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Abstract

Background: To evaluate whether machine learning algorithms allow the prediction of Child-Pugh classification on
clinical multiphase computed tomography (CT).

Methods: A total of 259 patients who underwent diagnostic abdominal CT (unenhanced, contrast-enhanced
arterial, and venous phases) were included in this retrospective study. Child-Pugh scores were determined based on
laboratory and clinical parameters. Linear regression (LR), Random Forest (RF), and convolutional neural network
(CNN) algorithms were used to predict the Child-Pugh class. Their performances were compared to the prediction
of experienced radiologists (ERs). Spearman correlation coefficients and accuracy were assessed for all predictive
models. Additionally, a binary classification in low disease severity (Child-Pugh class A) and advanced disease
severity (Child-Pugh class = B) was performed.

Results: Eleven imaging features exhibited a significant correlation when adjusted for multiple comparisons with
Child-Pugh class. Significant correlations between predicted and measured Child-Pugh classes were observed

(oLa =035, pre = 032, pcnn = 051, pers = 0.60; p < 0.001). Significantly better accuracies for the prediction of Child-
Pugh classes versus no-information rate were found for CNN and ERs (p < 0.034), not for LR and RF (p = 0.384). For
binary severity classification, the area under the curve at receiver operating characteristic analysis was significantly
lower (p < 0.042) for LR (0.71) and RF (0.69) than for CNN (0.80) and ERs (0.76), without significant differences between
CNN and ERs (p = 0.144).

Conclusions: The performance of a CNN in assessing Child-Pugh class based on multiphase abdominal CT images is
comparable to that of ERs.
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Key points

e Established machine learning algorithms can predict
the Child-Pugh class of a liver based on a clinical
multiphase computed tomography.

e The predictive performance of a convolutional
neural network in assessing liver parenchyma has
the potential to be comparable to that of
experienced radiologists.

e Machine learning algorithms, in particular
convolutional neural networks, may constitute an
adjunct quantitative and objective tool to assess the
functional liver status based on imaging information.

Background

Computer tomography (CT) is routinely used in the
diagnosis and clinical management of patients with
chronic liver disease [1, 2] and it is recognised as a sensi-
tive diagnostic tool for evaluating morphological changes
of liver parenchyma [2—4]. CT has been shown to be
suitable for in vivo characterisation of liver cirrhosis and
functionality [5, 6]. Common imaging biomarkers for
the severity of liver cirrhosis are shrinkage of total liver
volume, irregularity of organ boundaries, and heterogen-
eity of liver parenchyma; however, most of these imaging
biomarkers remain unspecific [7].

To widen the value of image-based diagnosis, recent
studies investigated machine learning algorithms and their
potential clinical application, in particular the value of pre-
dicting biological or molecular characteristics through
image-specific features [8—11]. Building on this, artificial
neuronal networks have been employed to use implicit
image information that might not be encompassed in ded-
icated human-made radiomic feature sets [10, 12].

However, accurate assessment of liver cirrhosis seems to
be challenging against the background of the inherent dis-
ease heterogeneity. Hence, invasive biopsy of hepatic par-
enchyma is still the standard of care [13]. In an effort to
overcome this potential injuring of the liver and the asso-
ciated time and material consuming processes, noninva-
sive laboratory tests have gained importance [14]. A solid
body of scientific literature still indicates serum bilirubin,
albumin, or prothrombin time as the most validated and
clinically used laboratory parameters regarding liver cir-
rhosis and changes in liver metabolism [15-17]. More-
over, in adjunction with clinical assessment, they continue
to form the basis for the most widely used clinical scores
for liver cirrhosis, that is, the Child-Pugh classification and
the model of end-stage liver disease (MELD) [18].

Abdominal CT scans are routinely used in clinical prac-
tice and are often available for patients at risk for liver cir-
rhosis. However, even though a quantifiable image-based
measure of liver cirrhosis beyond radiological assessment
would provide a diagnostic and potentially even therapy-
guiding value, it is not yet used. Moreover, even
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experienced radiologists (ERs) could miss subtle changes
in liver parenchyma, while objective algorithms could im-
prove the consistency of grading the liver parenchyma to-
wards beginning cirrhosis.

In this study, we try to address this need by training
and testing machine learning algorithms on routine
abdominal CT scans to detect and possibly monitor
patients at risk of developing liver cirrhosis noninva-
sively. CT-based parameters were correlated with estab-
lished clinical and laboratory features from a single-
institutional cohort of 259 patients. Diagnostic liver CT's
of these patients were analysed by means of radiomic
analysis using linear regression (LR) and random forest
(RF) methods. Analysis via convolutional neural net-
works (CNN) was used as an additional comparison.
Child-Pugh class was evaluated for each patient as an
established and validated surrogate for the severity of
liver cirrhosis [19, 20].

Therefore, the overarching objectives of this study
were (a) to identify univariate associations between
radiomic image features and Child-Pugh class in an ex-
plorative analysis; (b) to create predictive machine learn-
ing models evaluating imaging appearance for the
prediction of the underlying liver cirrhosis; and (c) to
compare these results to the prediction of ERs.

Methods

Patient population

Retrospective evaluation of imaging data was approved by
the local ethics committee and informed consent was
waived. The study was conducted in accordance with con-
temporary data protection laws. CT was performed as a
part of the clinical routine of patients with abdominal
diseases. A radiologist with 5years of abdominal imaging
experience (J.T.) screened the local picture archive and
communication system for patients who underwent a
multiphase liver CT between January 2010 and December
2016, resulting in a total of 906 patients. Exclusion criteria
were as follows: (a) patients with incomplete laboratory
examination records of prothrombin time, creatinine,
bilirubin, and albumin within the hospitalisation period (1
= 451); (b) presence of focal liver parenchyma changes
(neoplasia n = 66; abscesses n = 41); (c) history of liver sur-
gery or liver interventions (n = 89). After exclusion of these
patients, a total of 259 patients served as the final cohort
for this study. The CT indications for the final cohort was:
staging of malignancies (n = 189; including 123 exami-
nations due to hepatic cellular cancer suspicions liver
lesions); infection (n = 47), investigation of abdominal
vessels (n = 14), and abdominal trauma (z = 9).

Child-Pugh classification
The Child-Pugh classification includes three continuous
variables (prothrombin time, bilirubin, and albumin) and
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Table 1 Child-Pugh classification
1 point 2 points 3 points
Bilirubin (mg/dL) <2 2-3 >3
Albumin (g/dL) >35 2.8-35 <28
PT prolongation (s)  1-3 4-6 >6
Ascites (cm) None <1 > 1
Encephalopathy None Mild (grades 1-2)  Severe (grades 3-4)

Child-Pugh classes: A, 5-6 points; B, 7-9 points; C, 10-15 points. PT
Prothrombin time

two discrete variables (ascites and encephalopathy). The
cut-off values for all parameters were defined according
to Forman et al. [18] (Table 1). Encephalopathy score
was determined by transferring the daily medical bedside
record into a cognitive status according to the West-
Haven criteria [21, 22]. Ascites score was evaluated by
measuring the perihepatic ascites expansion in the trans-
verse plane at the portal vein bifurcation [18], measured
by one radiologist with 6 years of experience in abdom-
inal imaging (J.T.). Child-Pugh score was calculated
based on the paper by Pugh et al. [23]. Patients with a
score of 5 or 6 were assigned to class A, patients with
scores 7—-9 were assigned to class B, and patients with
scores 10—15 were assigned to class C.

CT protocol and image postprocessing

Image acquisition parameters are summarised in Table 2.
In brief, CT was performed using helical CT scanners
(Somatom Definition Flash or Somatom Definiton AS,
Siemens Medical Systems, Erlangen, Germany). The scans
were acquired along craniocaudal direction by using a de-
tector configuration of 128 or 40 x 0.6 mm, a tube voltage
of 120 kVp, automated tube current modulation to a qual-
ity reference of 240 mAs, and online dose modulation [24]
in all phases. Pitch was set to 1.0 and imaging of each
phase was performed during a single breath-hold helical

Table 2 Computed tomography scan parameters

Somatom Definiton Flash
or Somatom Definiton AS

128/40 x 0.6 mm

CT systems

Detector configuration

Tube voltage (kVp) 120
Exposure quality reference (mAs) 240
Pitch 1.0
Gantry rotation speed (s) 0.5

Contrast media lopromide 370
Application rate (mL/s) 3

Unenhanced, arterial,
and portal-venous

Acquired phases

Slice thickness (mm) 1

Convolutional kernel B30f
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acquisition of roughly 10 s (according to the size of the ab-
domen). For all imaging, the gantry rotation speed was 0.5
s. Contrast-enhanced images were acquired following body
weight—adapted application of iodinated contrast material
(1.5 mL/kg of body weight; Iopromide 370 mg/mL, Ultra-
vist, Bayer, Leverkusen, Germany) administered at a rate of
3 mL/s by a power injector. Subsequently, the unenhanced
as well as hepatic arterial and portal-venous contrast
phases were acquired. Computer-assisted bolus-tracking
software was used to determine the optimal scan delay for
each patient. The acquisition of the arterial phase started 6
s after the automatic detection of peak aortic enhancement
at the level of the coeliac trunk with a threshold of 140
HU; portal venous phase was scanned 55 seconds after the
start of the contrast injection. Image reconstruction was
performed with axial 1-mm-thickness images, with an in-
crement of 0.7 mm, and a B30f convolutional kernel for all
phases as applied. Data were pseudo-anonymised and
stored on a local hard drive.

All three phases were spatially co-registered to each
other using a rigid transformation. The quality of regis-
tration was checked visually by one of the authors (J.T.).
For liver segmentation, the venous phase was transferred
to a separate workstation and analysed semiautomatically
by liver volume software (Philips Intellispace Portal, Ver-
sion 5.1, Philips Medical Systems, Best, the Netherlands)
which encompasses automatic segmentation algorithms
for liver vessels based on a deformable mesh [25]. All seg-
mentations were checked visually and corrected manually
if needed. Preprocessing was completed by a transform-
ation of the colour-coded delineation maps into a binary
evaluation mask for statistical analysis (Fig. 1).

Radiomic feature extraction

Radiomic features comprised statistical-, shape-, and
texture-based features (grey-level co-occurrence matrix,
grey-level size zone matrix, grey-level run-length matrix).
Features were extracted from the full liver volume using
the pyradiomics framework [26]. A detailed description of
all features can be found at https://pyradiomics.readthe-
docs.io/en/latest/features.html. In total, 271 features were
extracted from the three contrast phases for each patient.

Statistical analysis and image rating
One of the authors with more than 2 years of experience
in computational biology (O.R.) performed statistical
analysis. Univariate associations were evaluated between
each radiomic feature (n = 271) and Child-Pugh class.
The p values generated for each feature were corrected
for multiple comparisons by means of family wise error
rate adjustment by using the Bonferroni procedure [27].
Regarding multivariate classification, three machine
learning approaches were evaluated to predict the Child-
Pugh class.
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Fig. 1 Multiphase computed tomography of three patients. a—c Transversal reconstruction of three patients in portal-venous phase. d-f Pre-processing
with semiautomatic liver and vein delineation. a, d Patient with Child-Pugh class A: no changes in liver size or liver parenchyma were observed; all models
rated the liver as Child-Pugh class A. b, e Patient with Child-Pugh class B: slight changes in liver configuration as well as heterogeneity of liver parenchyma
were observed; only the convolutional network and the expert radiologists’ prediction rated the liver correctly as Child-Pugh class B, whereas the linear
regression and the random forest rated it as a Child-Pugh class C. ¢, f Patient with Child-Pugh class C: overall appearance of the liver exhibits characteristic
changes (liver configuration, size, and parenchyma texture); all models rated the liver as Child-Pugh class C.

Linear regression

Feature selection was performed in a first step by means
of recursive elimination of imaging features rank based
on the variance inflation factor; thresholds of 3.3, 5.0,
and 10 were tested [28]. The remaining features were
used for further analysis (n = 29) and are given in the
supplemental material.

Random forest

Regressors were trained on the whole set of imaging fea-
tures. Instead of selecting features prior to training, im-
plicit feature selection is thus performed.

Convolutional neural network

Instead of applying feature extraction, selection, and model
training, a CNN pretrained on publicly available natural
images (ImageNet; http://www.image-net.org/) was used in
a transfer-learning approach to automatically predict
Child-Pugh class based on two-dimensional axial slices
containing the liver. To avoid slices which contain only
miniscule amounts of liver tissue, we excluded the furthest
20% of slices in cranial and in caudal direction of the liver.
Slice-level scores were subsequently aggregated for each
patient separately by means of averaging. The detailed net-
work architecture and training setup has been described

previously [29]; in short, we use a ResNet 18 architecture
as initially described [30]. Instead of using red-green-blue
images, we stack the corresponding native, venous, and ar-
terial phases of a single slice along the channel dimension,
yielding a pseudo-red-green-blue image and allowing for
ImageNet pretraining. This pretraining on ImageNet data
was applied to the feature extraction part of the classifier
and training of the classification problem at hand started
with such found weights as initialisation. As a side note, we
also trained the network from scratch, but found the
results to be far inferior to the pretrained network
architectures.

Model training was performed in a multiclass setting.
The performance of each machine learning model was
assessed based on a 10-fold cross-validation procedure
with splits into 10 % testing-set, 27 % validation-set, and
63 % training-set. Splits were stratified such that a pa-
tient only ever belonged to one of the 3 sets.

Class imbalances were mitigated during training by
subsampling in which the majority class is downsampled
as previously described [31]. Each machine learning al-
gorithm rated the imaging data with a continuous rating
score (RS) ranging from 0 (corresponding to Child-Pugh
class A) to 2 (corresponding to Child-Pugh class C). We
chose to perform regression on the underlying Child-
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Pugh score first, which was then followed by classifica-
tion as this approach—in contrast to a pure classification
without preceding regression—accounts for the similar-
ity between neighbouring classes. Subsequent classifica-
tions were generated by using equidistant cutoffs (RS
0.00-0.66, Child-Pugh class A; RS 0.67-1.33: Child-Pugh
class B; RS = 1.34-2.00, Child-Pugh class C) rounding to
the nearest class for multiclass approaches.

For the human-reader-based rating of Child-Pugh class,
three experienced radiologists rated the appearance of the
liver; all radiologist were blinded to the Child-Pugh score
of each patient. Towards the experience of the three radi-
ologists, each passed a standardised curricular training in
a comprehensive cancer centre. One radiologist (D.T.) had
more than 7 years of experience in liver imaging focused
on abdominal magnetic resonance imaging, the second
radiologist (J.T.) and the third radiologist (P.S.) had more
than 5years of experience in abdominal radiology and
attended the oncological liver imaging circle to complete a
specialised fellowship in interventional oncology. In case
of a disagreement, a consensus reading with all radiolo-
gists was carried out. Interobserver agreement between
the three blinded radiologists was evaluated by using
Fleiss' kappa (kx), with results categorised according to
Landis and Koch [32]. Due to the ordinal scale of the
Child-Pugh class, a rank coefficient by means of Spearman
p was used to quantify agreement between the machine
learning algorithms. Moreover, the accuracy was deter-
mined for each model. The measured accuracies were
tested against the no-information rate, a classifier that as-
signs the most prevalent class to all samples.

Finally, a binary classification of low disease severity
(Child-Pugh class A) and advanced disease severity (Child-
Pugh class B or C) was evaluated by means of accuracy,
sensitivity and specificity. Receiver operating characteristic
(ROC) analysis was performed with evaluation of the area
under the curve (AUC). Testing for significance between
AUCs was done by utilising bootstrapping and performing
a 20,000-fold resampling. p-values < 0.05 were regarded as
statistically significant.

Results
Epidemiologic, laboratory, and clinical characteristics are
shown in Table 3. In brief, 81 female and 178 male pa-
tients with a median age of 63 years (interquartile range,
57—69 years) were included. The most frequent Child-
Pugh class was B (n = 120; 46%), followed by A (n = 76;
29%) and C (n = 63; 24%). Elevated subscores (> 2) for the
laboratory and clinical parameters were reported in 53%
for prothrombin time, in 56 % for bilirubin, in 53 % for al-
bumin, in 52% for ascites, and in 42% for encephalopathy.
In total, 11 significant radiomic imaging features were
found to correlate significantly with the Child-Pugh class
at univariate analysis. Ten out of these were texture
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Table 3 Demographic, clinical, and laboratory characteristics of
259 patients

Sex N
Men 178
Women 81

Age (years)

Median (IQR) 63 (57-69)

PT score
1 123
2 118
3 18

Bilirubin score
1 112
2 97
3 50

Albumin score
1 123
2 95
3 41

Ascites score
1 124
2 51
3 84

Encephalopathy
1 175
2 61
3 23

Child-Pugh Class
A 76
B 120
C 63

PT Prothrombin time

features and only one was shape-based (maximum two-
dimensional diameter of the liver). A list of all 11 radio-
mic features is given in the online supplement together
with their respective p values (supplemental Table S1).

For the choice of the variance inflation factor for linear
regression, we found that a value of 5.0 performed best and
used it in the following. With this threshold, 29 features
were identified. Among them, 27 were texture features and
only 2 were shape features (maximum extension of the liver
in the ventral and lateral direction). The majority of the
identified texture features originated from the arterial phase
(n = 12), followed by the native phase (n = 8) and the ven-
ous phase (7 = 7).

The results of the RS obtained by the machine learn-
ing algorithms for Child-Pugh classes A, B, and C are
given in Fig. 2. Spearman correlation coefficient was
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Fig. 2 Box-and-whisker plot of the continuous rating scores
obtained through linear regression (LR), random forest (RF) and
convolution neural network (CNN) for patients of each Child-Pugh
class. Thick black horizontal bars, boxes, whiskers, and circles
correspond to median, interquartile range, 10th or 90th percentile,
and outliers, respectively.
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significant for all algorithms, albeit strongest for CNN.
The radiologists’ rating exhibited the strongest correl-
ation (pLr = 0.35, pre = 0.32, pcnn = 0.51, pprs =
0.60; all p < 0.001). The predictivity is illustrated by
means of a confusion matrix in Fig. 3. The interob-
server agreement between radiologists was x = 67%.

The accuracy of the CNN and ERs was significantly better
as compared to the no- information-rate (ACCir = 47%,
p = 0477, ACCye = 47%, p = 0384 ACConn = 53%
p = 0.034; ACCpgs = 57%; p < 0.001; no-information-rate =
46%) (Fig. 3). If binary classification (Child-Pugh class
A versus Child-Pugh classes B and C) was performed,
only the CNN revealed better results against the no-
information-rate (Fig. 4):

— LR: accuracy 71%, sensitivity 85%, specificity 38%,
p = 0.483;

— RF: accuracy 70%, sensitivity 81%, specificity 43%,
p = 0.579;

— CNN: accuracy 78%, sensitivity 81%, specificity 70%,
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— ERs: accuracy 71%, sensitivity 82%, specificity
66%, p = 0.531).

The ROC-AUC was highest for CNN (0.80), followed
by the ERs prediction (0.76), with AUC interpolated as
shown in Fig. 5. However, this difference was not signifi-
cant (p = 0.144). Both the LR classifier (AUC 0.71) and
the RF classifier (AUC 0.69) performed significantly
worse than either the ERs (p = 0.042 as compared to LR
and p = 0.023 as compared to RF) or the deep learning,
i.e., CNN, classifier (p = 0.041 as compared to LR and
p = 0.014 as compared to RF) (Table 4 and Fig. 5).

Discussion

Our most important finding is that CNN can predict
Child-Pugh class, as a surrogate for the severity of liver
cirrhosis, with a comparable accuracy to that of ERs (p
0.51 and accuracy 53% versus p 0.60 and accuracy 57%,
respectively) based on a clinical multiphase CT. Both
conventional radiomic analyses trail these performances
in all assessed diagnostic scores. Even though CT has
been described as a valid tool to assess distinct morpho-
logical changes of liver parenchyma [33], the value of
multiphase liver CT in staging liver fibrosis has
remained restricted due to its limited functional infor-
mation that is accessible to the eyes of even trained radi-
ologists [34, 35]. To overcome those limitations, recent
studies investigated more functional-based imaging mo-
dalities, in particular magnetic resonance imaging [8,
36]. Yasaka et al. implemented a CNN model for the sta-
ging of liver fibrosis using gadoxetic acid—enhanced
hepatobiliary phase imaging [9], resulting in a good non-
invasive prediction of the liver fibrosis grade (p 0.63 and
AUC 0.80, p < 0.001).

The fact that conventional machine learning tech-
niques are outperformed by suitable neural networks is
also in line with previous research by our group [28].
Furthermore, other magnetic resonance imaging studies
reported, that quantitative texture analyses using T2-

p < 0.001; weighted images [37] and extracellular gadolinium-
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o 7 43 13 ° 8 43 12 ° 4 29 30 o 5 26 32
(11%) (68%) (21%) (13%) (68%) (19%) (6%) (46%) (48%) (8%) (41%) (51%)
= - 21 20 5 - 26 16 s 30 37 5 - 9
g (18%) (17%) g (22%) (13%) g (25%) (31%) ] (7%)
= £ £ =
< 29 46 1 < 33 39 4 < 20 3 < 14 0
(38%) (61%) (1%) (43%) (51%) (5%) (26%) (4%) (18%) (0%)
A B c A B c A B ¢ A B ¢
Predicted class Predicted class Predicted class Predicted class
Fig. 3 Confusion matrix for the prediction of the Child-Pugh class. From left to right: linear regression (LR), random forest (RF), convolution neural
network (CNN), and experienced radiologists (ERs). Values in brackets are relative to the numbers of patient in the ground truth Child-Pugh class.
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Fig. 4 Confusion matrix for the prediction of low disease severity (Child-Pugh class A) and advanced disease severity (Child-Pugh class = B).
Linear regression (LR), random forest (RF), convolution neural network (CNN), and experienced radiologists (ERs). Values in brackets are relative to
the numbers of patient in the ground truth Child-Pugh class.
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enhanced images [38] resulted in nearly the same
prediction of liver fibrosis with AUCs of 0.81 and 0.80,
respectively. Several other noninvasive modalities have
been evaluated for the staging of liver fibrosis; in this re-
gard, ultrasound and magnetic-resonance elastography
seem to be promising techniques, which are increasingly
applied in clinical practice. However, CT remains the
more robust imaging technology which is less severely
plagued by obesity, ascites, or the presence of metallic
implants [39].

Even though eleven imaging features were shown to
be significantly correlated to the Child-Pugh class, the
predictions by radiomic analysis (LR and RF) were less
accurate than those by CNN or ERs. This is in line with
recent literature, indicating that CNNs with their ability
to inherently learn features and process implicit imaging
information are more suitable for the analysis of medical
imaging [40-42]. The radiological assessment of Child-
Pugh class resulted in a comparable level of accuracy,
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Fig. 5 Receiver operating characteristics curves demonstrating the
accuracy of the four predictive models in the binary prediction for
256 patients. LR Linear regression (blue line), RF Random forest
(orange line), CNN Convolution neuronal network (green line), ERs
Experienced radiologists (red line).

therefore we found no proof that machine learning ap-
proaches can outperform human experts in the assess-
ment of diffuse liver parenchymal changes.

However, ERs rated the patients with access to the full
original clinically used image data. Therefore, context in-
formation (e.g., presence of portal hypertension, general
appearance of the patient) was available to the radiolo-
gist and yielded additional information that was not ac-
cessible to the radiomic approaches which only received
the segmented liver as inputs. The CNNs on the other
hand had access to the same full image volume as ERs.
This certainly contributes to the superiority of the CNNs
as compared to the radiomic approaches. It should be
mentioned that we did not purposefully restrict the
radiomic approaches to only have access to the seg-
mented liver—rather, this is an inherent requirement of
these methods as they calculate radiomic features
(among those volume and surface) based on given seg-
mentations only.

Our data are derived from a homogeneous, single-
institution cohort of patients with and without diffuse liver
parenchyma changes and include the corresponding
laboratory and clinical parameters for the calculation of

Table 4. Accuracy scores for all predictive models

Predictive model LR RF CNN ERs
Prediction of the Child-Pugh class
Spearman p 0.35 0.32 0.51 0.60
Accuracy (%) 47 47 53 57
Classification Child-Pugh class A versus = B
Accuracy (%) 71 70 78 71
Sensitivity (%) 85 81 81 82
Specificity (%) 38 43 70 66
AUC 0.71 067 0.80 0.76

AUC Area under the curve at receiver operating characteristic analysis, LR
Linear regression, RF Random forest, CNN Convolution neuronal network, ERs
Experienced radiologists
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Child-Pugh score and imaging characterisation with
robust quantitative analysis, which overcomes methodo-
logical shortcomings of alternative user-dependent semi-
quantitative or qualitative analyses. Bringing machine
learning algorithms into clinical practice has been difficult
due to differences between the way images are acquired at
different centres. One limitation is the potential variability
of radiomic features when using different protocols [43]
and further research is needed to address this issue.

Another aspect is the need for clinical validation, that
we hope to partly address with this manuscript. Future
studies will also focus on the clinical application of our
algorithms in everyday use and we hope to increase the
use of image data in the context of systematic or chroni-
cal diseases such as liver cirrhosis.

However, this study has limitations. First, class imbalances
can potentially have a negative effect on fitting of machine
learning models and were present in the epidemiologic data
and the Child-Pugh score. Due to the retrospective nature
of this study and the inclusion criteria, only patients with a
serious abdominal disease had been included. However,
class imbalances were mitigated during training by using
subsampling techniques that reduce the majority class and
synthesise new data points in the minority classes [31].

Second, generalisation of machine learning algorithms
to different scanner manufacturers and acquisition pro-
tocols remains a challenging problem that is currently
under active investigation [43, 44]. Future research in
machine learning will have to address the transferability
of such algorithms as proposed in our study.

Another limitation is the high number of excluded pa-
tients in our cohort. For the majority (n = 451) of patients,
albumin was not acquired as it is not a standard of care
parameter, determining a selection bias: only patients
whose blood samples were analysed for albumin levels
were incorporated. Furthermore, the reports of the cogni-
tive status were derived from standardised daily bedside
records. Although deviations in the mental status have to
confirmed or revealed by a specialised neurologist, it is
possible that especially mild stages of encephalopathy
could have been missed.

In addition, we should consider that liver cirrhosis is a
heterogeneous disease that consequently leads to a wide
spectrum of patients with differing underlying causes for
those changes (e.g., virus infection, metabolism disor-
ders, drug exposure, side effects of medication, etc.).
Therefore, the Child-Pugh classification might not be
the perfect measure to assess the severity of liver fibro-
sis. Whether this clinical categorisation of disease sever-
ity leads to weak predictions for all models remains to
be investigated. Also, the use of three-dimensional CNN
deserves future investigations requiring a greater num-
ber of patients, being the number of parameters higher
than that considered for two-dimensional CNN.
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Finally, we note that invasive liver biopsy is still the
standard of care for diagnosis and grading liver cirrhosis.
However, image data can yield additional information that
is accessible noninvasively, thus easier to acquire and can
be considered to supplement clinically established labora-
tory parameters. Thus, machine learning algorithms—in
particular CNN—may provide additional quantitative and
objective information to assess functional liver status
based on clinical CT images.
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