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of breast cancer therapy response:
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Abstract

Background: To investigate the potential of semiquantitative time-intensity curve parameters compared to textural
radiomic features on arterial phase images by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
for early prediction of breast cancer neoadjuvant therapy response.

Methods: A retrospective study of 45 patients subjected to DCE-MRI by public datasets containing examination
performed prior to the start of treatment and after the treatment first cycle (‘QIN Breast DCE-MRI’ and ‘QIN-Breast’)
was performed. In total, 11 semiquantitative parameters and 50 texture features were extracted. Non-parametric
test, receiver operating characteristic analysis with area under the curve (ROC-AUC), Spearman correlation
coefficient, and Kruskal-Wallis test with Bonferroni correction were applied.

Results: Fifteen patients with pathological complete response (pCR) and 30 patients with non-pCR were
analysed. Significant differences in median values between pCR patients and non-pCR patients were found for
entropy, long-run emphasis, and busyness among the textural features, for maximum signal difference, washout slope,
washin slope, and standardised index of shape among the dynamic semiquantitative parameters. The standardised
index of shape had the best results with a ROC-AUC of 0.93 to differentiate pCR versus non-pCR patients.

Conclusions: The standardised index of shape could become a clinical tool to differentiate, in the early stages of
treatment, responding to non-responding patients.
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Key points

� Significant differences between pathological
complete response (pCR) and non-pCR patients
were found for texture parameters.

� Standardised Index of shape (SIS) showed the
highest accuracy to differentiate pCR patients from
non-pCR patients.

� SIS could become a clinical tool to differentiate early
responders by non-responders.

Background
Breast cancer is the most common cancer diagnosed in
the USA [1]. Neoadjuvant therapy (NAT) has been rec-
ommended in locally advanced disease [2, 3] to deter-
mine a downstaging for a following resection to increase
tumour control likelihood and breast-conserving surgery
rate [4]. Pathologic complete response (pCR) after NAT
has been found to be related with long-term clinical
benefit, such as disease-free and overall survival [5, 6].
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Dynamic contrast-enhanced magnetic resonance im-
aging (DCE-MRI), being a non-invasive imaging method
to measure tissue microvascular perfusion and perme-
ability, is used in clinical trials and research settings to
assess NAT response [7]. In clinical settings, changes in
tumour size are usually used to assess breast cancer re-
sponse to NAT. However, changes in tumour size often
were found to manifest later compared with changes in
vascular tumour functions [8]. There is extensive litera-
ture showing that semiquantitative [9] or quantitative
pharmacokinetic analysis [10] of DCE-MRI data can
provide better prediction, also in early phase, of breast
cancer pathologic response to NAT than tumour size
changes.
Previous studies have investigated functional parame-

ters derived from DCE-MRI to assess neoadjuvant treat-
ment such as the standardised index of shape (SIS)
proposed by Petrillo et al. [11–15] as a simple semiquan-
titative feature capable to predict pathological significant
response and pathological complete response (pCR) after
chemo-radiation therapy or after short course radiother-
apy. Petrillo et al. demonstrated the ability of SIS to pre-
dict pRC and pathological significant response after
preoperative chemo-radiotherapy in locally advanced
rectal cancer [11–15]. Moreover, texture analysis from
breast DCE-MRI has been shown to be effective in appli-
cations such as automatic lesion segmentation [16, 17]
and cancer diagnosis [18, 19].
Here, we conducted a radiomic analysis of statistical

texture features extracted by arterial phase of DCE-MRI
and semiquantitative dynamic parameters for early pre-
diction of breast cancer response to NAT. We report
our preliminary findings on the performance of these
two kinds of data.

Methods
Dataset characteristics
Two public dataset were used: ‘QIN Breast DCE-MRI’
and ‘QIN-Breast’.
The public dataset ‘QIN Breast DCE-MRI’ from The

Cancer Imaging Archive (TCIA) collection [20, 21] is
composed of ten patients subjected to DCE-MRI using a
Siemens 3-T TIM Trio system with the body coil and a
four-channel bilateral phased-array breast coil. Axial bi-
lateral DCE-MRI images with fat saturation and full
breast coverage were acquired with a three-dimensional
gradient echo-based time-resolved angiography with
stochastic trajectories sequence. DCE-MRI acquisition
parameters included echo time 2.9 ms and repetition
time 6.2 ms; field of view 30–34 cm, in-plane matrix size
320 × 320; and slice thickness 1.4 mm. The total acquisi-
tion time was about 10 min for 32–34 image volume sets
of 112–120 slices each, with a temporal resolution of
18–20 s. The contrast agent was Gd-HP-DO3A,

gadoteridol (Bracco Imaging, Milan, Italy), intravenously
injected (0.1mmol/kg at 2mL/s) by a programmable
power injector timed to commence after acquisition of
two baseline image volumes, followed by a 20-mL saline
flush. The public data set can be downloaded at https://
wiki.cancerimagingarchive.net/display/Public/QIN+
Breast+DCE-MRI.
The public dataset ‘QIN-Breast’ from The Cancer

Imaging Archive (TCIA) collection [21, 22] is composed
of 35 patients subjected to DCE-MRI using a 3-T Philips
Achieva system using a dedicated 16-channel bilateral
breast coil. Axial bilateral DCE-MRI images with fat sat-
uration and full breast coverage were acquired with a ra-
diofrequency spoiled three-dimensional gradient echo
sequence. Acquisition parameters included echo time
7.9 and repetition time 4.6 ms, field of view 22 cm2, in-
plane matrix size 192 × 192, and slice thickness 5 mm.
For the DCE study, each 20-slice set was collected in 16
s at 25 time points for just under 7 min of dynamic
scanning. The contrast agent was Gd-DTPA and gado-
pentetate dimeglumine (Bayer Health Care Pharmaceuti-
cals, Wayne, NJ, USA) was intravenously injected (0.1
mmol/kg at 2 mL/s) by a programmable power injector
timed to commence after acquisition of two baseline
image volumes, followed by a 20-mL saline flush. The
public data set can be downloaded at https://wiki.cancer
imagingarchive.net/display/Public/QIN-Breast.
The NAT protocol administered to these patients was

left to the discretion of the treating oncologist based on
patient factors such as menopausal status and age as well
as tumour characteristics, including size, grade, nodal
status and receptor status and was reported by Li et al.
in [22]. Both these collections of breast DCE-MRI data
contain images from two studies to assess NAT re-
sponse. Images were acquired at two time points: before
and after the first cycle of treatment.

Data analysis
Manual segmentation was performed by an expert breast
radiologist (with a 25-year experience) on the post-
contrast arterial phase images, drawing manually each
slice to obtain the delineating of the whole tumour con-
tours (volume of interest).

Textural features
We considered 50 textural features, including both first-
order features (mean, mode, median, standard deviation
[SD], median absolute deviation, range (absolute differ-
ence between maximum and minimum values), kurtosis,
skewness, and interquartile range) and second-order
features. Calculations were performed using the ‘Tex-
tureToolbox’ of MATLAB R2007a (MathWorks, Natick,
MA, USA) that performs texture analysis from an input
by region or volume of interest. In particular, this
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texture analysis package allows for wavelet band-pass
filtering, isotropic resampling, discretisation length cor-
rections and different quantitation tools. A detailed de-
scription has been provided by Vallières et al. [23]. The
toolbox can be downloaded at https://it.mathworks.com/
matlabcentral/fileexchange/51948-radiomics. The defin-
ition of significant textural features reported in the “Re-
sults” section is provided in Additional file 1.

Semiquantitative dynamic parameters
A time-intensity curve can be subdivided into three
regions. The first one represents the contrast medium
time needed to reach the lesion, and the signal inten-
sity is equal to the basal level before contrast agent
injection; the second one shows the increase in signal
intensity because of contrast medium absorption
(washin) according to the tumour biology; the third
one mainly represents the backflow of the contrast
medium into the plasma (washout). To estimate shape
descriptors, a piecewise linear fitting was made and
ten semiquantitative dynamic features described in
the literature [24–26] were extracted using the ap-
proach reported in a previous publication from our
group [25], maximum signal difference (MSD), time
to peak between washin and washout segments,
washin slope (WIS), washout slope (WOS), washin
intercept, washout intercept, area under the curve of
washin, area under the curve of washout, and area
under the curve of washin and washout. The last
semiquantitative dynamic feature was the SIS obtained
combining linearly the percentage change of MSD
and WOS. Therefore, for SIS calculation, the percent-
age change of MSD [ΔMSD = (MSD1 - MSD2)/
MSD1 × 100], and of WOS [ΔWOS = (WOS1 -
WOS2)/WOS1 × 100] and their combination as previ-
ously described [11] was evaluated. Standardised SIS
was given by the following linear combination:
0.7780*ΔMSD + 0.6157*ΔWOS. In order to evaluate
the SIS, an OsiriX (Pixmeo SARL, Geneva,
Switzerland) plugin has been developed by the
authors.

Reference standard and pathological methods
The reference standard was the pathology from surgi-
cal specimen. Fifteen pCR patients and 30 non-pCR
patients were included in this retrospective study. The
pCR was classified according to Miller-Payne grade:
grade 1 for no reduction, grade 2 for minor loss (≤
30%), grade 3 for loss from 30 to 90%, grade 4 for
marked loss (> 90%), and grade 5 for no residual in-
vasive cancer. Patients with grades 1, 2, 3, or 4 were
scored as non-pCR.

Statistical analysis
Median, SD, and range were calculated as representative
values of segmented volumes of interest. Percentage change
of median values of parameters obtained before and after
the first cycle of treatment was calculated. Receiver operat-
ing characteristic analysis was used for obtaining the area
under the curve (ROC-AUC). Sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV),
and accuracy were obtained considering the optimal cutoff
values identified maximising the Youden index.
For two-group comparisons, we used the non-

parametric Kruskal-Wallis test for continuous variables.
A p value < 0.05 was considered as significant for uni-
variate analysis. Bonferroni correction was applied for
multiple comparisons.
Calculations were performed using the Statistics and

Machine Learning Toolbox of MATLAB R2007a (Math-
Works, Natick, USA).

Results
Table 1 reports the median, SD, and range of the percent-
age change for the significant features in the differenti-
ation pCR from non-pCR patients. Significant differences
in median values between pCR patients and non-pCR pa-
tients using the Kruskal-Wallis test were found for en-
tropy, long-run emphasis (LRE), and busyness among the
textural features and for MSD, WOS, WIS and SIS among
the dynamic parameters.
Table 2 reports accuracy for the significant features: en-

tropy (accuracy 71%), LRE (accuracy 71%), busyness (ac-
curacy 76%), MSD (accuracy 78%), WIS (accuracy 78%),
WOS (accuracy 82%), and SIS (accuracy 89%). The SIS
showed the best performance with a ROC-AUC of 0.93, a
sensitivity of 93%, a specificity of 87%, a PPV of 78%, and
a NPV of the 96%, using an optimal cutoff value of 56.47%
to differentiate pCR from non-pCR patients. The SIS in-
creased the accuracy of 13% respect to the better param-
eter among texture features, of 11% compared to MSD
and WIS and of 7% respect to WOS.
In Fig. 1, boxplots for the significant textural features

(entropy, LRE, busyness) and dynamic features (WIS,
WOS, MSD, and SIS) to separate pCR from non-pCR pa-
tients are reported. Moreover, Fig. 1 shows ROC-AUC
curves for all significant parameters (entropy, LRE,
busyness, WIS, WOS, MSD, SIS). In Fig. 2, a case of non-
pCR is shown: morphological images did not show a sig-
nificant change in tumour size while there was a signifi-
cant modification in time-intensity curve before and after
the first cycle of treatment while the SIS value was 72.3%.

Discussion
Recent advances in biomedical image analysis have
emphasised that MRI contrast kinetic parameters and
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texture analysis, as quantitative metrics, can offer a re-
fined local tumour description of complexity, heterogen-
eity and kinetic behaviour [27–29].
Teruel et al. [30] presented the findings on 16 textural

statistical features extracted by DCE-MRI that are capable to
predict early NAT tumour response. Golden et al. [27] used
similar texture features to predict pCR, residual lymph node
metastases and residual tumour in patients with triple-
negative breast cancer. Moreover, Thibault et al. [28] re-
ported that breast tumour microvasculature heterogeneity
as a texture feature could be a useful biomarker for early
prediction of NAT response. However, these studies used
statistical texture description without taking advantage of in-
formation provided by the T1-weighted DCE-MRI curve.
Martincich et al. [29] showed that a reduction in the

tumour volume > 65% and a reduction in the early en-
hancement ratio after two cycles of preoperative therapy
were associated with a major histopathological response.
Combining tumour volume and early enhancement ratio

reduction after two cycles of therapy reached a 93%
diagnostic accuracy to identify pCR.
We have extracted multiple statistical texture features

on arterial phase of DCE-MRI and semi-quantitative
kinetic parameters before and after one cycle of NAT in
order to assess early pathological response using two
public dataset acquired with 3T MR scanner. Our mono-
variate analysis shows statistically positive results for en-
tropy (71% of accuracy), LRE (71% of accuracy),
busyness among texture features (76% of accuracy) and
for MSD (78% of accuracy), WIS (78% of accuracy),
WOS (82% of accuracy), and SIS (89% of accuracy)
among semi-quantitative kinetic metrics. Textural fea-
ture results for entropy, LRE and busyness confirmed
the results presented by Thibault et al. [28], suggesting
changes in the spatial heterogeneity of the tumour
microenvironment as one of the initial NAT effects.
Moreover, our perfusion and permeability as semi-

quantitative dynamic parameters, measured by contrast

Table 2 Diagnostic accuracy for significant features differentiating patients with pathologic complete response (pCR) versus non-pCR
patients

p value* ROC-AUC Sensitivity Specificity PPV NPV Accuracy Cutoff

Textural features Δ Entropy 0.024 0.71 0.67 0.73 0.56 0.81 0.71 3.78

Δ LRE 0.021 0.71 0.73 0.70 0.55 0.84 0.71 0.57

Δ Busyness 0.020 0.72 0.67 0.80 0.63 0.83 0.76 34.38

Dynamic features Δ MSD 0.013 0.74 0.67 0.83 0.67 0.83 0.78 27.74

Δ WIS < 0.001 0.73 0.60 0.87 0.69 0.81 0.78 73.62

Δ WOS 0.012 0.86 0.87 0.80 0.68 0.92 0.82 24.42

SIS < 0.001 0.93 0.93 0.87 0.78 0.96 0.89 56.47

LRE Long-run emphasis, MSD Maximum signal difference, NPV Negative predictive value, PPV Positive predictive value, ROC-AUC Receiver operating characteristic
area under the curve, SIS Standardised index of shape, WIS Washin, WOS Washout slope
*Kruskal-Wallis test

Table 1 Median, standard deviation and range of the percentage change for significant features differentiating patients with
pathologic complete response (pCR) from non-pCR patients

Δ Entropy (%) Δ LRE (%) Δ Busyness (%) Δ MSD (%) ΔWIS [%] ΔWOS [%] SIS (%)

Non-pCR patients Median 0.28 0.29 23.79 12.49 38.52 -11.43 9.59

SD 7.30 2.28 75.93 38.94 50.21 95.11 63.80

Range 30.57 12.60 298.18 234.22 210.05 420.02 320.65

pCR patients Median 5.03 1.30 38.83 68.89 87.35 143.67 125.17

SD 11.69 1.84 37.75 45.30 47.37 129.24 251.58

Range 43.82 7.52 134.56 142.17 155.66 492.36 779.98

Total Median 2.16 0.52 27.67 17.00 50.54 20.74 27.96

SD 9.57 2.21 68.69 43.92 51.28 130.15 183.57

Range 43.82 12.60 307.92 250.40 224.91 641.45 993.42

p value* 0.021 0.024 0.023 0.014 0.012 < 0.001 < 0.001

Range represents the absolute difference between maximum and minimum values
LRE Long-run emphasis, MSD Maximum signal difference, SD Standard deviation, SIS Standardised index of shape, WIS Washin slope, WOS Washout slope
*Kruskal-Wallis test
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kinetics, have reported good results, especially WOS and
SIS, indicating that changes in DCE-MRI are important
markers for identifying early pCR [11, 24, 29].
However, SIS analysis reached the best results in terms

of sensitivity, specificity, PPV, and NPV, reporting the
highest ROC-AUC value (0.93) for predicting pCR. With
the optimal cutoff value, SIS increases the accuracy of
13% compared to the better parameter among texture
features, of 11% compared to MSD and WIS and of 7%
compared to WOS.
This study has several limitations. First of all, this pool

of patients derives from two different public datasets

created in two different hospitals with two different MR
machines using two different sequence tools. Second,
the small cohort of studied patients represents an initial
finding to validate increasing sample size of the study in
the future. Third, NAT regimen is not available for each
patient because the analysed MR images were obtained
by public dataset. Finally, this analysis did not consider
tumour histological differences. In fact, the potential in-
tegration of texture, morphological and dynamic metrics
combined with histopathology results may provide other
important prognostic information for the assessment
and the prediction of therapy response.

Fig. 1 Boxplots for those metrics significantly separating patients with pathologic complete response (pCR) from non-pCR patients. Textural
features: (a) entropy, (b) long-run emphasis (LRE) and (c) busyness. Dynamic parameters: (d) washin slope (WIS), (e) washout slope (WOS), (f)
maximum signal difference (MSD), (g) standardised index of shape (SIS). h Receiver operating characteristic area under the curve for all these
significant metrics
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In conclusion, although validation in larger patient
populations is needed, feature extraction approach and
SIS can become important clinical tools to identify and
differentiate, in the early stages of NAT treatment,
responding and non-responding patients for alternative
personalised therapy regimens.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s41747-019-0141-2.
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