, and 25-pixel offset. The mean
and standard deviation of each GLCM texture property
were obtained, resulting in 72 features. Hypothesis test
(t-test) [25] and feature importance [26] were employed
to identify the most significant features and further
evaluate their contribution to the classification.

Training and comparison of classifier designs
For the BI-RADS classification, 9 classifiers were evaluated:
9-nearest neighbors [1], decision trees [27], random forest
[27], multi-layer perceptron [28], adaptive boosting [29],
bagging [30], gradient boosting [31], and ensemble voting
[32]. In addition, different neural network configurations
were evaluated using Python (Python Software Foundation,
Wilmington, USA, v. 3.7.7) and Keras (Keras Special Inter-
est Group, François Chollet, Mountain View, USA, v. 2.3.1)
[33]. The resulting, most suitable, network consisted of 7
fully connected layers, with 986,738 trainable parameters.
Rectified linear unit was used as an activation function and
adaptive dropout regularisation was included every two hid-
den layers. Gaussian noise was added after dropout, as a
regularisation term, in order to increase the robustness of
the network. Batch size was set to 128 and the network was
trained for 100 epochs. Traditional classifiers were selected
based on their prior application to mammography.
The complete dataset was used during the training

stage with leave-one-patient-out (LOPO) cross-
validation. This cross-validation approach was critical in
order to avoid bias from including images of the same
patient in both test and training sets. K-fold cross-
validation was also considered, again by dividing the

patients into folds. Initially, the possible microcalcifica-
tions were classified as normal tissue or true microcalci-
fications and, subsequently, the true microcalcifications
were classified as BI-RADS benign or suspicious.

Detection and classification using the most recent
mammogram alone
For comparison purposes, the same classification ap-
proach was optimised and applied to the most recent
mammograms, without temporal subtraction, to verify
the benefit of temporal subtraction.

Statistical analysis
The classification performance was evaluated by com-
puting the sensitivity, specificity, accuracy, and the area
under the curve (AUC) at receiver operator characteris-
tics analysis. The cut-off values for calculating sensitivity
and specificity were selected optimally so that BI-RADS
false positive and false negative numbers are minimised,
i.e., the cross point of the positive and negative distribu-
tions. In the comparison of the results from using just
the most recent mammogram, the Fisher test was used
with a level of statistical significance set to p = 0.05.

Results
Image registration, subtraction, and segmentation
Image registration and subtraction yielded an average
72% reduction of image intensity, a result of removing
structures that have remained unchanged between
screenings. The average contrast ratio of the subtracted
images was ~ 57 times higher compared to the recent
mammographic view (Fig. 3). Eighteen percent of old BI-
RADS benign microcalcifications were effectively re-
moved (Table 2). It is also important to note that none
of the BI-RADS suspicious microcalcifications were re-
moved by this process (Fig. 4). The processing time for
these operations was an average of ~ 15 min per image
pair (Intel® Core™ i7 2 GHz; Intel Corp., Santa Clara,
CA, USA).

Feature extraction and selection for classification
Features of microcalcifications were extracted from the
images as described in the previous section. Based on
the results of t-test and feature importance, the features
with the most significant contribution to classification
were identified for each classification round. The details
of the features that have been selected in each case can
be found in Supplemental Table S1.

Detection and classification using temporal subtraction
The results of the detection of the microcalcifications
are summarised in Table 3. The sensitivity, specificity,
accuracy, and AUC of the different methods were in the
range of 72.8−82.3%, 83.7−97%, 83.5−95%, and 0.82
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−0.88%, respectively. Based on the AUC, the most suc-
cessful classification scheme was the ensemble voting
with 81.4% sensitivity, 95.5% specificity, 94.1% accuracy,
and 0.88 AUC. The application of k-fold cross-validation
(Fig. 5a), using k = 4, 5, and 10, verified that the per-
formance remained approximately at the same level.
The optimisation of the various classifiers for the clas-

sification of microcalcifications as benign or suspicious
according to their BI-RADS category, using LOPO
cross-validation, resulted in the outcomes summarised
in Table 4. The sensitivity, specificity, accuracy and
AUC were in the range of 57.9−84.2%, 77.8−92.2%, 79.0
−90.3% and, 0.70−0.87%, respectively. Based on the
AUC, the most successful classification scheme was
again ensemble voting with 81.6% sensitivity, 92.2% spe-
cificity, 90.3% accuracy, and 0.87 AUC. For this classifi-
cation round, only 13-fold cross-validation was applied
(Fig. 6a) due to the smaller number of patients with
microcalcifications (i.e., 78 patients with true

microcalcifications, 50 BI-RADS suspicious, and 28 BI-
RADS normal with benign microcalcifications). Example
images visually demonstrating the classification out-
come, using temporal subtraction, where BI-RADS be-
nign and suspicious microcalcifications were correctly
identified, are shown in Supplemental Fig. S2.

Detection and classification using the most recent
mammogram alone
Table 3 shows the classification results for the identifica-
tion of true microcalcifications using features selected
only from the most recent mammographic view (Supple-
mental Table S1) and the same classifiers as before
optimised for these features. The best classification per-
formance was achieved using ensemble voting with
72.7% sensitivity, 96.5% specificity, 94.1% accuracy, and
0.83 AUC. Subsequently, the true microcalcifications
were classified as BI-RADS benign or suspicious and the
results are presented in Table 4. Again, the ensemble
voting was the most successful method, providing 78.9%
sensitivity, 83.5% specificity, 82.7% accuracy, and 0.81
AUC. As before, k-fold cross-validation was also per-
formed, using the same values of k (Figs. 5b and 6b)
showing that the algorithm was also stable and robust.

Discussion
A method for the detection and classification of micro-
calcifications, according to their BI-RADS category, from
the subtraction of temporally sequential mammographic
views was developed. The aim of this work was to com-
bine temporal subtraction with machine learning in
order to enhance the contrast ratio, eliminate the radio-
logically unchanged microcalcifications and, most im-
portantly, improve the classification accuracy of
microcalcifications as benign or suspicious, based on
their BI-RADS categories. For effective and efficient
subtraction of the prior from the most recent mammo-
graphic view, preprocessing, registration, and postpro-
cessing procedures were applied. Machine learning
techniques were then used to eliminate the FPs, i.e., nor-
mal tissue misclassified as microcalcifications, and, fur-
thermore, to classify the true microcalcifications as BI-

Fig. 3 Plot comparing the contrast ratio, in logarithmic scale, of the
unprocessed recent image and the image created by temporal
subtraction, for the four categories of BI-RADS breast density. The
contrast ratio increased indicating that temporal subtraction is
successful for all breast densities

Table 2 Elimination of old microcalcifications that appear in both screening rounds, in BI-RADS normal and suspicious
mammograms

Mammograms New
microcalcifications

Old
microcalcifications

Overlapping
microcalcifications

Overlap
(%)

Reduction
(%)

BI-RADS normal
(n = 200)

248 224 54 54/224 (24.1) 54/248 (21.8)

BI-RADS suspicious
(n = 200)

398 319 64 64/319 (20.1) 64/398 (16.1)

Total
(n = 400)

646 543 118 118/543 (21.7) 118/646 (18.3)
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Fig. 4 Example of temporal subtraction in a woman (BI-RADS breast density class b) with BI-RADS benign and suspicious microcalcifications. a
Most recent mammographic view. b Prior mammographic view. c The result of subtracting the registered version of b from a, where the contrast
ratio has increased 92 times after subtraction. d−f Zoomed regions marked by the red squares in a−c. g–i Zoomed regions marked by the red
squares in d−f where the arrowheads point to new BI-RADS suspicious microcalcifications, which were not subtracted. (j−l) Zoomed regions
marked by the green squares in d−f where the arrow points to pre-existing BI-RADS benign microcalcifications, which were completely
subtracted. CR Contrast ratio

Table 3 Comparison of the classification results of the possible microcalcifications as normal tissue or radiologically true
microcalcifications with temporal subtraction (TS) of mammograms or using only the most recent mammograms (RM), in a leave-
one-patient-out cross-validation scheme

Classifier Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC

9-Nearest
neighbors

TS
RM

501/629
469/629

(79.7)
(74.6)

TS
RM

4928/5739
4593/5739

(85.9)
(80.0)

TS
RM

5429/6368
5062/6368

(85.3)
(79.5)

TS
RM

0.83
0.76

Decision
trees

TS
RM

458/629
392/629

(72.8)
(62.3)

TS
RM

5311/5739
5234/5739

(92.5)
(91.2)

TS
RM

5769/6368
5626/6368

(90.6)
(88.4)

TS
RM

0.83
0.78

Random
forest

TS
RM

484/629
421/629

(77.0)
(66.9)

TS
RM

5565/5739
5591/5739

(97.0)
(97.4)

TS
RM

6049/6368
6012/6368

(95.0)
(94.4)

TS
RM

0.87
0.82

Multilayer
perceptron

TS
RM

510/629
470/629

(81.1)
(74.7)

TS
RM

4806/5739
4275/5739

(83.7)
(74.5)

TS
RM

5316/6368
4745/6368

(83.5)
(74.5)

TS
RM

0.82
0.73

Adaptive
boosting

TS
RM

510/629
473/629

(81.1)
(75.2)

TS
RM

5561/5739
4659/5739

(88.0)
(81.2)

TS
RM

6071/6368
5132/6368

(87.3)
(80.6)

TS
RM

0.85
0.77

Bagging TS
RM

473/629
408/629

(75.2)
(64.9)

TS
RM

5510/5739
5528/5739

(96.0)
(96.3)

TS
RM

5983/6368
5936/6368

(94.0)
(93.2)

TS
RM

0.86
0.80

Gradient
boosting

TS
RM

512/629
468/629

(81.4)
(74.4)

TS
RM

5291/5739
5073/5739

(92.2)
(88.4)

TS
RM

5803/6368
5541/6368

(91.1)
(87.0)

TS
RM

0.87
0.80

Ensemble
voting

TS
RM

512/629
457/629

(81.4)
(72.8)

TS
RM

5480/5739
5536/5739

(95.5)
(96.5)

TS
RM

5992/6368
5993/6368

(94.1)
(94.1)

TS
RM

0.88
0.83

Neural
network

TS
RM

518/629
384/629

(82.4)
(61.1)

TS
RM

4911/5739
5058/5739

(85.6)
(88.1)

TS
RM

5429/6368
5448/6368

(85.3)
(85.5)

TS
RM

0.84
0.76

AUC Area under the curve
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RADS benign or suspicious. Bagging, gradient boosting,
ensemble voting, and neural networks are more recent
additions to machine learning and were chosen for their
potential to provide improved classification. Ideally, the
proposed method should have also been verified on an
independent external dataset. However, publicly avail-
able datasets do not provide sequential mammograms or
images annotated at the level of individual
microcalcifications.
Demons registration [19] was very effective in match-

ing the prior to the recent mammographic views, since it

accounted for the complex transformations and distor-
tions that appear between screenings. Using the pro-
posed technique, the contrast ratio improved ~ 57 times
enhancing the contrast of the recent changes in the im-
ages. The elimination of most of the background and
unchanged BI-RADS benign microcalcifications can
make the radiologic evaluation of mammograms and the
detection of even subtle abnormalities, easier and faster.
This reduces the effort and time expended by the radi-
ologist by enhancing the new and, most probably, more
diagnostically useful information.

Fig. 5 Classification results of the possible microcalcifications as radiologically normal tissue or true microcalcifications using different classifiers
and cross-validation methods. up Results using temporal subtraction of mammograms. down Results using only the most recent mammograms.
LOPO Leave-one-patient-out
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With automated BI-RADS classification, the proposed
method achieved 81.4% sensitivity, 95.5% specificity and
94.1% accuracy for the detection of true microcalcifica-
tions and 81.6% sensitivity, 92.2% specificity, and 90.3%
accuracy for the classification of microcalcifications as
BI-RADS benign or suspicious, both using an optimised
feature set and an ensemble voting model. This high ac-
curacy demonstrates the effectiveness of the algorithm,
which provided statistically superior performance over
using only the most recent mammograms. The average
classification accuracy for the characterisation of true
microcalcifications as BI-RADS benign or suspicious im-
proved by 7% with the introduction of temporal subtrac-
tion (p = 0.003). To evaluate the robustness of the
method, k-fold cross-validation was implemented, in
addition to LOPO cross-validation. The algorithm per-
formed at approximately the same level in all the cross-
validation scenarios, indicating that the proposed
method is robust and should be able to function equally
well as new data becomes available.
The main limitation of this study is the relatively lim-

ited dataset acquired from local hospitals with a single
protocol. Even though the results presented here are
promising, more sequential pairs are required to defini-
tively prove the generalizability of the proposed algo-
rithm. Unfortunately, publicly available databases cannot
be exploited for the purposes of this project, since they
neither contain sequential mammograms nor they in-
clude images annotated at the level of individual

microcalcifications as in this study. Another limitation is
the fact that although the suspicious microcalcifications
were identified by two expert radiologists, the BI-RADS
classification of clusters of microcalcifications not only
varies from one radiologist to another, but might also be
disproved by follow-up or pathology. In addition, the
adoption of the BI-RADS classification as the ground
truth, without any confirmation by follow-up or path-
ology, limits the generalizability and the ultimate utility
of the tool. This is a consequence of mimicking the hu-
man reader rather than offering an unbiased opinion
based on the true and confirmed state of the
microcalcifications.
The results of this study cannot be readily and directly

compared to other state-of-the-art techniques described
in the literature for various reasons. The existing and
freely available image databases contain only one mam-
mogram per patient (i.e., no prior information). In
addition, in several cases, entire images are classified ra-
ther than individual microcalcifications [34]. Further-
more, in most state-of-the-art algorithms, cross-
validation is implemented by randomly dividing the
microcalcifications into training and test sets, or by
using part of the same image in the test and another part
in the training set [35]. Such approaches can introduce
bias, which results in artificially improved classification
results. In general, most studies in the literature report
accuracy and AUC, which in the case of benign versus
malignant classification of microcalcifications range

Table 4 Comparison of the classification results of the true microcalcifications as BI-RADS benign or suspicious using temporal
subtraction (TS) of mammograms and using only the most recent mammograms (RM), in a leave-one-patient-out cross-validation
scheme

Classifier Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC

9-Nearest
neighbors

TS
RM

96/114
73/114

(84.2)
(64.0)

TS
RM

393/515
357/515

(76.3)
(69.3)

TS
RM

489/629
430/629

(77.7)
(68.4)

TS
RM

0.80
0.67

Decision
trees

TS
RM

66/114
65/114

(57.9)
(57.0)

TS
RM

446/515
445/515

(86.6)
(86.4)

TS
RM

512/629
510/629

(81.4)
(81.1)

TS
RM

0.72
0.72

Random
forest

TS
RM

73/114
70/114

(64.0)
(61.4)

TS
RM

461/515
452/515

(89.5)
(87.8)

TS
RM

534/629
522/629

(84.9)
(83.0)

TS
RM

0.77
0.75

Multilayer
perceptron

TS
RM

93/114
69/114

(81.6)
(60.5)

TS
RM

411/515
302/515

(79.8)
(58.6)

TS
RM

504/629
371/629

(80.1)
(59.0)

TS
RM

0.81
0.6

Adaptive
boosting

TS
RM

86/114
80/114

(75.4)
(70.2)

TS
RM

433/515
430/515

(84.1)
(83.5)

TS
RM

519/629
510/629

(82.5)
(81.1)

TS
RM

0.8
0.77

Bagging TS
RM

69/114
65/114

(60.5)
(57.0)

TS
RM

458/515
450/515

(88.9)
(87.4)

TS
RM

527/629
515/629

(83.8)
(81.9)

TS
RM

0.75
0.72

Gradient
boosting

TS
RM

82/114
77/114

(71.9)
(67.5)

TS
RM

447/515
438/515

(86.8)
(85.1)

TS
RM

529/629
515/629

(84.1)
(81.9)

TS
RM

0.79
0.76

Ensemble
voting

TS
RM

93/114
90/114

(81.6)
(79.0)

TS
RM

475/515
430/515

(92.2)
(83.5)

TS
RM

568/629
520/629

(90.3)
(82.7)

TS
RM

0.87
0.81

Neural
network

TS
RM

89/114
83/114

(78.1)
(72.8)

TS
RM

450/515
485/515

(87.4)
(94.2)

TS
RM

539/629
568/629

(85.7)
(90.3)

TS
RM

0.83
0.83

AUC Area under the curve
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between 80−89% and 0.86−0.92% (Supplemental Table
S2). In this study, a more appropriate approach was se-
lected, which assigned the entire data set corresponding
to a patient either to the training or the test set, and per-
formed LOPO cross-validation. In order to prove the ef-
fectiveness of temporal subtraction in a fair manner, the
results were compared to an optimised algorithm using
only the most recent mammograms of the same dataset.
There are no examples of temporal analysis for micro-

calcification identification and classification in the litera-
ture. Furthermore, there are only a few studies on the
use of temporal analysis for the characterisation of mass
lesions [9–11, 13]. Rather than image subtraction, their
approach was to extract several features from the recent
and prior mammograms separately and, then, combine

them to improve the classification accuracy. Their re-
sults confirmed that the use of prior information could
improve the detection and classification of mass lesions.
However, temporal analysis offers no benefit when there
is no abnormality in the prior screening.
In conclusion, the proposed technique demonstrates

that temporal subtraction achieves superior performance
in the detection and classification of microcalcifications,
based on their BI-RADS category, compared to using
only the most recent mammograms. The inclusion of
more patients as well as the extension of the approach
to detect and classify other abnormalities in mammo-
grams (e.g., breast masses or distortions) can further en-
hance the diagnostic potential of temporal subtraction.
In the future, the proposed methodology has the

Fig. 6 Classification results of the true microcalcifications as BI-RADS benign or suspicious using different classifiers and cross-validation methods.
up Results using temporal subtraction of mammograms. down Results using only the most recent mammograms. LOPO Leave-one-patient-out
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potential to substantially contribute to the development
of automated CAD systems to assist in the radiologic
classification of breast abnormalities and serve as a “sec-
ond reader” or a “tie breaker” especially in low resource
settings.
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