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Automatic lung segmentation in routine
imaging is primarily a data diversity
problem, not a methodology problem
Johannes Hofmanninger*, Forian Prayer, Jeanny Pan, Sebastian Röhrich, Helmut Prosch and Georg Langs*

Abstract

Background: Automated segmentation of anatomical structures is a crucial step in image analysis. For lung
segmentation in computed tomography, a variety of approaches exists, involving sophisticated pipelines trained and
validated on different datasets. However, the clinical applicability of these approaches across diseases remains limited.

Methods: We compared four generic deep learning approaches trained on various datasets and two readily available
lung segmentation algorithms. We performed evaluation on routine imaging data with more than six different disease
patterns and three published data sets.

Results: Using different deep learning approaches, mean Dice similarity coefficients (DSCs) on test datasets varied not
over 0.02. When trained on a diverse routine dataset (n = 36), a standard approach (U-net) yields a higher DSC (0.97 ±
0.05) compared to training on public datasets such as the Lung Tissue Research Consortium (0.94 ± 0.13, p = 0.024) or
Anatomy 3 (0.92 ± 0.15, p = 0.001). Trained on routine data (n = 231) covering multiple diseases, U-net compared to
reference methods yields a DSC of 0.98 ± 0.03 versus 0.94 ± 0.12 (p = 0.024).

Conclusions: The accuracy and reliability of lung segmentation algorithms on demanding cases primarily relies on the
diversity of the training data, highlighting the importance of data diversity compared to model choice. Efforts in
developing new datasets and providing trained models to the public are critical. By releasing the trained model under
General Public License 3.0, we aim to foster research on lung diseases by providing a readily available tool for
segmentation of pathological lungs.
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Key points

� Robust segmentation of pathological lungs can be
achieved with standard methods.

� Public datasets provide only limited diversity for
training of lung segmentation algorithms on
computed tomography scans.

� Routine clinical imaging data can provide the
required variability to train general models beyond
disease-specific solutions.

Background
The translation of machine learning (ML) approaches
developed on specific datasets to the variety of routine
clinical data is of increasing importance. As method-
ology matures across different fields, means to render
algorithms robust for the transition from bench to
bedside become critical.
With more than 79 million examinations per year

(United States, 2015) [1], computed tomography (CT)
constitutes an essential imaging procedure for diag-
nosing, screening, and monitoring pulmonary diseases.
The detection and accurate segmentation of organs,
such as the lung, is a crucial step [2], especially in
the context of ML, for discarding confounders outside
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the relevant organ (e.g. respiration gear, implants, or
comorbidities) [3].
Automated lung segmentation algorithms are typic-

ally developed and tested on limited datasets, cover-
ing a limited variability by predominantly containing
cases without severe pathology [4] or cases with a
single class of disease [5]. Such specific cohort data-
sets are highly relevant in their respective domain
but lead to specialised methods and ML models that
struggle to generalise to unseen cohorts when uti-
lised for the task of segmentation. As a consequence,
image processing studies, especially when dealing
with routine data, still rely on semiautomatic seg-
mentations or human inspection of automated organ
masks [6, 7]. However, for large-scale data analysis
based on thousands of cases, human inspection or
any human interaction with single data items, at all,
is not feasible. At the same time, disease-specific
models are limited with respect to their applicability
on undiagnosed cases such as in computer-aided
diagnosis or diverse cross-sectional data.
A diverse range of lung segmentation techniques for

CT images has been proposed. They can be categorised
into rule-based [8–11], atlas-based [12–14], ML-based
[15–19], and hybrid approaches [20–24]. The lung
appears as a low-density but high-contrast region on an
x-ray-based image, such as CT, so that thresholding and
atlas segmentation methods lead to good results in cases
with only mild or low-density pathologies such as
emphysema [8–10]. However, disease-associated lung
patterns, such as effusion, atelectasis, consolidation,
fibrosis, or pneumonia, lead to dense areas in the lung
field that impede such approaches. Multi-atlas registra-
tion and hybrid techniques aim to deal with these high-
density abnormalities by incorporating additional atlases,
shape models, and other post-processing steps [22, 25].
However, such complex pipelines are not reproducible
without extensive effort if the source code and the
underlying set of atlases are not shared. Conversely,
trained ML models have the advantage of being easily
shared without giving access to the training data. In
addition, they are fast at inference time and scale well
when additional training data are available. Harrison
et al. [19] showed that deep learning-based segmentation
outperforms a specialised approach in cases with inter-
stitial lung diseases [19] and provides trained models.
However, with some exceptions, trained models for lung
segmentation are rarely shared publicly, hampering
advances in research. At the same time, ML methods are
limited by the training data available, their number, and
the quality of the ground truth annotations.
Benchmark datasets for training and evaluation are

paramount to establish comparability between different
methods. However, publicly available datasets with

manually annotated organs for the development and
testing of lung segmentation algorithms are scarce. The
VISCERAL Anatomy3 dataset [4], Lung CT Segmentation
Challenge 2017 (LCTSC) [5], and the VESsel SEgmenta-
tion in the Lung 2012 Challenge (VESSEL12) [26]
provide publicly available lung segmentation data. Yet,
these datasets were not published for the purpose of
lung segmentation and are strongly biased to either
inconspicuous cases or specific diseases neglecting
comorbidities and the wide spectrum of physiological
and pathological phenotypes. The LObe and Lung
Analysis 2011 (LOLA11) challenge published a diverse
set of scans for which the ground truth labels are known
only to the challenge organisers [27].
Here, we addressed the following questions: (1) what

is the influence of training data diversity on lung
segmentation performance; (2) how do inconsistencies
in ground truth annotations across data contribute to
the bias in automatic segmentation or its evaluation in
severely diseased cases; and (3) can a generic deep learn-
ing algorithm perform competitively with readily avail-
able systems on a wide range of data, once diverse
training data are available?

Methods
We trained four generic semantic segmentation models
from scratch on three different public training sets and
one training set collected from the clinical routine. We
evaluated these models on public test sets and routine
data, including cases showing severe pathologies.
Furthermore, we performed a comparison of models
trained on a diverse routine training set to two published
automatic lung segmentation systems, which we did not
train, but used as provided. An overview of training and
testing performed is given in Fig. 1.

Routine data extraction
The local ethics committee of the Medical University
of Vienna approved the retrospective analysis of the
imaging data. We collected representative training
and evaluation datasets from the picture archiving
and communication system of a university hospital
radiology department. We included inpatients and
outpatients who underwent a chest CT examination
during a period of 2.5 years, with no restriction on
age, sex, or indication. However, we applied minimal
inclusion criteria with regard to imaging parameters,
such as primary and original DICOM tag, number of
slices in a series ≥ 100, sharp convolution kernel,
and series description included one of the terms
lung, chest, or thorax. If multiple series of a study
fulfilled these criteria, the one series with the highest
number of slices was used assuming lower inter-slice
distance or larger field of view. Scans which did not
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or only partially showed the lung or scans with pa-
tients in lateral position were disregarded. In total,
we collected more than 5,300 patients (examined
during the 2.5-year period), each represented by a
single CT series.

Training datasets
To study training data diversity, we assembled four
datasets with an equal number of patients (n = 36)
and slices (n = 3,393). These individual datasets were
randomly extracted from the public VISCERAL
Anatomy3 (VISC-36), LTRC (LTRC-36), and LCTSC
(LCTSC-36) datasets, and from the clinical routine
(R-36).
In addition, we carefully selected a large representa-

tive training dataset from the clinical routine using
three sampling strategies: (1) random sampling of
cases (n = 57), (2) sampling from image phenotypes
[28] (n = 71) (the exact methodology for phenotype
identification was not in the scope of this work), and
(3) manual selection of edge cases with severe
pathologies, such as fibrosis (n = 28), trauma (n =
20), and other cases showing extensive ground-glass
opacity, consolidations, fibrotic patterns, tumours, and
effusions (n = 55). In total, we selected 231 cases
from routine data for training (hereafter referred to
as R-231). Besides biology, technical acquisition
parameters are an additional source of appearance
variability. The R-231 dataset contains scans acquired
with 22 different combinations of scanner manufac-
turer, convolution kernel, and slice thickness. While
the dataset collected from the clinical routine showed
a high variability in lung appearance, cases that depict

the head or the abdominal area are scarce. To
mitigate this bias toward slices that showed the lung,
we augmented the number of non-lung slices in R-
231 by including all slices which did not show the
lung from the Anatomy3 dataset. Table 1 lists the
training data collected.

Test datasets
For testing, we randomly sampled 20 cases from the
routine database that were not part of the training set
and 15 cases with specific anomalies: atelectasis (n =
2), emphysema (n = 2), fibrosis (n = 4), mass (n = 2),
pneumothorax (n = 2), and trauma (n = 3). In
addition, we tested on cases from the public LTRC,
LCTSC, and VESSEL12 datasets, which were not used
for training. Table 2 lists the test data collected.
Further, we calculated results on a combined dataset
composed of the individual test sets (All(L), n = 191).
In addition, we report all test cases combined without
the LTRC and LCTSC data considered (All, n = 62).
The rationale behind this is that the LTRC test
dataset contains 105 volumes and dominates the
average scores, and the LCTSC dataset contains
multiple cases with tumours and effusions that are
not included in the ground truth masks (Fig. 3).
Thus, an automated segmentation that includes these
areas yields a lower score, distorting and misrepre-
senting the combined results.

Ground truth annotations
Ground truth labelling on the routine data was boot-
strapped by training of a lung segmentation algorithm
(U-net) on the Anatomy3 dataset. The preliminary
masks were iteratively corrected by four readers: two

Fig. 1 Schematic overview of the training and testing performed. We collected public datasets and two datasets from the routine. We used these
datasets to train four generic semantic segmentation models and tested the trained models on public and routine data together with readily
available lung segmentation systems
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radiologists with 4 and 5 years of experience in chest CT
and two medical image analysis experts with 6 and 2
years of experience in processing chest CT scans. The
model for the intermediate masks was iteratively
retrained after 20–30 new manual corrections were per-
formed using the ITK-Snap software [29].

Segmentation methods
We refrained from developing specialised method-
ology but utilised generic state-of-the-art deep learn-
ing, semantic segmentation architectures that were
not specifically proposed for lung segmentation. We
trained these “vanilla” models without modifications
and without pre-training on other data. We consid-
ered the following four generic semantic segmentation
models: U-net, ResU-net, Dilated Residual Network-
D-22, and Deeplab v3+.

U-net
Ronneberger et al. [30] proposed the U-net for the seg-
mentation of anatomic structures in microscopy images.
Since then, it has been used for a wide range of

segmentation tasks and various modified versions have
been studied [31, 32]. We utilised the U-net with the
only adaption being batch normalisation [33] after each
layer.

ResU-net
Residual connections have been proposed to facilitate
the learning of deeper networks [34, 35]. The ResU-net
model includes residual connections at every down- and
up-sampling block as a second adaptation to the U-net,
in addition to batch normalisation.

Dilated Residual Network-D-22
Yu and Koltun [36] proposed dilated convolutions for
semantic image segmentation and adapted deep residual
networks [35] with dilated convolutions to perform
semantic segmentations on natural images. Here, we
utilised the Dilated Residual Network-D-22 model, as
proposed by Yu et al. [37].

Deeplab v3+
Deeplab v3 combines dilated convolutions, multi-scale
image representations, and fully connected conditional

Table 2 Test datasets used to evaluate the performance of lung segmentation algorithms

Abbreviation Description Number of volumes Number of slices-L Total number of slices

RRT Routine random test 20 5,788 7,969

LTRC LTRC 105 44,784 51,211

LCTSC LCTSC 24 2,063 3,675

VESS12 VESSEL12 20 7,251 8,593

Atel Atelectasis 2 395 534

Emph Emphysema 2 688 765

Fibr Severe fibrosis 4 1,192 1,470

Mass* Mass 2 220 273

PnTh Pneumothorax 2 814 937

Trau Trauma/effusion 3 911 2,225

Norm** Normal (large field of view) 7 1,180 5,301

Total 191 65,286 82,953

The number of volumes, the number of slices that showed the lung (slices-L), and the total number of slices (#Slices) are listed. LTRC, LCTSC, and VESS12 are cases
from the respective public dataset that were not used for training
*Two cases from the publicly available Lung1 dataset
**Four cases from the publicly available Visceral Anatomy 3 dataset

Table 1 Datasets used to train semantic segmentation models

Abbreviation Name Number of volumes Number of slices-L Total number of slices

R-36 Routine 36 3,393 3,393

VISC-36 VISCERAL 36 3,393 3,393

LTRC-36 LTRC 36 3,393 3,393

LCTSC-36 LCTSC 36 3,393 3,393

R-231 Routine 231 cases 231 62,224 108,248

The number of volumes, the number of slices that showed the lung (slices-L), and the total number of slices are listed. Visceral, LTRC, and LCTSC are public
datasets; R-36 and R-231 are images from the routine database of a radiology department
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random fields as a post-processing step. Deeplab v3+
includes an additional decoder module to refine the
segmentation. Here, we utilised the Deeplab v3+ model
as proposed by Chen et al. [38].
We compared the trained models to two readily

available reference methods: the Progressive Holistically
Nested Networks (P-HNN) and the Chest Imaging
Platform (CIP). The P-HNN has been proposed by
Harrison et al. [19] for lung segmentation. The upon re-
quest available model was trained on cases from the
public LTRC dataset (618 cases) and other cases with
interstitial lung diseases or infectious diseases (125
cases). The CIP provides an open-source lung segmenta-
tion tool based on thresholding and morphological
operations [39].

Experiments
We determined the influence of training data variability
(especially public datasets versus routine) on the
generalizability to other public test datasets, and, specif-
ically, to cases with a variety of pathologies. To establish
comparability, we limited the number of volumes and
slices to match the smallest dataset from LCTSC, with
36 volumes and 3,393 slices. During this experiment, we
considered only slices that showed the lung (during
training and testing) to prevent a bias induced by the
field of view. For example, images in VISCERAL
Anatomy 3 showed either the whole body or the trunk,
including the abdomen, while other datasets, such as
LTRC, LCTSC, or VESSEL12, contained only images
limited to the chest.
Further, we compared the generic models trained

on the R-231 dataset to the publicly available systems
CIP and P-HNN. For this comparison, we processed the
full volumes. The CIP algorithm was shown to be sensi-
tive to image noise. Thus, if the CIP algorithm failed, we
pre-processed the volumes with a Gaussian filter kernel.
If the algorithm still failed, the case was excluded for
comparison. The trained P-HNN model does not distin-
guish between the left and right lung. Thus, evaluation
metrics were computed on the full lung for masks
created by P-HNN. In addition to evaluation on publicly
available datasets and methods, we performed an inde-
pendent evaluation of our lung segmentation model by
submitting solutions to the LOLA11 challenge for which
55 CT scans are published but ground truth masks are
available only to the challenge organisers. Prior research
and earlier submissions suggest inconsistencies in the
ground truth of the LOLA11 dataset, especially with re-
spect to pleural effusions [24]. We specifically included
effusions in our training datasets. To account for this
discrepancy and improve comparability, we submitted
two solutions: first, masks as yielded by our model and

alternatively, with subsequently removed dense areas
from the lung masks. The automatic exclusion of dense
areas was performed by simple thresholding of values
between -50 < HU < 70 and morphological operations.
Studies on lung segmentation usually use overlap-

and surface-metrics to assess the automatically gener-
ated lung mask against the ground truth. However,
segmentation metrics on the full lung can only
marginally quantify the capability of a method to
cover pathological areas in the lung as pathologies
may be relatively small compared to the lung volume.
Carcinomas are an example of high-density areas that
are at risk of being excluded by threshold- or
registration-based methods when they are close to the
lung border. We utilised the publicly available, previ-
ously published Lung1 dataset [38] to quantify the
model’s ability to cover tumour areas within the lung.
The collection contains scans of 318 non-small cell
lung cancer patients before treatment, with a manual
delineation of the tumours. In this experiment, we
evaluated the overlap proportion of tumour volume
covered by the lung mask.

Implementation details
We aimed to achieve a maximum of flexibility with
respect to the field of view (from partially visible
organ to whole-body) and to enable lung segmenta-
tion without prior localisation of the organ. To this
end, we performed segmentation on the slice level.
That is, for volumetric scans, each slice was processed
individually. We segmented the left and right lung
(individually labelled), excluded the trachea, and
specifically included high-density anomalies such as
tumour and pleural effusions. During training and
inference, the images were cropped to the body re-
gion using thresholding and morphological operations
and rescaled to a resolution of 256 × 256 pixels. Prior
to processing, Hounsfield units were mapped to the
intensity window [-1,024; 600] and normalised to the
0–1 range. During training, the images were aug-
mented by random rotation, non-linear deformation,
and Gaussian noise. We used stratified mini-batches
of size 14 holding 7 slices showing the lung and 7
slices which do not show the lung. For optimisation,
we used stochastic gradient descent with momentum.

Statistical methods
Automatic segmentations were compared to the ground
truth for all test datasets using the following evaluation
metrics, as implemented by the Deepmind surfacedis-
tance python module [40]. While segmentation was per-
formed on two-dimensional slices, evaluation was
performed on the three-dimensional volumes. If not re-
ported differently, the metrics were calculated for the

Hofmanninger et al. European Radiology Experimental            (2020) 4:50 Page 5 of 13



right and left lung separately and then averaged. For
comparison between results, paired t tests have been
performed.
Dice similarity coefficient (DSC). The DSC is a meas-

ure of overlap:

D X;Yð Þ ¼ 2 X∩Yj j
Xj j þ Yj j ð1Þ

where X and Y are two alternative labellings, such as
predicted and ground truth lung masks.
Robust Hausdorff distance (HD95). The directed

Hausdorff distance is the maximum distance over all dis-
tances from points in surface Xs to their closest point in
surface Ys. In mathematical terms, the directed robust
Hausdorff distance is given as:

H
!

Xs;Y sð Þ ¼ P95 min
y∈Y s

d x; yð Þ
� �

ð2Þ

where P95 denotes the 95th percentile of the distances.
Here, we used the symmetric adaptation:

H Xs;Y sð Þ ¼ max H
!

Xs;Y sð Þ; H! Y s;Xsð Þ
� �

ð3Þ

Mean surface distance (MSD). The MSD is the average
distance of all points in surface Xs to their closest corre-
sponding point in surface Ys:

MSD
���!

Xs;Y sð Þ ¼ 1
Xj j

X
x∈Xs

min
y∈Y s

d x; yð Þ ð4Þ

Here, we used the symmetric adaptation:

MSD Xs;Y sð Þ ¼ max MSD
���!

Xs;Y sð Þ;MSD
���!

Y s;Xsð Þ
� �

ð5Þ

Results
Models trained on routine data achieve improved evalu-
ation scores compared to models trained on publicly avail-
able study data. U-net, ResU-net, and Deeplab v3+
models, when trained on routine data (R-36), yielded the
best evaluation scores on the merged test dataset (All, n =
62). The U-net yields mean DSC, HD95, and MSD scores
of 0.96 ± 0.08, 9.19 ± 18.15, and 1.43 ± 2.26 when trained

Table 3 Evaluation results after training segmentation architectures on different training sets
Test datasets (DSC) for lung slices only DSC ± SD HD95 (mm)

± SD
MSD (mm)
± SD

Public Routine

Architecture Training set LTRC LCTSC VESS12 RRT Atel Emph Fibr Mass PnTh Trau Norm All(L)* All All All

U-net R-36 0.99 0.93 0.98 0.92 0.95 0.99 0.96 0.98 0.99 0.93 0.97 0.97 ± 0.05 0.96 ± 0.08 9.19 ± 18.15 1.43 ± 2.26

LTRC-36 0.99 0.96 0.99 0.86 0.93 0.99 0.95 0.98 0.98 0.90 0.97 0.97 ± 0.08 0.94 ± 0.13 11.90 ± 22.90 2.42 ± 5.99

LCTSC-36 0.98 0.97 0.98 0.85 0.91 0.98 0.92 0.98 0.98 0.89 0.97 0.96 ± 0.09 0.92 ± 0.14 10.96 ± 14.85 1.96 ± 2.87

VISC-36 0.98 0.95 0.98 0.84 0.91 0.98 0.90 0.98 0.98 0.89 0.97 0.96 ± 0.09 0.92 ± 0.15 13.04 ± 19.04 2.05 ± 3.08

ResU-net R-36 0.99 0.93 0.98 0.91 0.95 0.99 0.96 0.98 0.98 0.93 0.97 0.97 ± 0.06 0.95 ± 0.09 8.66 ± 15.06 1.50 ± 2.34

LTRC-36 0.99 0.96 0.99 0.86 0.94 0.99 0.95 0.98 0.98 0.89 0.97 0.97 ± 0.08 0.94 ± 0.13 11.58 ± 21.16 2.48 ± 6.24

LCTSC-36 0.98 0.97 0.98 0.85 0.92 0.98 0.95 0.97 0.98 0.89 0.97 0.96 ± 0.09 0.93 ± 0.14 12.15 ± 19.42 2.36 ± 4.68

VISC-36 0.97 0.96 0.98 0.84 0.91 0.98 0.89 0.98 0.98 0.89 0.97 0.95 ± 0.09 0.92 ± 0.15 9.41 ± 15.00 1.83 ± 2.92

DRN R-36 0.98 0.93 0.97 0.88 0.94 0.98 0.95 0.97 0.98 0.92 0.96 0.96 ± 0.07 0.94 ± 0.12 8.96 ± 17.67 1.96 ± 3.97

LTRC-36 0.98 0.95 0.98 0.85 0.93 0.98 0.94 0.98 0.98 0.89 0.97 0.96 ± 0.08 0.93 ± 0.14 10.94 ± 20.93 2.66 ± 6.66

LCTSC-36 0.97 0.96 0.97 0.83 0.90 0.98 0.90 0.97 0.97 0.89 0.96 0.95 ± 0.09 0.91 ± 0.15 8.98 ± 13.30 1.92 ± 2.73

VISC-36 0.96 0.95 0.97 0.83 0.90 0.97 0.92 0.97 0.97 0.87 0.97 0.94 ± 0.10 0.91 ± 0.15 8.96 ± 13.62 1.92 ± 2.83

Deeplab
v3+

R-36 0.98 0.92 0.98 0.90 0.93 0.99 0.95 0.98 0.98 0.92 0.97 0.96 ± 0.06 0.95 ± 0.09 8.99 ± 14.32 1.71 ± 2.68

LTRC-36 0.99 0.94 0.99 0.85 0.93 0.98 0.94 0.98 0.98 0.89 0.97 0.96 ± 0.09 0.93 ± 0.14 11.90 ± 21.80 2.51 ± 6.07

LCTSC-36 0.98 0.96 0.98 0.85 0.92 0.98 0.93 0.98 0.98 0.89 0.96 0.96 ± 0.08 0.93 ± 0.14 10.47 ± 19.14 2.21 ± 4.67

VISC-36 0.98 0.96 0.98 0.85 0.93 0.98 0.95 0.98 0.98 0.89 0.97 0.96 ± 0.08 0.93 ± 0.14 10.16 ± 21.21 2.15 ± 4.99

The sets R-36, LTRC-36, LCTSC-36, and LTRC-36 and VISC-36 contained the same number of volumes and slices. The best evaluation scores for models
trained on these three datasets are marked in bold, highest for the Dice similarity score (DSC) and lowest for the Robust Hausdorff distance (HD95) and
mean surface distance (MSD). Although the different architectures performed comparably, training on routine data outperformed training on public
cohort datasets
*The LCTSC ground truth masks do not include high-density areas, and the high number of LTRC test cases dominates the averaged results. Thus, “All(L)”
(n = 167) is the mean over all cases including LCTSC and LTRC while “All” (n = 62) does not include the LCTSC or the LTRC cases. For abbreviations, see
Tables 1 and 2
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on R-36 [U-net(R-36)]; 0.92 ± 0.14, 13.04 ± 19.04, and
2.05 ± 3.08 when trained on VISC-36 (R-36 versus VISC-
36, p = 0.001, 0.046, 0.007); or 0.94 ± 0.13, 11.09 ± 22.9,
and 2.24 ± 5.99 when trained on LTRC-36 (R-36 versus
LTRC-36, p = 0.024, 0.174, 0.112). This advantage of rou-
tine data for training is also reflected in results using other
combinations of model architecture and training data.
Table 3 lists the evaluation results in detail.
We determined that the influence of model archi-

tecture is marginal compared to the influence of
training data. Specifically, the mean DSC does not
vary for more than 0.02 when the same combination
of training and test set was used for different archi-
tectures (Table 3).
Compared to readily available trained P-HNN

model, the U-net trained on the R-231 routine dataset
[U-net(R-231)] yielded mean DSC, HD95, and MSD
scores of 0.98 ± 0.03, 3.14 ± 7.4, 0.62 ± 0.93 versus
0.94 ± 0.12, 16.8 ± 36.57, 2.59 ± 5.96 (p = 0.024,
0.004, 0.011) on the merged test dataset (All, n = 62).
For comparison with the CIP algorithm, only volumes
for which the algorithm did not fail were considered.
On the merged dataset (All, N = 62), the algorithms
yielded mean DSC, HD95, and MSD scores of 0.98 ±
0.01, 1.44 ± 1.09, and 0.35 ± 0.19 for the U-net(R213)
compared to 0.96 ± 0.05, 4.65 ± 6.45, and 0.91 ± 1.09
for CIP (p = 0.001, < 0.001, < 0.001). Detailed results
are given in Table 4. Figure 2 shows qualitative
results for cases from the routine test sets, and Fig. 3
shows cases for which the masks generated by the U-
net(R-231) model yielded low DSCs when compared
to the ground truth.

We created segmentations for the 55 cases of the
LOLA11 challenge with the U-net(R-231) model. The
unaltered masks yielded a mean overlap score of 0.968
and with dense areas removed 0.977.
Table 5 and Fig. 4 show results for tumour overlap

on the 318 volumes of the Lung1 dataset. U-net(R-
231) covered more tumour volume mean/median
compared to P-HNN (60%/69% versus 50%/44%, p <
0.001) and CIP (34%/13%). Qualitative results for
tumour cases for U-net(R-231) and P-HNN are shown
in Fig. 5b, c. We found that 23 cases of the Lung1
dataset had corrupted ground truth annotation of the
tumours (Fig. 4d). Figure 5e shows cases with little or
no tumour overlap achieved by U-net(R-231).

Discussion
We showed that training data, sampled from the clin-
ical routine, improves generalizability to a wide
spectrum of pathologies compared to public datasets.
We assume this lies in the fact that many publicly
available datasets do not include dense pathologies
such as severe fibrosis, tumour, or effusions as part of
the lung segmentation. Further, they are often pro-
vided without guarantees about segmentation quality
and consistency. While the Anatomy3 dataset under-
went a thorough quality assessment, the organisers of
the VESSEL12 dataset merely provided lung segmen-
tations as a courtesy supplement for the task of vessel
segmentation, and within the LCTSC dataset, “tumour
is excluded in most data” and “collapsed lung may be
excluded in some scans” [5].

Table 4 Comparison to public systems

Test datasets DSC for full volumes DSC ± SD HD95(mm)
± SD

MSD (mm)
± SDPublic Routine

Architecture LTRC LCTSC VESS12 RRT Atel Emph Fibr Mass PnTh Trau Norm All(L)* All All All

U-net(R-231) 0.99 0.94 0.98 0.97 0.97 0.99 0.97 0.98 0.99 0.97 0.97 0.98 ± 0.03 0.98 ± 0.03 3.14 ± 7.4 0.62 ± 0.93

ResU-net(R-231) 0.99 0.94 0.98 0.97 0.97 0.99 0.97 0.98 0.99 0.97 0.97 0.98 ± 0.03 0.98 ± 0.03 3.19 ± 7.35 0.64 ± 0.88

DRN(R-231) 0.98 0.94 0.98 0.95 0.96 0.99 0.97 0.98 0.98 0.96 0.97 0.97 ± 0.04 0.97 ± 0.06 6.22 ± 18.95 1.1 ± 2.54

Deeplab v3+ (R-231) 0.99 0.94 0.98 0.97 0.97 0.99 0.97 0.98 0.99 0.97 0.97 0.98 ± 0.03 0.98 ± 0.03 3.28 ± 7.52 0.65 ± 0.91

P-HNN 0.98 0.94 0.99 0.88 0.95 0.98 0.95 0.98 0.96 0.88 0.97 0.96 ± 0.09 0.94 ± 0.12 16.8 ± 36.57 2.59 ± 5.96

U-net(R-231)** 0.99 0.95 0.99 0.99 0.97 0.99 0.97 0.98 0.99 0.97 0.98 0.98 ± 0.01 0.98 ± 0.01 1.44 ± 1.09 0.35 ± 0.19

CIP** 0.99 0.94 0.99 0.96 0.90 0.99 0.92 0.98 0.99 0.86 0.99 0.98 ± 0.03 0.96 ± 0.05 4.65 ± 6.45 0.91 ± 1.09

CIP\#Cases** 96/
105

19/24 17/20 13/
20

2/2 2/2 4/4 2/2 2/2 1/3 1/7

A comparison to the segmentation algorithm of the chest imaging platform (CIP) and the trained P-HNN model is given. The results are
expressed in mean and mean ± standard deviation for the Dice similarity coefficient (DSC), Robust Hausdorff distance (HD95), and mean surface
distance (MSD)
*The LCTSC ground truth masks do not include high-density diseases, and the high number of LTRC test cases dominates the averaged results.
Thus, “All(L)” (n = 167) is the mean over all cases that included LCTSC and LTRC, while “All” (n = 62) does not include the LCTSC and LTRC cases
**For these rows, only cases on which the CIP algorithm did not fail, and where the DSC was larger than 0 were considered (#Cases). For
abbreviations, see Tables 1 and 2
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Results indicate that both, size and diversity of the
training data, are relevant. State-of-the-art results can
be achieved with images from only 36 patients which
is in line with previous works [41] achieving a mean
DSC of 0.99 on LTRC test data using the U-net(R-36)
model.
A large number of segmentation methods are

proposed every year, often based on architectural
modifications [32] of established models. Isensee et al.
[32] showed that such modified design concepts do
not improve, and occasionally even worsen, the per-
formance of a well-designed baseline. They achieved
state-of-the-art performance on multiple, publicly
available segmentation challenges relying only on U-
nets. This corresponds to our finding that architec-
tural choice had a subordinate effect on performance.

At the time of submission, the U-net(R-231)
achieved the second-highest score among all com-
petitors in the LOLA11 challenge. In comparison,
the first ranked method [22] achieved a score of
0.980 and a human reference segmentation achieved
0.984 [27]. Correspondingly, the U-net(R-231) model
achieved improved evaluation measures (DSC,
HD95, MSD, and tumour overlap) compared to two
public algorithms.
There are limitations of our study that should be

taken into account. Routine clinical data vary be-
tween sites. Thus, extraction of a diverse training
dataset from clinical routine may only be an option
for centres that are exposed to a wide range of pa-
tient variety. Evaluation results based on public data-
sets are not fully comparable. For example, the

Fig. 2 Segmentation results for selected cases from routine data. Each column shows a different case. Row 1 shows a slice without lung masks,
row 2 shows the ground truth, and rows 3 to 5 show automatically generated lung masks. Effusion, chest tube, and consolidations (a); small
effusions, ground-glass and consolidation (b); over-inflated (right) and poorly ventilated (left), atelectasis (c); irregular reticulation and traction
bronchiectasis, fibrosis (d); pneumothorax (e); and effusions and compression atelectasis (trauma) (f)
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models trained on routine data compared to other
datasets yielded lower performance in terms of DSC
on the LCTSC test data. However, the lower scores
for models trained on routine data in LCTSC can be
attributed to the lack of very-dense pathologies in
the ground truth masks. Figure 3 illustrates cases for
which the R-231 model yielded low DSC. The inclu-
sion or exclusion of pathologies such as effusions
into lung segmentations is a matter of definition and
application. While pleural effusions (and pneumo-
thorax) are technically outside the lung, they are
assessed as part of lung assessment and have a sub-
stantial impact on lung parenchyma appearance
through compression artefacts. Neglecting such ab-
normalities would hamper automated lung assess-
ment, as they are closely linked to lung function. In
addition, lung masks that include pleural effusions

greatly alleviate the task of effusion detection and
quantification, thus making it possible to remove
effusions from the lung segmentation as a post-
processing step.
We proposed a general lung segmentation algorithm

relevant for automated tasks in which the diagnosis is
not known beforehand. However, specialised algorithms
for specific diseases could be beneficial in scenarios of
analysing cohorts, for which the disease is already
known.
In conclusion, we showed that accurate lung seg-

mentation does not require complex methodology
and that a proven deep-learning-based segmentation
architecture yields state-of-the-art results once di-
verse (but not necessarily larger) training data are
available. By comparing various datasets for training
of the models, we illustrated the importance of

Fig. 3 Ground truth annotations in public datasets lack coverage of pathologic areas. Segmentation results for cases in public datasets where the
masks generated by our U-net(R-231) yielded low Dice similarity coefficients when compared to the ground truth. Note that public datasets often
do not include high-density areas in the segmentations. Tumours in the lung area should be included in the segmentation while the liver
should not
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training data diversity and showed that data from
clinical routine can generalise well to unseen co-
horts, highlighting the need for public datasets spe-
cifically curated for the task of lung segmentation.
We draw the following conclusions: (1) translating
ML approaches from bench to bedside can require
the collection of diverse training data rather than
methodological modifications; (2) current, publicly
available study datasets do not meet these diversity
requirements; and (3) generic, semantic, segmenta-
tion algorithms are adequate for the task of lung
segmentation. A reliable, universal tool for lung
segmentation is fundamentally important to foster
research on severe lung diseases and to study rou-
tine clinical datasets. Thus, the trained model and
inference code are made publicly available under the
GPL-3.0 license to serve as an open science tool for
research and development and as a publicly available
baseline for lung segmentation under https://github.
com/JoHof/lungmask.

Abbreviations
CIP: Chest Imaging Platform; CT: Computed tomography; DSC: Dice similarity
coefficient; HD95: Robust Hausdorff distance; LCTSC: Lung CT Segmentation
Challenge 2017; LCTSC-36: Dataset of 36 cases from LCTSC; LOLA11: Lobe
and Lung Analysis 2011; LTRC: Lung Tissue Research Consortium; LTRC-
36: Dataset of 36 cases from LTRC; ML: Machine learning; MSD: Mean surface
distance; P-HNN: Progressive Holistically Nested Networks; R-231: Dataset of
231 cases from routine; R-36: Dataset of 36 random cases from routine; VESS
EL12: Vessel Segmentation in the Lung 2012; VISC-36: Dataset of 36 cases
from VISCERAL Anatomy3

Acknowledgements
We would like to thank Mary McAllister for thorough proofreading of the
article.

Authors’ contributions
JH and GL developed the presented idea and designed the experiments. JH
implemented the methods and carried out the experiments. FP, SR, JP, and
JH performed and validated ground truth annotations. All authors discussed
the results and contributed input to the final manuscript. The authors read
and approved the final manuscript.

Funding
Research support: Siemens, Novartis, IBM, NVIDIA

Fig. 4 U-net trained on routine data covered more tumour area compared to reference methods. Box- and swarm plots showing the percentage
of tumour volume covered by lung masks that were generated by different methods (318 cases)

Table 5 Overlap between lung masks and manually annotated tumour volume in the Lung1 dataset

Method Tumour overlap

Mean (%) Median (%) < 5% > 95%

CIP 34 13 113 56

P-HNN 50 44 48 78

U-net(R-36) 53 54 46 79

U-net(R-231) 60 69 37 90

Mean, median, and number of cases with a smaller than 5% overlap and a larger than 95% overlap
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area not covered by the lung mask. Original images (a), lung masks generated by our U-net(R-231) (b), lung masks generated by P-HNN (c),
corrupted tumour segmentations in the Lung1 dataset (d), and cases with poor tumour overlap of lung masks generated by U-net(R-231) (e)
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