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Abstract

Background: Skeletal muscle injury characterisation during healing supports trauma prognosis. Given the potential
interest of computed tomography (CT) in muscle diseases and lack of in vivo CT methodology to image skeletal
muscle wound healing, we tracked skeletal muscle injury recovery using in vivo micro-CT in a rat model to obtain a
predictive model.

Methods: Skeletal muscle injury was performed in 23 rats. Twenty animals were sorted into five groups to image
lesion recovery at 2, 4, 7, 10, or 14 days after injury using contrast-enhanced micro-CT. Injury volumes were
quantified using a semiautomatic image processing, and these values were used to build a prediction model. The
remaining 3 rats were imaged at all monitoring time points as validation. Predictions were compared with Bland-
Altman analysis.

Results: Optimal contrast agent dose was found to be 20 mL/kg injected at 400 μL/min. Injury volumes showed a
decreasing tendency from day 0 (32.3 ± 12.0mm3, mean ± standard deviation) to day 2, 4, 7, 10, and 14 after injury
(19.6 ± 12.6, 11.0 ± 6.7, 8.2 ± 7.7, 5.7 ± 3.9, and 4.5 ± 4.8 mm3, respectively). Groups with single monitoring time
point did not yield significant differences with the validation group lesions. Further exponential model training with
single follow-up data (R2 = 0.968) to predict injury recovery in the validation cohort gave a predictions root mean
squared error of 6.8 ± 5.4 mm3. Further prediction analysis yielded a bias of 2.327.

Conclusion: Contrast-enhanced CT allowed in vivo tracking of skeletal muscle injury recovery in rat.
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Key points

� Contrast-enhanced micro-computed tomography
showed applicability in monitoring skeletal muscle
injury recovery.

� Highest accuracy in lesion recovery predictions was
obtained on day 14 after injury.

� We provided a proof of concept to track skeletal
muscle healing stages using CT-derived volume-
based lesion recovery.

Background
Skeletal muscle (SM) represents about 40% of the body
mass and is formed by contractile multinucleated muscle
fibres as a result from myoblasts fusion. Injuries in SM
may come from diverse events, including direct trauma
from muscle contusions, lacerations and strains or indir-
ect trauma from degenerative diseases like muscular dys-
trophy, among others. Professional athletes are the most
affected by SM injuries, representing from 10 to 55% of
all injuries in this population [1, 2]. Moreover, the type,
severity, size and location of the injury make inference
of recovery and rehabilitation times challenging, thus
directly affecting prognosis of lay-off times [3].
In mammals, SM has the ability to regenerate in re-

sponse to injury [4]. This process can be divided into
three phases [1, 4–6]: (1) degeneration, characterised
by muscle fibres rupture and necrosis, formation of
hematoma and inflammatory cell reaction; (2) regener-
ation, characterised by phagocytosis of the damaged
tissue, satellite cells (SM stem cells) activation and
angiogenesis; and (3) remodelling, characterised by the
maturation and reorganisation of regenerated muscle
fibres, recovery of muscle function together with fi-
brosis and scar tissue formation. The new vascular
network emerges from surviving trunks of the blood
vessels into the injured region providing means for
oxygen delivery and nutrients necessary to recover
mature myofibres [1, 7].
To characterise in vivo muscle injury, both magnetic

resonance imaging (MRI) and ultrasound are well-
established imaging approaches in hospitals [8]. How-
ever, there is a knowledge gap regarding the approaches
to monitor and quantify SM injury using computed tom-
ography (CT), which plays an important role in tissue
density characterisation in muscle diseases [9]. Along
with its application in whole-body scans, CT is also part
of hybrid scanners as single-photon computed tomog-
raphy/CT or positron emission tomography (PET)/CT
where functional studies can be conducted to monitor
SM lesion healing.
To the best of our knowledge, there are no studies

where CT has been used for in vivo tracking of SM in-
jury. There are several studies in the literature [7, 10],

where the authors use ex vivo contrast-enhanced micro-
CT to quantify underlying angiogenesis in the process of
wound healing. Therefore, the lack of methodologies
allowing in vivo assessment of SM recovery was the
main motivation of the present work.
Consequently, we aimed to (i) present a new method-

ology to image and quantify in vivo SM recovery by
contrast-enhanced micro-CT means and (ii) propose a
proof-of-principle study of a SM recovery prediction
model.

Methods
Animal preparation
The study was approved by the Local Animal Ethics
Committee and was performed in accordance with
Spanish (RD 53/2013) and European (2010/63/UE) le-
gislation. Wistar male adult rats (n = 27), weighing
approximately 425 g each (425.4 ± 43 g), were housed
at 22–24 °C, maintained on a 12-h light/dark cycle,
and used for the experiments. Water and food were
given ad libitum during the experiments. Anaesthesia
was induced with 4% isoflurane (Aerrane, Baxter
Healthcare, Deerfield, IL, USA) and maintained with
1.5–2.0% isoflurane in O2 at 1 L/min during the
whole study. A 22-gauge intravenous cannula (Intro-
can Safety® IV Catheter, 22G, B. Braun, Melsungen,
Germany) was placed in the tail vein for iopamidol
(iopamiro 370 mg/mL, Bracco Imaging, Milan, Italy)
administration as contrast agent (CA) by means of an
infusion pump (Harvard apparatus PHD 2000 Infu-
sion, Holliston, MA, USA). Post-surgically, 250 mL of
water with 10% of buprenorphine (buprecare 0.3 mg/
mL, Divasa Farmavic, Barcelona, Spain) was given to
all operated animals.

Contrast agent dose optimisation
Optimal CA dose to distinguish between injury and
neighbouring tissue was first determined by performing
a contrast enhancement study in a separate set of experi-
ments including five rats. These were placed in the
micro-CT bed, and five different infusion rates (100,
200, 300, 400, and 500 μL/min) were tested for 20 min to
obtain different contrast-to-noise ratios (CNR) in ac-
quired images. Imaging parameters were as follows: field
of view 40 mm, voxel size 80 μm (isotropic), kVp 90,
tube current 200 μA and exposure time 120 s. Images
were acquired approximately every 2.5 min, resulting in
total of 9 images per rat. Contrast enhancement was
assessed in the femoral artery and neighbouring tissue
by delineating circular volumes of interest of 1 mm in
diameter, obtaining their mean density and standard de-
viation values. From these, we calculated CNR using fol-
lowing formula [11]:
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CNR ¼ μA−μTj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2A þ σ2T
p ;

where μA and μT represent mean density values of vol-
umes of interest in femoral artery and tissue area, re-
spectively, and σA and σT represent their standard
deviations. Optimal infusion rate providing adequate
image contrast was set following the Rose criterion
(CNR > 5), as previously described [12].
After CA administration, the pump was stopped, and

micro-CT images were acquired. One millilitre of saline
solution was injected after image acquisition was
finished.

Skeletal muscle injury model
For the injury model, we used a recently developed sur-
gically induced SM injury rat model proposed by
Contreras-Muñoz et al [6]. Briefly, 23 anaesthetised rats
were immobilised by the fixation of tail and extremities
with adhesive strips to a styrofoam surface exposing the
ventral side of the right crus. Skeletal traumatic muscle
injuries were induced in the rat medial gastrocnemius
muscle by a 18-gauge biopsy needle (Bard® Monopty®
Disposable Core Biopsy Instrument, Bard Biopsy Sys-
tems, Tempe, USA) with a 0.84-mm inner diameter.
Transversal biopsy procedure was performed at the
muscle-tendon junction level of the left leg medial
gastrocnemius muscle (3 mm from the start of muscle-
tendon junction and 2mm in depth). Immediately after
muscle injury, a cannula (Introcan Safety® IV Catheter,
22G, B. Braun, Melsungen, Germany) was introduced
within the injury in order to proceed with the micro-CT
imaging protocol.

Micro-CT
Micro-CT studies were performed using a Quantum FX
micro-CT scanner (PerkinElmer, Hopkinton, MA, USA).
Rats (n = 23) were positioned on their right side in a
bed, and their left leg was immobilised to minimise pos-
sible involuntary movement and motion-related arte-
facts. During the scans, rats were kept under
anaesthesia, and CA was administered for 20 min as de-
scribed above. Two images were acquired at the same
day when muscle injury was induced: first an image of
the injury with the cannula at 14 min after the beginning
of CA infusion for location purposes, and then, after re-
moving the cannula from the injury, a second image was
acquired at 20 min right after stopping the CA injection.
Again, 1 mL of saline solution was injected after image
acquisition was finished to ease contrast clearance.
To image lesion recovery at different time points,

20 rats were sorted into 5 different groups (n = 4 per
group) according to the follow-up day at 2, 4, 7, 10,
or 14 days after injury, respectively. Additional 3 rats

were imaged at all mentioned follow-up days as valid-
ation. High-resolution images were acquired so that
the centre of the field of view was aligned with the
middle of the fibula in sagittal and coronal planes,
thus covering the maximal region of the left limb
containing the injury. Experimental imaging parame-
ters were field of view 40 mm, voxel size 80 μm (iso-
tropic), kVp 90, tube current 200 μA and exposure
time 270 s. All images were reconstructed using a fil-
tered back-projection approach with a Ram-Lak filter,
including a ring reduction algorithm [13].

Image processing
Greyscale values between image datasets were normal-
ised by an histogram matching algorithm implemented
in the Insight Toolkit [14]. All image datasets in the
study were normalised by matching their histograms to
the reference image histogram, which was chosen to be
the injury image of rat 1 at day 0. Adapted normalised
image datasets were then filtered in Fiji [15] using a
non-local means denoising filter [16, 17]. Noise standard
deviation was set to 2 with smoothing factor set to 1.
Contrast-enhanced anatomy, together with high-
intensity anatomy like bones, was segmented from
denoised images using thresholding based on Renyi en-
tropy [18] with min and max values set to 77 and 255,
respectively. These values were experimentally derived
from denoised images to ease the injury segmentation
process. All segmented contrast-enhanced anatomy im-
ages were then manually processed in three-dimensional
slicer (version 4.9.0) [19]. The injury was further seg-
mented from contrast-enhanced anatomy mask, exclud-
ing surrounding adipose tissue and vasculature. Once
the refined SM injury mask was obtained, injury volume
was calculated as the mask voxel number multiplied by
voxel volume.

Lesion recovery prediction model
Single follow-up day cohort data (n = 20) were used to
feed an exponential model of SM injury recovery. The
generalised exponential model used was Vt = V0 × exp
(b × t), where t is the corresponding post-injury time
(days), V0 is the initial injury size (mm3) and b is the
healing rate (days−1). Model was trained using the least
absolute residual method available in Matlab (The Math-
works Inc., Natick, MA, USA), quantifying both R2 and
root mean squared error. Afterwards, injury volumes
were predicted in the validation cohort (n = 3) at all
monitored post-injury time points.

Statistical analysis
Data are expressed as mean and standard deviation. In-
jury volumes and model predictions were compared
using paired t test and Bland-Altman analysis after
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testing for normality. All statistical analyses were per-
formed using the Graphpad Prism software (Graphpad
Software Inc., San Diego, CA, USA). A p value below
0.05 was considered as statistically significant.

Results
Optimal contrast agent dose
Prior to tracking injury healing by micro-CT, analysis of
the influence of CA dose in image contrast was per-
formed to determine optimal infusion rate. Figure 1
shows obtained CNR curves for each tested infusion
rate. Since cutoff criterion was set at CNR over 5 after
20 min of infusion, contrast injection rates of 400 and
500 μL/min were the only ones satisfying this require-
ment. However, to reduce the amount of CA injected to
animals and to avoid possible side effects, 400 μL/min
was chosen as optimal rate and was used in following
study, resulting in total administered amount of contrast
of 20 mL/kg per rat.

In vivo SM lesion tracking
In Fig. 2, one example of SM lesion healing in short-axis
view monitored at all post-injury time points is pre-
sented. As shown, lesion healing process remains rather
active up to 2 weeks after injury. This was further quan-
tified in Fig. 3, sorting lesion volumes according to the
day injury was imaged. The mean initial lesion size (n =
23) was 32.3 ± 12.0 mm3. As expected, lesion healing
process yielded decreasing injury volumes (n = 7) at day
2 (19.6 ± 12.6 mm3), day 4 (11.0 ± 6.7 mm3), day 7 (8.2
± 7.7 mm3), day 10 (5.7 ± 3.9 mm3), and day 14 (4.47 ±
4.8 mm3) post-injury. Additionally, groups with a single
monitored time point after injury (5 time points, n = 4
each) were compared to the validation cohort (n = 3) to
support this decreasing tendency. Indeed, lesion volumes
did not show any statistically significant differences

between single time point groups and validation group
at day 0 (34.0 ± 11.9 versus 21.4 ± 3.8 mm3, p = 0.088),
day 2 (22.1 ± 14.5 versus 16.3 ± 11.7 mm3, p = 0.598),
day 4 (11.3 ± 5.3 versus 10.7 ± 9.6 mm3, p = 0.915), day
7 (9.2 ± 9.7 versus 7.0 ± 5.9 mm3, p = 0.744), day 10 (6.4
± 4.5 versus 4.7 ± 3.8 mm3, p = 0.622) and at day 14 (3.5
± 3.0 versus 5.8 ± 0.4 mm3, p = 0.584), respectively.

Injury volume predictions
Model training with single follow-up data yielded a cor-
relation of R2 = 0.968, with root-mean-square error =
1.77 mm3. This was further tested with the validation co-
hort (n = 3) at all monitored time points (days 2, 4, 7,
10, and 14 after injury). Mean root-mean-square error in
predictions was 6.8 ± 5.4 mm3. As presented in the
Bland-Altman plot (Fig. 4), overall predictions yielded a
bias of 2.3 (limits of agreement at 95%, -13.5 and 18.1).
The exponential model better performed at low average
values, offering higher accuracy for nearly healed injury
time points.

Discussion
In this proof-of-concept study, we assessed the in vivo
CT applicability to track the progression of SM injury
recovery. For this purpose, we previously defined a con-
trast enhancement CT protocol in order to guarantee
proper differentiation between injury and healthy tissue.
After quantifying injury volumes during follow-up to
track injury recovery, an exponential prediction model
of injury recovery has been proposed to mimic the ob-
served decreasing tendency during healing. Although
simple, the model offered a higher accuracy for late
follow-up time points than that for early time points
when the lesion is nearly recovered.
Regarding the contrast enhancement protocol, we

found a CA volume of 20 mL/kg that was necessary to

Fig. 1 Contrast-to-noise ratio quantification for several infusion rates. Tested contrast injection rates from 100 to 500 μL/min (yellow), with an
overall administration time of 20min. The red dashed line defines the applied cutoff criterion to determine the optimal infusion rate. CNR
Contrast-to-noise ratio
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obtain a proper CNR on CT images. Injecting more con-
trast may cause unnecessary side effects in rats without
significant increasing image contrast. In addition, the
proposed injection rate of 400 μL/min was found to be
the best rate allowing a proper biodistribution of the CA
without causing any side effect in rats. This experimen-
tally determined CA amount was in agreement with
guidelines about intravenous administration volumes for
rats reported by Diehl et al [20].
The murine model of skeletal muscle injury used in

this study has been previously described in detail [6]. As

previously reported, this injury model well reproduces
the human muscle strain injuries observed in profes-
sional athletes. This was characterised by means of hist-
ology and MRI (standard of care in muscle lesion
tracking), showing the healing capacity observed in ani-
mal models of spontaneous skeletal muscle injury as the
dystrophic mdx-mice [21]. Although similar looking
skeletal muscle injuries on MRI at the same anatomical
site, different healing rates have been observed as the le-
sion nature varies (either high-speed running or over-
stretching) in athletes [22].
This study focused on the applicability of in vivo CT

imaging to track SM lesion recovery. However, estab-
lished imaging techniques for prognosis and muscle re-
pair monitoring in the clinics are both MRI and
ultrasound [8]. The latter is normally considered to be
first choice for clinical diagnosis due to its low price and
fast applicability, but MRI is preferred when detailed
characterisation of injury is required [23]. Recently,
Todeschini et al. [24] reported a series of 39 professional
soccer players to study pubalgia imaging features with
both ultrasound and MRI. Interestingly, from 9 individ-
uals with a positive MRI scan regarding lesions of the
common aponeurosis of the rectus abdominis/adductor
longus muscles, only 4 yielded a positive ultrasound
scan. MRI has been positioned as a widely used tech-
nique in muscle trauma evaluation, playing an increas-
ingly role in grading injury severity and guiding return
to play in the injured athlete [25]. Nonetheless, this

Fig. 2 Contrast-enhanced micro-computed tomography images and segmented injuries from one representative example of the validation
cohort. a First row shows short-axis images of the lesion in similar location during all follow-up time points. Images were reconstructed using a
filtered back-projection approach with a Ram-Lak filter. Second row images superimpose the obtained segmentation mask (blue) of the injury on
the first row images. b Three-dimensional volumetric rendering of the segmented lesions (white) during all follow-up time points

Fig. 3 In vivo three-dimensional skeletal muscle injury volume
quantification up to 14 days after injury. This quantification includes
both single follow-up (n = 20) and validation (n = 3) cohorts

Paun et al. European Radiology Experimental            (2020) 4:33 Page 5 of 8



technique does not offer any information regarding tis-
sue dynamics when healing as a counterpart. Leaning on
hybrid approaches using PET /CT or PET/MRI scans,
this may be of relevance to study SM lesion healing dy-
namics in athletes.
There are just a few studies using PET/CT to assess

muscle injury. For instance, Carter et al [26] studied
metabolic changes related to thermally induced muscle
injury in rabbits using 2-deoxy-2-[fluorine-18]fluoro-D-
glucose (18F-fluorodeoxyglucose, 18F-FDG) PET. Xie
et al [27] showed that mice with muscle injury induced
by electroporation show increased uptake of 64Cu, thus
demonstrating 64Cu-Cl2 PET/CT as a new molecular im-
aging technique for skeletal muscle. Recently, Pervaiz
et al [28] showed that 18F-FDG PET/CT can be used for
imaging inflammation and muscle injury caused by chol-
esterol crystal emboli. However, these studies focused on
the use of radiopharmaceuticals to assess a specific
physiological disorder that cannot explain the whole SM
recovery. Merging these findings with in vivo contrast-
enhanced CT quantifying muscle recovery, both imaging
techniques may offer enriched lesion healing structural
and functional information, yielding a more accurate in-
jury prognosis, among other uses.
Although simple, this study also presented an expo-

nential model of muscle recovery as a proof of concept.
This model relied on quantified injury volumes through
time to mimic the observed decreasing tendency derived
from two-dimensional histological analyses in previous
studies [6]. Yielded predictions were accurate when le-
sion volumes were nearly recovered but differed more at
few days after injury. One way to better predict lesion
recovery at all monitored time points could be to detect
additional lesion features via convolutional neural net-
work (CNN) models. These deep learning models can

automatically learn hierarchical features from raw im-
ages to classify these according to a training classifica-
tion [29]. For instance, Zhang and colleagues [30]
presented a CNN model to classify soft tissue sarcoma
grading using both CT and MR images from a series of
51 patients, offering great performance in this task. In
this matter, CNNs could definitely be applied to track
skeletal muscle injury healing, supporting current
trauma prognosis.
This study has several limitations. First, there is a lim-

ited number of rats included in the validation cohort.
Although tracking full progression of the injury recovery
in all animals would have been desirable, no statistical
differences were observed between the single follow-up
day and the validation cohorts. Second, no histological
analysis of the lesions was provided. Conversely, re-
ported three-dimensional SM lesion characterisation
data are consistent with previously reported histological
results. Regarding lesion recovery, a direct association to
professional athlete lesions cannot be established as the
lesion nature varies from the surgically induced one in
the rat model. Also, in vivo SM lesion tracking cannot
be directly extrapolated to human studies. Indeed, the
amount of iodine-based contrast agent used in our ex-
periments exceeds the maximum recommended dose for
contrast enhancement studies included in current clin-
ical guidelines. To overcome the low soft tissue contrast
problem during SM injury monitoring, early injury
stages may offer a good starting point for tracking. For
instance, both oedema and inflammatory processes in
clinical contrast-enhanced CT images could serve as ini-
tial landmarks to ease injury segmentation process.
Adapting this prior segmentation to subsequent post-
injury examinations leaning on anatomical references
detection, recovery predictions and the expert

Fig. 4 Bland-Altman analysis of the predicted injury volumes in the validation cohort. Predictions were compared to the injury volumes during all
follow-up time points. Red dotted line corresponds to the bias, with corresponding lower and upper limits of agreement at 95% represented
with green dotted lines
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knowledge to refine lesion border delineation accord-
ingly may offer similar outcomes as the ones we
presented from animal experiments. Of note, acquired z-
axis resolution in conventional CT scanners (~ 3 mm)
might hinder this task, so detailed studies would be re-
quired to minimise the use of CA. Altogether, additional
in vivo lesion tracking using contrast-enhanced CT in
large animal models first, and then in patient studies,
would be required to further validate these results.
In conclusion, our study showed that contrast-

enhanced CT can allow in vivo tracking of SM healing
after injury, presenting a proof of concept of an expo-
nential recovery model, in a rat model.
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