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Abstract

Background: Computed tomography (CT) enables quantification of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) infection, helping in outcome prediction.

Methods: From 1 to 22 March 2020, patients with pneumonia symptoms, positive lung CT scan, and confirmed
SARS-CoV-2 on reverse transcription-polymerase chain reaction (RT-PCR) were consecutively enrolled. Clinical data
was collected. Outcome was defined as favourable or adverse (i.e., need for mechanical ventilation or death) and
registered over a period of 10 days following CT. Volume of disease (VoD) on CT was calculated semi-automatically.
Multiple linear regression was used to predict VoD by clinical/laboratory data. To predict outcome, important
features were selected using a priori analysis and subsequently used to train 4 different models.

Results: A total of 106 consecutive patients were enrolled (median age 63.5 years, range 26–95 years; 41/106
women, 38.7%). Median duration of symptoms and C-reactive protein (CRP) was 5 days (range 1–30) and 4.94 mg/L
(range 0.1–28.3), respectively. Median VoD was 249.5 cm3 (range 9.9–1505) and was predicted by lymphocyte
percentage (p = 0.008) and CRP (p < 0.001). Important variables for outcome prediction included CRP (area under
the curve [AUC] 0.77), VoD (AUC 0.75), age (AUC 0.72), lymphocyte percentage (AUC 0.70), coronary calcification
(AUC 0.68), and presence of comorbidities (AUC 0.66). Support vector machine had the best performance in
outcome prediction, yielding an AUC of 0.92.

Conclusions: Measuring the VoD using a simple CT post-processing tool estimates SARS-CoV-2 burden. CT and
clinical data together enable accurate prediction of short-term clinical outcome.
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Key points

� Volume of disease (VoD) on computed tomography
(CT) scan and clinical information predict early
outcome in COVID-19 patients.

� VoD on CT scan was predicted by lymphocyte
percentage and C-reactive protein.

� CT may help in guiding clinical management of
COVID-19 patients.

Background
During the last weeks of 2019, a previously unknown virus
of the Coronaviridae family acquired the capability of
person-to-person transmission. The newly identified virus,
designated severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), causes the coronavirus disease 2019
(COVID-19) [1]. In March 2020, it was declared a pan-
demic by the World Health Organization [2].
SARS-CoV-2 has the potential to cause a complex dis-

ease that includes severe pneumonia in some individuals.
As the virus spreads in the population, health systems
are pushed to their limits. The diagnosis of COVID-19 is
made with reverse transcription-polymerase chain reac-
tion (RT-PCR), mainly using nasopharyngeal swabs. This
technique has some limitations. It has a suboptimal sen-
sitivity, and results may not be readily available. In times
when many patients seek medical attention due to symp-
toms suggestive of COVID-19, early detection of the dis-
ease plays a pivotal role for the correct isolation and
treatment of patients with SARS-CoV-2 [3, 4].
Computed tomography (CT) has been shown to have

high sensitivity for SARS-CoV-2 diagnosis in patients
with respiratory symptoms [4–6]. It has been used with
success for grading and follow-up of SARS-CoV-2 [7–
10]. Furthermore, CT demonstrated promising results in
predicting adverse outcomes in COVID-19 patients [11–
13]. CT allows the extraction of many features ascribed
to both COVID-19 and the patient’s underlying diseases.
Previous works used qualitative and semi-quantitative
CT-derived features to predict outcomes in COVID-19
[11, 12]. A recent work by Colombi et al. [13] concluded
that well-aerated lung volume on admission CT scan
could be used to predict short-term outcomes in
COVID-19 patients. It is conceivable that the quantifica-
tion of SARS-CoV-2 lung involvement, in the presence
of other ancillary features, may help to identify patients
that will have a severe disease course.
This study aimed to analyse the performance of combining

quantitative CT with clinical and laboratory data to predict
which patients are at risk of adverse clinical outcomes.

Methods
This single-centre study was approved by the Institu-
tional Review Board and written informed consent

regarding the disclosure of personal data was obtained
from all participants.

Patient enrollment and clinical information
From 1 to 22 March of 2020, patients who (1) presented
with pneumonia symptoms (two or more of the follow-
ing: T ≥ 37.5 °C, cough, dyspnea), (2) had a positive lung
CT scan, and (3) had confirmed SARS-CoV-2 infection
on RT-PCR were consecutively enrolled. The timespan
of enrollment coincided with the ascending phase of the
pandemic in our region. We excluded patients with
significant motion artifacts on CT scan, i.e., respiratory ar-
tifacts that were present in the pulmonary bases plus other
lung zones. A flow chart diagram is shown in Fig. 1.
We collected the following patient data: demographics

(age, gender), clinical information (history of the present
illness, duration of symptoms at time of CT scan), and co-
morbidities (oncologic disease, diabetes, end-stage kidney
disease, or ongoing immunosuppressive therapy). Labora-
tory values (white blood cell count, lymphocyte percent-
age, and C-reactive protein serum levels) were obtained
on the same day of the lung CT. Other relevant data (e.g.,
D-dimer, erythrocyte sedimentation rate, peripheral capil-
lary oxygen saturation) were not available in the clinical
records of all patients and thus not collected for this study.
We observed the clinical outcome over a period of 10 days
following lung CT scan. Favourable outcome was specified
as survival with or without need for supplemental oxygen
therapy, excluding mechanical ventilation. Adverse out-
come was defined as the need for mechanical ventilation
or death.

CT protocol
All patients underwent unenhanced CT with a 16-slice
CT scanner (CT lightspeed-16, General Electric Health-
care, Chicago, IL, USA) when they came to clinical atten-
tion due to pneumonia symptoms. Radiation exposure
was adapted to each patient’s body habitus. All CT exami-
nations were performed with the patient in the supine
position during a deep inspiration breath-hold. All pa-
tients wore a surgical mask except those who were under-
going oxygen therapy. CT parameters were as follows:
tube voltage 120 kVp, smart mA tube current modulation
(range 100–400mA), NOISE index 13.88, pitch 1.75:1,
and table movement 35mm/rotation. Reconstructions
were made with adaptive statistical iterative reconstruc-
tion with a 40% value at a slice thickness of 1.25mm. After
each examination, we performed surface disinfection with
62–71% ethanol or 0.1% sodium hypochlorite and passive
air exchange was performed for 30–60min.

Image interpretation
Images were reviewed and processed in an AW Volume-
share 4 workstation (General Electric Healthcare,
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Chicago, IL, USA) by 2 different radiologists, F.P. and
L.B., with 10 and 15 years of experience in thoracic im-
aging, respectively. The radiologists were blinded to the
clinical and laboratory data. Volume of disease (VoD)
was extracted using the “autoselect” function and the re-
sult was expressed in cubic centimeters. The radiologist
selected the desired opacity and voxels with similar pixel
values were automatically extracted (region growing).
Corrections had to be made in cases of pulmonary con-
solidations adjacent to the chest wall or mediastinum.

The duration of the segmentation task ranged from 2 to
5 min. Figures 2 and 3 depict segmentation examples.
The remaining CT-derived data was obtained and
expressed using a slightly modified version of the de-
scriptive system used by Inui et al. [14]: involved lungs,
gradient, distribution of disease, CT pattern type, pre-
dominant type of opacity, reverse halo, linear opacities,
and nodules. We also registered the following secondary
findings: enlarged thoracic lymph nodes, presence of
pleural effusion or thickening, coronary and/or aortic

Fig. 1 Flow chart diagram of the study design. CT, Computed tomography; RT-PCR, Reverse transcription-polymerase chain reaction

Fig. 2 Example of severe acute respiratory syndrome coronavirus 2 lung disease segmentation. a Maximum intensity projection coronal image
shows segmented lung opacities and the volume provided in cubic centimeters. b Corresponding coronal computed tomography image
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calcification, chronic lung disease (emphysema or fibro-
sis), and other significant findings (such as pneumo-
thorax or pneumomediastinum).

Statistical analysis
Statistical analyses were performed using MedCalc for
Windows, version 15.0 (MedCalc Software, Ostend,
Belgium) and in the R statistical environment using
Rstudio for Windows, version 1.2.335 (RStudio, Inc.,
Boston, MA, USA). Descriptive statistics were produced
for demographic, clinical, laboratory, and CT imaging
features of patients. Categorical data were expressed as
number and percentage, while continuous data as me-
dian and range. The normal distribution of different
datasets was assessed by means of the D’Agostino-Pear-
son test [15].

Prediction of volume of disease by clinical and laboratory
information
We assessed the prediction of VoD by clinical and la-
boratory data employing multiple linear regression ana-
lysis. We introduced the VoD as the dependent variable
and the duration of symptoms, white blood cell count,
percentage of lymphocytes, and serum levels of C-
reactive protein as independent variables.

Outcome prediction: variable importance a priori
We used the R package “caret” [16] to select important
variables and to train predictive models, and the package
“pROC” [17] to compute receiver operating characteris-
tic (ROC) curves, which we used as diagnostic of model
performance.
Our analysis aimed to test the performance of CT-

derived, clinical, and laboratory information in predict-
ing the outcome of SARS-CoV-2 infection using

classification models. The outcome was divided into 2
classes, favourable outcome (survival) and adverse out-
come (i.e., need for mechanical ventilation or death),
and used as response variable. The predictor variables
included demographic, clinical, laboratory, and CT-
derived information of patients. The predictors initially
considered for analysis were gender (categorical, bino-
mial), age (continuous, years), duration of symptoms
(continuous, days), white blood cell count (continuous,
109/L), lymphocyte percentage (continuous, expressed as
percentage), serum levels of C-reactive protein (continu-
ous, concentration in mg/L), VoD (continuous, cm3),
predominant opacity type (categorical, binomial, defined
as ground-glass opacities [GGO] or consolidation),
chronic lung disease (categorical, trinomial, defined as
no emphysema or fibrosis, predominant emphysema or
predominant fibrosis), coronary calcification (categorical,
binomial, no or yes), aortic calcification (categorical, bi-
nomial, no or yes), and presence of chronic comorbidity
(categorical, binomial, no or yes).
We performed an a priori analysis to determine the

variables more likely to predict the clinical outcome
linked to SARS-CoV-2 infection. This selection was ne-
cessary to reduce the dimensionality of the dataset, thus
avoiding overfitting and consequent loss of accuracy [18]
as well as allowing for an easier interpretation and ap-
plicability of the results. The importance of predictors
was evaluated individually through a filter-based method
based on a ROC curve analysis. We applied a series of
cutoffs to each predictor and calculated sensitivity and
specificity in predicting the outcome. Sensitivity and spe-
cificity were used to build a ROC curve for each pre-
dictor. The method follows Kuhn and Johnson [19]. The
area under the curve (AUC) was used as a measurement
of variable importance. The AUC ranges from 0 to 1,

Fig. 3 Example of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung disease segmentation. Typical SARS-CoV-2 pneumonia with
lung opacities before (a) and after (b) semiautomatic segmentation
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where values equal or below 0.5 indicate variables pre-
dicting the response randomly. We selected only those
variables whose AUC was equal or higher than the aver-
age AUC (0.65), a threshold high enough to ensure ex-
cluding variables too close to random predictive power
(AUC of 0.5). All other variables were discarded.

Outcome prediction: model training and testing
To find an optimal predictive model of SARS-CoV-2
outcome, we explored four classification algorithms.
Generalised linear model (GLM) generalises the ordinary
linear regression method when the error distribution of
the response variable is non-normally distributed [20].
In our dataset, the response variable is binary; therefore,
the GLM reduces to a logistic regression. Penalised bi-
nomial regression (PBR) is a type of logistic regression
where the coefficients of the least predictive variables
are shrunk toward zero [21], which favours simpler
models and avoids overfitting. The conditional inference
trees (CIT) algorithm recursively partitions the predic-
tors to find a hierarchical tree structure predictive of the
response variable [22]. The support vector machine with
linear kernel (SVL) searches for linear decision boundar-
ies that have maximum distance from the data points of
all the classes indicated in the response variable [23].
The data was split between a training set (75% of the

dataset, 80 patients) and a testing set (25% of the dataset,
26 patients). The training set was used to tune the param-
eters of the algorithms used for building the model and to
generate the final model based on those parameters. All
algorithms have tunable parameters except for GLM,
which did not need training. Training was performed by
iterating the algorithm using different parameter values
and fivefold cross-validation, using one of the five folds to
validate the performance of the training. The whole oper-
ation was repeated ten times, each time using a different
fivefold resampling of the data, and the performance was
measured by the AUC averaged across the five cross-
validations and ten repetitions. The parameters yielding
the highest AUC were chosen and the algorithms re-
trained accordingly, without performing cross-validation,
to obtain the final models. From each model, we extracted
the variable contributions to the output.
The testing set provided data for estimating the per-

formance of the built models. The performance was
measured using accuracy (proportion of correctly pre-
dicted values), sensitivity (proportion of correctly identi-
fied positives), specificity (proportion of correctly
identified negatives), positive predictive value (propor-
tion of true positives over total positives), and negative
predictive value (proportions of true negatives over total
negatives), and AUC (area under the ROC curve), but
only AUC was ultimately used to choose the best model.

Results
Clinical and laboratory information
A total of 106 patients met the inclusion criteria (median
age 63.5 years, range 26–95, 41/106 women, 38.7%). Of
106 patients, 40 (37.7%) had at least one comorbidity.
Median duration of symptoms and C-reactive protein
levels at the time of CT scan were respectively 5 days
(range 1–30) and 4.94 mg/L (range 0.1–28.3). Ninety-
seven of 106 (91.5%) patients were admitted and 9/106
were discharged from the emergency department. Of
106 patients, 64 (60.4%) had a favourable outcome, and
42 (39.6%) had an adverse outcome (need for mechanical
ventilation or death). Table 1 illustrates demographic,
clinical, and laboratory data of the study population.

CT-derived data
Median VoD caused by SARS-CoV-2 was 249.5 cm3

(range 9.9–1505). The disease was bilateral in 99/106 pa-
tients (93.4%) and was present in the lower lobe(s) and
at least in another lobe in 97/106 (91.5%). In 65/106
(61.3%) of cases both peripheral and central lung regions
were affected. The most common CT pattern was GGO
in association with consolidation in 49/106 (46.2%), with
GGO being predominant over consolidation in 79/106

Table 1 Demographic, clinical, and laboratory data of the study
population

Demographics

Age (years; median, range) 63.5 (26–95)

Male (number, percentage) 65/106 (61.3)

Female (number, percentage) 41/106 (38.7)

Clinical information

No comorbidity (number, percentage) 66/106 (62.3)

Presence of ≥ 1 comorbidity 40/106 (37.7)

Duration of symptoms at computed tomography
(days; median, range)

5 (1–30)

Laboratory information

White blood cell count (109/L) (median, range) 5.7 (1.9–29.7)

Lymphocyte (%) (median, range) 18.8 (2.2–53.0)

C-reactive protein (mg/L) (median, range) 4.94 (0.1–28.3)

Admitted/discharged from emergency department

Admitted 97/106 (91.5%)

Discharged from the emergency department 9/106 (8.5%)

Outcome

Favourable 64/106 (60.4%)

Adverse 42/106 (39.6%)

Outcome subgroups

Need for mechanical ventilation 17/42 (40.5%)

Death 25/42 (59.5%)
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(74.5%) of cases. The most prevalent CT sign were linear
opacities in 66/106 (62.3%). The most common second-
ary finding was coronary calcifications in 53/106
(50.0%). Table 2 shows all CT findings.

Volume of disease prediction by clinically derived data
VoD was predicted by lymphocyte percentage (p = 0.008)
and C-reactive protein levels (p < 0.001). Duration of
symptoms (p = 0.184) and white blood cell count (p =
0.229) did not significantly predict VoD.

Variable selection through a priori analysis of variable
importance
The a priori analysis of variable importance yielded
unsatisfactory AUCs (below 0.65) for six of the vari-
ables tested, namely aortic calcification (AUC 0.64),
white blood cell count (AUC 0.62), predominant opa-
city type (AUC 0.58), duration of symptoms (AUC
0.54), chronic lung disease (AUC 0.53), and sex (AUC
0.52). The six remainder variables were selected for
inclusion in the predictive models: serum levels of C-
reactive protein (AUC 0.77), VoD (AUC 0.75), age
(AUC 0.72), lymphocyte percentage (AUC 0.70), cor-
onary calcifications (AUC 0.68), and presence of
chronic comorbidity (AUC 0.66). Figure 4 shows the
AUC for all the tested variables.

Outcome prediction by CT, clinical, and laboratory
information
The repeated, cross-validated training was performed on
the CIT, PBR, and SVL algorithms, whose parameters
need tuning before a final model can be built. The train-
ing yielded a maximum AUC of 0.72 for CIT, 0.80 for
PBR, and 0.82 for SVL. The parameters associated with
those AUCs were used to re-train the algorithms, thus
providing a final version for the models. The results for
the final models (now including GLM) are reported in
Table 3. CIT produced the lowest prediction accuracy
(73.1%) among the algorithms tested, followed by PBR
(80.8%) and GLM (84.6%), while the highest accuracy
was found for SVL (88.5%). ROC curves for the models’
predictions are shown in Fig. 5. All the models explored
here behave better than a random classifier (ROC curve
close to the graph diagonal), although the AUC indicates
better performance for the SVL algorithm (AUC 0.92)
than for CIT (AUC 0.89), GLM (AUC 0.90), and PBR
(AUC 0.91). The variable contribution for each
algorithm is shown in Fig. 5. Overall, SVL resulted in
the best performing model (Table 3). Table 4 shows the
confusion matrix for the SVL prediction on the test set.
Supplementary material shows ROC curves for the
model’s predictions without the inclusion of VoD
(Supplementary figure S1).

Discussion
Our work aimed to quantify the burden of COVID-19
lung involvement using a fast, simple, and widely avail-
able tool, which can be found in most basic workstations
for CT imaging post-processing. We investigated

Table 2 Quantitative and qualitative computed tomography
(CT) findings related to COVID-19, and secondary CT findings

Volume of disease
(cm3; median, range)

249.5
(9.9–1505)

Uni/bilateral

Unilateral 7/106 (6.6%)

Bilateral 99/106 (93.4%)

Affected lobes

Only lower lobe(s) 5/106 (4.7%)

Lower lobe(s) + at least one other lobe 97/106 (91.5%)

No lower lobe involvement 4/106 (3.8%)

Gradient

Apicobasal gradient 49/106 (46.2%)

No apicobasal gradient 57/106 (53.8%)

Distribution

Peripheral 39/106 (36.8%)

Central 2/106 (1.9%)

Mixed 65/106 (61.3%)

CT pattern

Pure GGO 11/106 (10.4%)

GGO + septal thickening 46/106 (43.4%)

GGO + consolidation 49/106 (46.2%)

Predominant type

GGO 79/106 (74.5%)

Consolidation 27/106 (25.5%)

CT sign

Reverse halo 7/106 (6.6%)

Linear opacities 66/106 (62.3%)

Nodules 28/106 (26.4%)

Secondary findings

Emphysema 13/106 (12.3%)

Fibrosis 8/106 (7.5%)

Enlarged lymph nodes (≥ 10 mm short axis) 33/106 (31.1%)

Pleural effusion 10/106 (9.4%)

Pleural thickening 15/106
(14.15%)

Aortic Calcification 45/106 (42.5%)

Coronary calcification 53/106 (50.0%)

Other

Pneumomediastinum 1/106 (0.9%)

Iatrogenic pneumothorax and subcutaneous
emphysema

1/106 (0.9%)

GGO Ground-glass opacities

Matos et al. European Radiology Experimental            (2020) 4:39 Page 6 of 10



whether several clinical and laboratory features could
estimate the VoD, and subsequently predicted the early
outcomes of these patients.
Our results show that CT and clinical information pre-

dict short-term outcomes with high accuracy. Overall in-
flammatory burden, measured by quantitative CT data
(i.e., VoD at baseline CT) and C-reactive protein levels,
were the most important variables for outcome predic-
tion in COVID-19 patients. C-reactive protein is an ac-
curate estimator of the systemic disease burden;
however, it cannot pinpoint the site of disease. CT is
precise in both locating and grading COVID-19 lung in-
volvement, and a solid predictor of outcomes. Three out
of 4 models heavily relied on VoD to classify patients as
either having a favourable or an adverse outcome (Fig.
5). Despite the differences in performance, the predic-
tion of CIT and SVL is based on a similar model struc-
ture, as suggested by the variable contribution. In fact,

both CIT and SVL predictions are mainly built on serum
levels of C-reactive protein, VoD, and age, with minor
contributions from coronary calcification and lympho-
cyte percentage, and little to no contribution from
chronic comorbidities. The prediction of PBR is mainly
based on coronary calcification and presence of chronic
comorbidities. VoD and chronic comorbidities provided
the major contribution to GLM predictions.
Previous research assessed the role of CT in predicting

COVID-19 outcomes. Yuan et al. [12] developed a CT
score based on qualitative findings and achieved a sensi-
tivity of 85.6% for predicting mortality. Colombi et al.
[13] performed the first study that used quantitative CT
parameters to predict clinical outcome and concluded
that quantification of well-aerated lung provided higher
accuracy in predicting severe outcome compared to clin-
ical parameters alone. Our results are in line with those
reported by these previous studies and suggest that CT

Fig. 4 A priori analysis for variable selection. The red line is set at area under the curve (AUC) value below 0.5, below which variables predict the
response randomly. The blue line is set at AUC value of 0.65. Variables to the right of this line are above a threshold high enough to ensure
strong predictive power. WBC, White blood cell count

Table 3 Overall model performance

AUC Accuracy Sensitivity Specificity PPV NPV

Generalised linear model 0.90 0.85 0.80 0.87 0.80 0.87

Conditional inference trees 0.89 0.73 1.00 0.56 0.59 1.00

Penalised binomial regression 0.91 0.81 0.70 0.87 0.78 0.82

Support vector machine with linear kernel 0.92 0.88 0.90 0.87 0.82 0.93

AUC Area under the curve, NPV Negative predictive value, PPV Positive predictive value
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Fig. 5 Shows receiver operating characteristic curve analysis of each model and the corresponding variable importance. AUC, Area under the
curve; CIT, Conditional inference trees; CRP, C-reactive protein; GLM, Generalised linear model; Lymph %, Lymphocyte percentage; PBR, Penalised
binomial regression; SVL, Support vector machine with linear kernel; VoD, Volume of disease
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may be an effective tool for the initial individual risk as-
sessment. This is of exceptional importance primarily in
those cases whose symptoms and overall general condi-
tion do not suggest severe lung disease. However, quan-
titative CT data alone are not enough to predict short-
term outcomes. In this regard, we also analysed the in-
fluence of patient-related factors in the definition of
early outcome. The most predictive patient-related fac-
tors of adverse outcome were age and the presence of a
significant comorbidity.
The combination of CT, clinical, and laboratory find-

ings can provide valuable information to direct toward a
correct diagnosis while waiting for RT-PCR results. This
was demonstrated by some works that showed a high
sensitivity of CT in diagnosing COVID-19 in patients
with respiratory symptoms [3, 4]. In the background of
high disease prevalence, the relatively lower specificity of
CT is mitigated by the low likelihood of alternative diag-
nosis. In our experience, during times of high disease
prevalence, a patient presenting with pneumonia symp-
toms and with a CT showing bilateral peripheral/mixed
GGO with or without concurrent consolidations and ab-
sent pleural effusion was highly suggestive of COVID-19.
Some studies correlated CT findings with the overall

disease burden. Yang et al. [10] used a CT severity score
based on qualitative and semi-quantitative features; they
successfully discriminated mild from severe disease.
Zhang et al. [11] reported similar results and concluded
that some CT findings were more prevalent in the severe
disease group. In another study [8], a deep learning
model found significant differences in quantitative CT
opacification parameters across different clinical types of
COVID-19 patients. In our work, we used a less sophis-
ticated method for quantification of lung opacities at
CT. Still, we found a significant association between the
VoD and systemic inflammation burden, measured by
C-reactive protein. On the other hand, we did not find a
significant association between the duration of symp-
toms at the time CT was performed and the VoD. To
that regard, Pan et al. [24] found maximum lung in-
volvement 10 days after the first symptom. Likewise,
Wang et al. [25] concluded that most of the patients
progress to acute respiratory distress syndrome in 12
days or less from the first symptom. These findings sup-
ported our decision in choosing a 10-day endpoint for
observing clinical outcomes.

Our study had some limitations. First, the retrospect-
ive nature of this study makes it prone to selection bias.
CT was performed in patients who sought medical at-
tention despite restrictive quarantine measures, i.e., the
patients with mild symptoms did not come to our insti-
tution. Second, this was a single-centre study, and there-
fore the included cohort of patients may limit the
generalizability of our observations. However, all models
achieved high accuracy in previously unseen samples,
which is an indicator of generalizability to external data.
Third, another limitation was that we did not consider
the interpersonal variability of total lung volumes. This
issue can be addressed by providing the percentage of
involved lung by calculating the VoD over the total lung
volume. Yet, if not performed automatically, this may be
a lengthy process and not suitable for clinical practice.
Moreover, in our work we calculated COVID-19 lung
involvement directly from the CT workstation; image
transfer to open source third-party software tools may
be difficult to perform in high-volume clinical settings.
Fourth, we did not evaluate inter-rater agreement in
VoD quantification. It is plausible that quantitative CT
data may be less prone to interobserver variability than
qualitative CT findings and thus more reliable in the
prediction of short-term outcome in COVID-19 patients.
Fifth, even though patients that did not require hospital-
isation were instructed to return to our institution as
soon as their symptoms worsened, a small fraction of in-
dividuals could have been lost in follow-up. Sixth, we
did not correlate quantitative CT findings with other
important clinical data (e.g., hypertension, D-dimer,
peripheral capillary oxygen saturation); unfortunately,
these data were not available in all patients. We used
CT surrogates for cardiovascular disease (aortic and
coronary calcifications), which may limit the applic-
ability of these results to the real world. Finally, an-
other limitation is that we grouped all comorbidities
in one feature. Yet, this allowed for statistical robust-
ness considering the relatively low number of
patients.
In conclusion, measuring the VoD in the lungs using a

simple CT post-processing tool allows estimation of
COVID-19 burden. The VoD was predicted by C-
reactive protein levels and lymphocyte percentage.
Clinical and laboratory information combined with
quantitative CT data provided a prediction of short-term
clinical outcomes in COVID-19 patients.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s41747-020-00167-0.

Additional file 1: Supplementary figure S1. ROC curves for the
model’s predictions without the inclusion of VoD.

Table 4 Confusion matrix for the support vector machine with
linear kernel prediction on the testing set

Observed

Favourable Adverse

Predicted Favourable 14 1

Adverse 2 9
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