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Abstract

PRIMAGE is a European Commission-financed project dealing with medical imaging and artificial intelligence
aiming to create an imaging biobank in oncology. The project includes a task dedicated to the interoperability
between imaging and standard biobanks. We aim at linking Digital imaging and Communications in Medicine
(DICOM) metadata to the Minimum Information About BIobank data Sharing (MIABIS) standard of biobanking. A
very first integration model based on the fusion of the two existing standards, MIABIS and DICOM, has been
developed. The fundamental method was that of expanding the MIABIS core to the imaging field, adding DICOM
metadata derived from CT scans of 18 paediatric patients with neuroblastoma. The model was developed with the
relational database management system Structured Query Language. The integration data model has been built as
an Entity Relationship Diagram, commonly used to organise data within databases. Five additional entities have
been linked to the “Image Collection” subcategory in order to include the imaging metadata more specific to the
particular type of data: Body Part Examined, Modality Information, Dataset Type, Image Analysis, and Registration
Parameters. The model is a starting point for the expansion of MIABIS with further DICOM metadata, enabling the
inclusion of imaging data in biorepositories.

Keywords: Biological specimen banks, Database management systems, Neuroblastoma, Picture archiving and
communication system, Radiology

Key points

� The availability of imaging biobanks supports
tumour decision-making in precision medicine.

� An integration model linking the Minimum
Information About BIobank data Sharing and Digital
imaging and Communications in Medicine
standards has been developed.

� It enables the inclusion of imaging and biomarker
data into standard biobanks.

Background
The availability of biobanks and biorepositories for the
research community allows the access to multiple types
of data and is the basis for big data analytics in the med-
ical domain [1]. The term biobanking refers to the
process by which massive collections of biological mater-
ial and associated information are collected for research
use [2]. Biobanks are defined as repositories for the stor-
age and retrieval of samples of bodily fluids or tissues
and accompanying data of the related subject, support-
ing contemporary research such as genomics and
personalised medicine [3, 4].
Digital innovation in the healthcare systems is evolving

toward a data-driven science, making high-quality data
and information exchange essential in healthcare. It is
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therefore clear that advances are required in data man-
agement to facilitate the development of platforms for
more effective usage of large volumes of data, and bio-
banks play a central role in this scenario [5, 6].
The European Biobanking and BioMolecular resources

Research Infrastructure (BBMRI-ERIC) has been created
with the aim to harmonise biobanks across Europe and
sustain a network of research [7]. The European Society
of Radiology (ESR) started a collaboration with BBMRI-
ERIC in 2014, recognising the importance of integrating
imaging and “omics” data.1 All biobanks are indexed in
the BBMRI-ERIC Directory from which researchers
across Europe can seek retrieval of samples/data, or col-
lect/host services for their samples/data [8, 9].
To integrate different biobanks, the research infra-

structure uses a standard for data description named
Minimum Information About BIobank data Sharing
(MIABIS) 2.0 Core, as a data model standard to describe
samples and sample donors. The MIABIS is a recom-
mendation about what information should be stored in
biobank to facilitate the exchange of samples informa-
tion and data. MIABIS represents the standard for the
interoperability between biobanks [10, 11].2

To date, biobanks are mainly focused on data describ-
ing fluid or tissue samples, and very few in BBMRI-ERIC
network include image collections [12]. A novel field of
research is that of imaging biobanks [13], defined as “or-
ganized databases of medical image collections associ-
ated with imaging biomarkers” [9]. Imaging biobanks
store image collections, just as standard biobanks store
biological samples, and donors of images can be de-
scribed in the same way as donors of samples. Most im-
aging biobanks focus on the collection of cancer-related
data and oncologic imaging biomarkers [14, 15].
A recent challenge is that of reliably connecting the

available imaging biobanks to tissue biobanks to ex-
plore imaging biomarkers. In fact, the integration of
molecular and imaging data is needed for a radioge-
nomic approach to the patient in a personalised
medicine setting [16]. Linkage and integration of
existing image data repositories as well as the connec-
tion between imaging biobanks and traditional bio-
banks is the key factor to develop and validate new
imaging biomarkers, as well as to improve the general
understanding of their biological significance [17].
It is therefore necessary to identify a model of inter-

operability that describes medical imaging data into the
traditional biobanks. To reach this goal a specific task of
interoperability has been designed by the PRedictive In-

silico Multiscale Analytics to support cancer persona-
lised diaGnosis and prognosis, Empowered by imaging
biomarkers (PRIMAGE) project [18, 19]. PRIMAGE is a
European Commission-financed project dealing with
medical imaging and artificial intelligence aiming to cre-
ate an imaging biobank in oncology. As part of the inter-
operability task, the aim of this study was to expand the
MIABIS standard with DICOM metadata and provide a
model of integration of imaging data and biobank
samples.

Project overview
Here follows a theoretical overview of the method
adopted to develop the metadata model that allows the
description of imaging data and facilitate interoperability
between imaging biomarkers and the traditional
biobanks.
To build this model of interoperability among hetero-

geneous data, the existing formats and ontologies for
image and data description, the MIABIS and the
DICOM, were considered as standard of reference [20–
22]. The MIABIS is the standard that describes the bio-
logical samples [10, 11].
In the MIABIS core, there are three main well defined

components on which the other entities depend: bio-
bank, samples collection, and study (Fig. 1) [10]. MIABIS
has a modular structure that allows to add components
in a flexible way, which makes the core applicable for a
variety of use cases domains of biobanking and research
studies. It is possible to attach additional components to
the core in order to describe particular subdomains, by
merely introducing auxiliary entities in the Entity-
Relationship Diagram (ERD) representing the data
model.
As it is well known in the imaging domain, DICOM is

the standard for the visualisation and sharing of medical
images and associated information [23]. In clinical prac-
tice, a medical image is a DICOM file. It includes a
header in addition to the actual image [24, 25]. All the
information stored in the header is cataloged in groups
of elements, called “DICOM tags.” Real-world entities
(e.g., images, procedures, or interpretation reports) are
represented in the DICOM semantic data model by tem-
plates of attributes or data elements, and each tag identi-
fies an attribute [23, 26].
Therefore, the integration data model here proposed is

based on the attempt to create a linkage between the
MIABIS format and the DICOM format to represent im-
aging biomarkers of the PRIMAGE biobank into a net-
work of traditional biobanks.

Study protocol
The fundamental method used to create the model is
based on a fusion between the two existing formats,

1The last author of this paper has been chair of the Imaging Biobanks
working group of the European Society of Radiology.
2The first (corresponding) author of this paper is also member of the
MIABIS working group.
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DICOM and MIABIS standards, mainly describing im-
aging collections and sample tissue data collections
respectively.
The integration data model has been built as an Entity

Relationship Diagram (ERD), commonly used to
organise data within databases. It is the logical data
scheme, which describes the logical organisation and
structure of data contained in the database, in a formal
language supported by a database management system
(DBMS). In a relational database, the scheme defines the
given attributes of each table/entity and the relationships
between tables. The steps followed to create this model
and build the diagram are explained in more detail in
the following.

The strategy has been to maintain the fundamental
core of the MIABIS data model as a starting point. The
conceptual schema and the logical foundation of the
ERD describing the MIABIS core are represented in Fig.
1, where the three main categories: biobank, study, and
sample collection and the relationships between them
and sub-entities have been drawn. In terms of database
implementation, the new integration model has been
built starting from the MIABIS Entity Relationship Dia-
gram (ERD) coming from the conceptual schema. The
tables representing the three main entities with their at-
tributes and the sub-entities linked to them through spe-
cific relationships, as represented in the MIABIS
conceptual schema (Fig. 1), have been used as a starting

Fig. 1 Conceptual schema of the MIABIS core. The conceptual schema and the logical foundation of the MIABIS core used to summarise the
data organisation. In the red boxes, the three main categories biobank, study, and sample collection are represented, with the relationships
between them and the sub-entities linked to them. The relationships highlighted in red are the ones that have been maintained in the new
integration model but linked to “Collection” in place of “Sample Collection.” The abbreviations “1:1,” “1:N,” and “N:M” define the type of
relationship in the relational database design. The one-to-one (1:1) relationship exists when zero or one instance of entity A can be associated
with zero or one instance of entity B, and vice-versa. The one-to-many (1:N) relationship exists when, for one instance of entity A, there exists
zero, one, or many instances of entity B; but for one instance of entity B, there exists zero or one instance of entity A. A many-to-many (M:N)
relationship exists when, for one instance of entity A, there exists zero, one, or many instances of entity B, and vice-versa
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point and left almost unchanged in the new extended
model, without too many alterations. The MIABIS 2.0
core is modularised and flexible; this means that it is
possible to attach additional components to it. We took
advantage of this property, i.e., we precisely added new
components to the core to obtain the new model applic-
able to the use case of imaging data.
The step necessary to perform the extension of this

starting model to the imaging field has been the replace-
ment of the “Sample Collection” entity with a more gen-
eric macro category called “Collection,” which includes
multiple types of data represented by several sub-
categories added to this macro category, i.e., “Image Col-
lection,” “Sample Tissue Collection,” “Clinical Variable
Collection,” “Molecular Biomarker Collection,” and
“Software/Source Code” entities. This is the fundamental
step that enables a merge among different types of
collections.
The extension of the model to the imaging data has

been then done by expanding the “Image Collection”
sub-category in two main parts. On the one hand, there
is the part regarding the imaging metadata more specific
to the particular type of acquired data and based on the
DICOM tags. On the other hand, there is a part
dependent on the process of image analysis conducted
to extract imaging biomarkers and radiomic data. In fact,
since the core content of imaging biobanks not only ex-
ists out of images but also of any other data (bio-
markers) that may be extracted from images through
computational analysis, in addition to the classes which
represent the information related to imaging data and
based on DICOM tags, another part of the model has
been developed with other classes describing imaging
biomarkers and radiomic data.
At the time of the development of this first model, the

imaging data had not yet been uploaded to the
PRIMAGE platform. Thus, the model development was
not based on how a PRIMAGE imaging biobank sample
looks like. Instead, we used the metadata of eighteen
DICOM files from cases collected by our Hospital net-
work as examples. In particular, we visualised the
DICOM tags of some anonymised multislice CT studies,
obtained in paediatric patients with neuroblastoma,
available in the PACS system of the Pisa University Hos-
pital, just to perform a preliminary study on which
DICOM metadata are worth using for the description of
these kind of imaging data. The DICOM tags have been
easily visualised using the Horos DICOM viewer inte-
grated in the hospital PACS system. The methodology
followed to build up this model included also the close
collaboration with the other partners of the project and
the different professional figures involved in it. Within
the PRIMAGE project, researchers at La Fe University
and Polytechnic Hospital and Health Research Institute

in Valencia developed the radiomics process to extract
the imaging biomarkers from neuroblastoma imaging
data. Consequently, for the classes of the model describ-
ing imaging biomarkers and radiomic data, we referred
to the image analysis process performed by this partner.
As the project is ongoing, the analysis is described in an
internal document, so far available only to the project
partners. In this description of the radiomics process, we
identified the main elements that can be translated as at-
tributes to properly represent the data coming from the
radiomics analysis in the model.

Software tools
The diagram has been created using the Structured
Query Language (MySQL) software [27]. In particular,
the MySQL Workbench, which is a graphical tool for
working with MySQL servers and databases, has been
used to design the database model [28]. This tool en-
ables the graphical creation and manipulation of a model
establishing relationships between the tables, where each
table represents a single entity. Once defined the ERD,
through this tool, it will also be possible to generate the
corresponding SQL script.

Model description
The conceptual schema of the expansion is represented
in Fig. 2, where the red relationships are exactly the
same as the ones in the “Sample Collection” entity in
MIABIS conceptual schema in Fig. 1, with the “Collec-
tion” entity being in place of the “Sample Collection” en-
tity. The “Sample Tissue Collection” in this new schema
corresponds to the same entity of the replaced “Sample
Collection” in Fig. 1.
The complete ERD of the resulting model with the im-

aging part linked to the MIABIS core is represented in
Fig. 3. This is the structural diagram manually drawn in
MySQL Workbench and typically used in informatics to
visualise the database design idea, with the tables repre-
senting the entities, with a set of attributes describing
each entity, and the links representing the relationships
among the entities.
This is the model that allows defining a unified view

and description of data and will provide access to data
themselves (also imaging data, in this case) and to the
related clinical information through a simple query pro-
cessing by researcher users, even though data are hetero-
geneous. We also split the entire model in Fig. 3 into
Figs. 4 and 5 with a zoom on the most relevant parts of
the model, the one describing the DICOM metadata and
the one describing the process of image analysis for
image biomarkers extraction.
In this new extended final model (Fig. 3), based on the

schematically simplified expansion represented in Fig. 2,
it is evident that among the sub-entities that were in
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relationship with the “Sample Collection” in the MIABIS
ERD, those specifically related to tissue samples, such as
storage temperature and material type, have only been
linked to the “Sample Tissue Collection” sub-entity.
However, the more generic sub-entities, i.e., those de-
scribing patient’s information, such as age and sex, have
been obviously linked to the more generic macro cat-
egory “Collection.”
Five additional entities are linked to the “Image

Collection” sub-category in order to include the

imaging metadata more specific to the particular
type of data: body part examined, modality informa-
tion, dataset type, image analysis and registration
parameters [23, 29, 30]. This expansion is the fun-
damental step that enables to extend the MIABIS
model, only describing tissue sample data, to the
imaging data.
The Body Part Examined entity is based on its respect-

ive DICOM tag (0018, 0015) related to DICOM Part 16
which provides a list of 116 terms describing with a text

Collection
N

:M

Collection
Category

N
:M

Study

1:
N

Clinical Variable
Collection

1:
N

Molecular Biomarker
Collection

1:N

Software/Source Code

1:N Sample Tissue Collection

1:N

Image Collection
N:M

Body Part Examined
N:M

N:M Dataset Type 

N:M Storage Temperature

N:M
Material Type

N:M

Data Category

N:M
Contact InformationN

:M

Modality Information

N:1
Modality

1:N Acquisition Parameters

N
:M

Reconstruction
Parameters

N:1 Algorithm

N
:M

Registration Parameters 1:N Intra Sequence

1:N
Inter Sequence

1:N
Inter Modal

N
:1

Image Analysis N:M Preprocessing Parameters

N:M
Imaging Biomarkers N:1 Deep Features

N:1 Textural Features

N:1 Dynamic Signal
Features 

N
:M

Segmentation
N:1

Segmentation Type

N:1 Manual Segmentation

N:1
Semi Automated

SegmentationN
:1

Automated Segmentation

Fig. 2 Conceptual schema of the expansion of the model to image collection. The conceptual schema and the logical foundation of the
expansion to image collections. The “Collection” entity replaces the “Sample Collection” entity in the conceptual schema of the MIABIS core. The
red links are the same ones that connect the “Sample Collection” table to the other tables represented in Fig. 1, with the only difference that the
more generic “Collection” replaces “Sample Collection.” The boxes in green are the ones representing the new sub-entities
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the part of the body examined. It may also be replaced
by Anatomic Region Sequence DICOM tag (0008, 2218).
The dataset type entity is likewise based on its corre-

sponding DICOM tag (0008, 0016) related to DICOM
Part 16 that provides a list of 120 terms and code values.
The Modality Information entity describes the

equipment that originally acquired the data used to cre-
ate the images in the series and is in relationship with
modality, acquisition parameters, and reconstruction pa-
rameters. Modality is based on the DICOM tag (0008,
0060) related to DICOM Part 03 which provides a list of
54 terms and code values.

Fig. 6 Example of an e-form representing some of the clinical variables related to a PRIMAGE sample. Detailed information about the associated
symptoms at the time of diagnosis in the diagnosis section of clinical variables in an e-form. This is an example of how it appears in the
PRIMAGE platform

Fig. 7 Example of part of an e-form representing some clinical variables related to a PRIMAGE sample. Detailed information about the laboratory
tests in the diagnosis section of clinical variables in an e-form. This is an example of how it appears in the PRIMAGE platform
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With regard to this part of the schema based on the
DICOM metadata, only some attributes describing the
various entities have been established. In Fig. 4, we show
some tables from the entire model in Fig. 3, with the at-
tributes based on the selected DICOM tags. In the future
development of the model, a more accurate examination
and analysis on the meaningful DICOM tags that must
be used as attributes to describe the specific type of im-
aging data will be further explored.
In the part concerning the modality information, the

image analysis, and the registration parameters, the ta-
bles representing the entities and the relationships be-
tween entities and sub-entities have been established on
the basis of the image analysis process and the conse-
quent biomarkers extraction implemented in the
PRIMAGE project. In addition, given the description of
this image analysis process, the attributes describing
these entities have been selected (Fig. 5).
The registration parameters entity is linked to intra-

sequence, inter-sequence, and inter-modal sub-entities.
The image analysis entity has pre-processing parameters,
segmentation, and imaging biomarkers as sub-entities.
Segmentation is then divided into three other sub-
entities which describe the segmentation modality: man-
ual, semi-automatic, and automatic. Imaging biomarkers
is instead divided into the type of extracted features: tex-
ture feature, deep features (both related to the radiomics
analysis), and dynamic signal features.
The use-case of integration between these two stan-

dards, DICOM and MIABIS, is a very first model and it
is a starting point for standardisation of imaging data
and metadata representation for data sharing.

Discussion
It is important to remark that the purpose of this
work is to provide a theoretical description of the
model and, in particular, of the idea behind the con-
struction of the integration. The described software
tool was just used as a visual support to the realisa-
tion of the model, which still needs to be validated
on real data. As soon as the data are available, we
will have the model ready to be used to obtain prac-
tical results confirming the initial idea here described.
The step of data collection is still ongoing, so we did
not link the model to concrete data yet, but we built
the model on the basis of the information generally
known about the data to describe them.
The significant novelty of the DICOM-MIABIS inte-

gration model developed in this study is the preparation
for interoperability among imaging biobanks and trad-
itional biobanks of the BBMRI network [18].
The proposed model will bring major advancements in

facilitating imaging data cross-linking with other trad-
itional wider biorepositories. This will have significant

potential to link imaging biomarkers with other bio-
markers and clinical data. The inclusion of new imaging
biobanks in standard biobanks is crucial to achieve data
integration, to access large amounts of high-quality data
and, consequently, to foster a personalised medicine set-
ting [31].
A key feature that a biobank must have to be included

in BBMRI is to provide access to data and clinical infor-
mation through a simple query processing. In fact, data
from multiple sources can be heterogeneous, i.e., with
different structure, models, query languages, and seman-
tics. Therefore, data integration, which consists in pro-
viding a unified view and access of multiple datasets to
users, is fundamental. The described data model, based
on the proposed EER diagram, enables to organise the
imaging data in PRIMAGE biobank in such a way as to
meet this request, integrating imaging data and related
information through a unified view [32, 33].
Another aspect that makes relevant the description of

this model is that in BBMRI-ERIC Directory only one
imaging biobank with CT images of COVID-19 pertain-
ing to the Netherlands node has already been included,
and there does not exist a description of the data model
used for the data integration [34]. As a result, imaging
biobanks and their implementation into the already
existing biobanks is a very recent field of research, in the
literature, there is no detailed description of a database
model that allows imaging data to be integrated into a
network of traditional biobanks, which are based on a
standard that is only limited to describing tissue sam-
ples. The novelty of the present work consists in provid-
ing a descriptive model that should offer a possible
solution on how to effectively connect imaging and tis-
sue biobanks, giving guidance on how to organise the
database to include and add medical images and associ-
ated metadata and biomarkers to other types of data.
The model has been constructed referring to the use

case of neuroblastoma (NB) and diffuse intrinsic pontine
glioma (DIPG) tumours, because imaging and radiomic
data in PRIMAGE biobank focuses on these two paediat-
ric cancers and no neuroblastoma or DIPG biobanks
already exist. However, the model could also be ex-
tended to be adapted to other solid tumours use-cases.
Within the specific framework of the PRIMAGE pro-

ject, this model will contribute to provide a strategy for
embedding PRIMAGE imaging biobanks into wider bio-
banks networks (e.g., BBMRI-ERIC), but, generally, since
the advancement of in-silico medicine research is intrin-
sically linked to the availability of curated databases, a
generalisation of such an integration model could play a
part in boosting precision medicine in oncology, contrib-
uting to easier access to data and their use for AI ana-
lysis, which will hopefully provide improved health
outcomes in general. In fact, for a personalised
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assessment of the disease imaging biomarkers alone are
not sufficient, and they must be considered in conjunc-
tion with other biological data [35]. Consequently, the
possibility to access biobanks including different kinds of
data, e.g., imaging and biological, related to the same pa-
tient could be crucial to link images and biomarker data
to other omics, such as genomic profiling, metabolomics,
proteomics, lab values, and clinical information. In order
to create this integration of data, it is extremely import-
ant to have a database model as a precisely described
tool to efficiently organise the data [17, 36].
In conclusion, the model built so far and here de-

scribed is only a first proposal of integration between
MIABIS and DICOM formats. This model will be fur-
ther evolved by extending the descriptions of image col-
lections in order to figure out the necessary information
to describe imaging data and define the best way to rep-
resent them into biobanks. In fact, as mentioned, this
first model has been built relying on the description of
the image and radiomics analysis conducted by the insti-
tution responsible for the generation of imaging and
radiomic data, without having access to the real data.
After the development of this proposal model, the first
real imaging studies and the related clinical variables have
been uploaded to the e-form in two separate projects (NB
and DIPG) and are now accessible through the web
platform. At the moment a PRIMAGE imaging biobank
sample is described in the platform through an e-form
containing all the relevant clinical variables (Figs. 6 and 7),
while the imaging metadata are simply contained in the
imaging metadata part of the separated DICOM file.
Therefore, in a subsequent study, it should be possible

to fine-tune this first model by studying which DICOM
metadata should be effectively included and which par-
ticular imaging biomarkers and radiomic features are
worth representing and linking to other kinds of data
(e.g., clinical), now relying on real uploaded data. After
having explored the PRIMAGE platform data storage
and having understood how the data and the related
clinical variables are organised, it will be possible to fur-
ther improve the integration model by adding only the
attributes that will be considered necessary and the clin-
ical biomarkers assessed as the meaningful ones.
Furthermore, MIABIS Core is currently being updated

to version 3.0. The update will include additional exten-
sions which have been identified by BBMRI-ERIC work-
ing group. Consequently, a possible future outlook could
be that of modifying the integration model to adapt it to
this currently being updated version 3.0 of MIABIS core.
The model here theorised is a first attempt to link the

MIABIS standard with the DICOM standard, whose final
aim is to simplify access to knowledge, improve interoper-
ability, standardisation and data management, and to en-
sure a harmonised approach to quality assurance of data,

enabling an integration of imaging and “omics” data with
external resources (other biobanks) and the creation of a
structured repository for imaging data in PRIMAGE bio-
bank to describe them to the scientific community.
The innovative aspect and the scientific relevance of

this work lie in the possibility of advancement toward
reuse of datasets, which is essential to accelerate the up-
take of the use of big data in medicine research.
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