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Multiparametric quantitative and texture
18F-FDG PET/CT analysis for primary
malignant tumour grade differentiation
Mykola Novikov

Abstract

Background: 18F-FDG positron emission tomography/computed tomography (PET/CT) is a successfully used
imaging modality in oncology. The aim of the study was to investigate a connection of epithelial tumour
differentiation grade with both semiquantitative and quantitative metabolic PET data focusing on creation of
multiparametric model of tumour grade prediction utilising both standardised uptake value-based and texture-
based 18F-FDG PET parameters and to investigate an influence of different image segmentation techniques on
these parameters and modelling.

Methods: 18F-FDG PET/CT data from 84 patients with epithelial malignant tumours was retrospectively analysed to
create sets of both conventional semiquantitative (based on standardised uptake values), volumetric, and
quantitative texture metabolic parameters of primary tumours with four different segmentation techniques.

Results: Most of the calculated volumetric and texture parameters showed to be influenced by segmentation
technique. There was no significant difference in values of only three parameters, in all four segmentation methods:
homogeneity, energy, and sphericity. Almost every extracted parameter in all segmentation technique subsets
showed significant ability to discriminate individual tumour grade versus the subset of remaining two tumour
grades. No parameters were able to discriminate all three tumour grades separately simultaneously or without the
overlapping of threshold values. Group method of data handling (GMDH) modelling included all the above-
mentioned extracted parameters. The highest value to discriminate tumour grade was achieved using ITK-SNAP
segmentation, with an accuracy ranging from 91 to 100%.

Conclusions: Multiparametric modelling with GMDH utilising both semiquantitative and quantitative texture
metabolic PET parameters seems to be an interesting tool for non-invasive malignant epithelial tumours grade
differentiation.

Keywords: Biomarkers, Fluorodeoxyglucose F18, Radiomics, Positron emission tomography computed tomography,
Texture analysis

Key points

� Malignant tumour grade is an important prognostic
factor.

� Metabolic positron emission tomography/computed
tomography quantitative analysis showed ability to
discriminate different tumour grades in primary
epithelial malignant tumours.

� The highest accuracy in tumour grade prediction
was achieved when multiparametric modelling is
applied.

Background
Metabolic positron emission tomography, combined with
computed tomography (PET/CT) utilising 18F-labelled
fluorodeoxyglucose (18F-FDG), is a successfully used im-
aging modality for oncologic patients in different clinical
scenarios, ranging from staging to response assessment and
prognostication [1–3]. Images produced by 18F-FDG PET/
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CT may be analysed visually or qualitatively by a physician
and semiquantitatively or quantitatively by a vast range of
parameters and metrics, derived from those images. Quali-
tative analysis by visual assessment may be sufficient for
many routine oncological scenarios, but it is inevitably sub-
jected to intra- and inter-observer variations [4].
True quantitative parameters in PET/CT are obtained

by applying proper kinetic modelling to dynamic imaging
acquisition, which is rarely performed in clinical practice.
In daily work, to achieve objective interpretation, multiple
semiquantitative parameters are generated, most of them
being standardised uptake value (SUV) based and not
requiring dynamic acquisition. Their clinical value was
vastly studied and validated across multiple studies [5–
10]. Along with objectification of PET data interpretation
to support clinical decision-making, quantitative analysis
provides new multiple layers of information that helps
non-invasive tumour characterisation. Different methods
of mathematical image manipulations, including texture
analysis, were developed to extract multiple quantitative
features from metabolic PET images.
The process aimed at mining of maximum amount of

data from digital medical imaging eventually has been
termed “radiomics”. Further combination of data acquired
through radiomic process with different sorts of patient
data (for example, clinical or laboratory tests, histopatho-
logical features, or genetic information) with bioinformatics
tools allows to develop models that may potentially im-
prove diagnostic, prognostic, and predictive accuracy [11].
Recently, multiple studies were conducted to search

for imaging parameters as imaging biomarkers, resulting
in creation of myriad of indices. Unfortunately, those in-
dices had frequently discordant clinical value or rela-
tively low repeatability as reported by different authors
and groups. These limitations most likely arose due to
multiple steps required to extract and calculate parame-
ters, high dependence on image acquisition techniques,
and variability of mathematical tools used to connect
imaging metrics and clinical data [12].
In this study, we aimed to investigate the relation be-

tween metabolic 18F-FDG PET data (semiquantitative
SUV-based and quantitative texture parameters) with
tumour differentiation grade (as a basic parameter reflect-
ing biologic aggressiveness) to generate a multiparametric
model of tumour grade prediction and investigate about
the influence of different image segmentation techniques
on parameters and final modelling.

Methods
Patients
We analysed data from pre-treatment 18F-FDG PET/CT
scans of 84 patients with primary epithelial malignant
tumours, 44 males (53%) and 40 females (47%), with me-
dian (interquartile range) age of 56.5 (30–66) years: 21

(25.0%) with squamous cervical carcinomas, 30 (35.7%)
with squamous head and neck carcinomas, and 33
(39.3%) with non-small cell lung carcinomas. All primary
tumours were proven by histological examination of bi-
opsy samples or surgical materials. All patients included
did not have significant liver disease or liver failure at
the moment of pre-treatment scan, according to labora-
tory exams. Differentiation grade of primary tumour le-
sions was identified during these examinations by
pathologists with at least 7 years of experience according
to the American Joint Committee on Cancer staging
manual [13]. Grade 1 was identified in 8 tumours (9.5%),
grade 2 in 50 (59.5%), and grade 3 in 26 (31%).

PET/CT procedure
All 18F-FDG PET/CT scans were performed with a Gemini
16 PET/CT scanner (Philips Medical Systems, Cleveland,
OH, USA). The examination technique was performed fol-
lowing previously published guidelines for 18F-FDG im-
aging in solid malignant tumours issued by the European
Association of Nuclear Medicine (EANM) [14]. All pa-
tients fasted for 6 h prior to examination, blood glucose
level before the 18F-FDG injection did not exceed 150mg/
dL, and time of 18F-FDG distribution varied from 60 to 75
min. The injected activity was calculated according to pre-
viously published guidelines [14]. The protocol included
CT scanning after intravenous injection of iodinated non-
ionic contrast agent Ultravist 370 (Bayer AG, Germany),
with doses of 1ml per 1 kg of patient’s weight in portal-
venous acquisition phase and oral administration of water
for better differentiation of bowel loops.

Segmentation techniques
Four different techniques were applied to segment primary
tumour volume on PET/CT images. A large spherical vol-
ume of interest (VOI) was initially manually placed to in-
corporate the whole visible tumour with additional caution
paid not to include areas of high physiologic activity (such
as urine in bladder for cervical tumours or myocardial ac-
tivity for lung tumours) using multiplanar reconstructions.
Segmentation inside this initial VOI was performed with
four different methods or rules: fixed thresholding with
SUVmax 2.5 cutoff; fixed thresholding with liver pool cut-
off; fixed thresholding with 41% of SUVmax inside volume
cutoff; and segmentation with the free, open-source ITK-
SNAP software, version 3.8.0 (http://www.itksnap.org/
pmwiki/pmwiki.php). The first three segmentation tech-
niques were performed by OsiriX MD software, version
8.0.2 (https://www.osirix-viewer.com/osirix/osirix-md/).
When performing liver pool thresholding technique,

the value of liver pool uptake was identified as mean
SUV inside a spherical volume of interest (diameter 3
cm) placed in the right liver lobe, avoiding malignancies
and organ boundaries, as previously suggested by
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published guidelines [14]. As already said, all patients
did not have significant liver disease or liver failure at
the moment of pre-treatment scan, according to la-
boratory exams.
The ITK-SNAP segmentation implements two 3D active

contour segmentation methods: Geodesic Active Contours
and Region Competition. Detailed mathematical insight
into algorithms implemented in this software lies beyond
the scope of current study and may be found in the paper
by Yushkevich et al. [15]. Although initially designed and
tested for anatomical segmentation of brain structures, this
segmentation technique has been validated both for other
anatomical segmentation applications, e.g., for airway vol-
ume measurement on cone beam CT images by Almuzian
et al. [16] and for lung cancer metabolic volume segmenta-
tion on 18F-FDG-PET imaging by Besson et al. [17].

Semiquantitative and quantitative features extraction
All segmented tumour volumes are exported to LIFEx
software, version 4.70 (https://www.lifexsoft.org/), for fur-
ther semiquantitative and texture analysis. Several groups
of semiquantitative parameters and texture features were
extracted from segmented volumes. The conventional
volumetric parameters were SUVmean, metabolic tumour
volume (MTV), and tumour lesion glycolysis (TLG).
Histogram parameters were skewness, kurtosis, entropy,
and energy. Shape parameters were sphericity and compa-
city (the latter being the volume fraction that is filled in a
granular medium, e.g., sand). Texture parameters were ex-
tracted from three different matrices: homogeneity and
entropy from grey level co-occurrence matrix (GLCM);
short-run emphasis (SRE) and long-run emphasis (LRE)
from grey level run length matrix; and low grey level zone
emphasis (LGZE) and high grey level zone emphasis
(HGZE) from grey level zone length matrix.
Before texture feature extraction, spatial resampling, in-

tensity rescaling, and intensity discretisation of segmented
voxels were performed. All volumes were resampled to
produce isometric voxels of 4 × 4 × 4mm in size; absolute
resampling was used for intensity rescaling with bounds
from 0 to 30 SUV; and 64 grey levels applied for intensity
discretisation. It should be noted that only tumour vol-
umes bigger than 64 voxels were included into analysis to
allow adequate texture features extraction, thus scans of
the patients with relatively small tumours were initially ex-
cluded before the study group formation.

Data analysis and multiparametric modelling
Statistical analysis of extracted data was performed with SPSS
Statistics 21.0 software (IBM, Armonk, NY, USA). Initially,
search for difference in values of collected quantitative features
depending on segmentation technique was applied. As a sec-
ond step, receiver operating characteristic (ROC) analysis of
individual quantitative and texture parameters in order to

discriminate tumour grade was performed. Following analysis
of individual parameters, a multiparametric modelling utilising
group method of data handling was used.
Values of individual parameters from different seg-

mentation techniques were compared using multiple
comparison with Bonferroni correction. Student’s t test
and Mann-Whitney U test were utilised. Statistical test
was chosen according to the type of data distribution,
which was defined using Shapiro-Wilk W test. Data are
presented as mean ± standard deviation (SD) or median
and interquartile range (IQR), accordingly.
Group method of data handling (GMDH) algorithm, or

also known as polynomial neural networks or abductive
and statistical learning networks, was used to create pre-
dictive models.
GMDH is a set of several algorithms for solution of

different modelling problems. It consists of parametric,
clusterisation, analogue complexing, rebinarisation, and
probability algorithms. This inductive approach is based on
sorting out of gradually complicating models and selection
of the optimal solution by minimum of external criterion
characteristic. Initially suggested in 1971 by Ivakhnenko
[18], this algorithm was developed and implemented in
multiple practical scenarios, including handling of biomed-
ical data [19, 20]. GMDH analysis was performed with
dedicated GMDH DS software (GMDH LLC, USA, New
York) version 6.4.
In order to compare and select the most powerful

model, external criteria are generated with random separ-
ation of whole dataset into subsets. Parameter evaluation
and assessment of model quality is based on different sub-
sets. For this study, the primary dataset was divided into
three parts. Models of different complexity were generated
on teaching subset (70% of cases), and external criteria for
choosing the optimal model were generated from exam
subset (20% of cases). Additional 10% validation subset
was generated to test the quality of generated model. This
subset was not included in the process of model gener-
ation and selection.
Several measures were used to assess model perform-

ance during modelling process. For each model, C-
statistic (similar to the area under the receiver operating
characteristic curve), overall performance, root mean
square error (RMSE), and F-measure were performed,
along with sensitivity and specificity measures as most
common measure to assess model performance.

Results
Influence of segmentation techniques on quantitative and
texture indices
Most of the calculated indices showed significant differ-
ence in values, depending from segmentation technique
(Fig. 1). There was no significant difference in values for
only three parameters, in all four segmentation methods:
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homogeneity from GLCM, energy from histogram indices,
and sphericity from shape analysis (p > 0.05 in all
combination of pairs of segmentation techniques,
Table 1). Conventional volumetric parameters (SUV-
mean, MTV, and TLG) showed significant variability,
depending on segmentation technique, as being dir-
ectly influenced by the number and value if segmented
voxels. For instance, MTV values for different tech-
niques varied as follows: median 38.7 (IQR 20.3–70.2)
for SUVmax with 2.5 threshold; 19.6 (9.0–31.0) for 41%
SUVmax; 53.0 (26.1–92.1) for liver pool fixed threshold,
and 30.0 (16.6–54.5) for ITK-SNAP. There was no sig-
nificant difference for all three conventional volumetric
parameters between SUVmax with 2.5 fixed threshold
technique and liver pool fixed threshold technique
(SUVmean, p = 0.201; MTV p = 0.163; TLG, p = 0.393).

Individual quantitative and texture parameters and grade
differentiation
Almost every extracted parameter in all segmentation
technique subsets showed statistically significant abil-
ity to discriminate certain individual tumour grade
(versus the subset of remaining two tumour grades,
taking into account all possible pairs/combinations) at
ROC analysis. But none of the parameters were able
to discriminate all three tumour grades separately
simultaneously or without the overlapping of thresh-
old values. In separation of grade 1 tumours, the
highest value was shown for MTV in SUVmax with
2.5 threshold and ITK-SNAP segmentation technique
subsets with an area under the curve (AUC) at ROC

analysis of 0.773 and 0.766 respectively. Applying a
threshold of < 26.9, sensitivity was 81.0% and specifi-
city 70.6%; applying a threshold of < 19.9, sensitivity
was 84.2% and specificity 72.0%. For 41% SUVmax
threshold segmentation, the TLG subset showed the
highest AUC (0.717), with 75.0% sensitivity and 64.5%
specificity for < 110.6 threshold. As for the grade 1 in
liver pool threshold subset, compacity achieved high-
est AUC of 0.762 with 72.7% sensitivity and 82.7%
specificity for < 1.478 threshold.
When separating grade 2 tumours, different parameters

showed relatively higher value in different segmentation
subsets. Using ITK-SNAP segmentation, LGZE achieved
an AUC of 0.686 with 92.1% sensitivity and 38.1% specifi-
city (> 0.004 threshold). Using liver pool segmentation,
SRE achieved an AUC of 0.690, with 75.9% sensitivity and
55.0% specificity (< 0.941 threshold). Using 41% SUVmax
segmentation, entropy achieved an AUC of 0.664 with
37.5% sensitivity and 86.8% specificity (< 1.225 threshold).
Using SUVmax with 2.5 threshold segmentation, LGZE
achieved an AUC of 0.680, with 45.1% sensitivity and
82.8% specificity (> 0.012 threshold).
When analysing the ability of individual parameters to

identify grade 3 tumours, more homogeneous results
were achieved. For all four different segmentation sub-
sets, HGZE texture index achieved the highest value.
The AUC of this parameter for ITK-SNAP, liver pool,
41% SUVmax, and SUVmax 2.5 threshold techniques
was 0.717, 0.717, 0.715, and 0.713 respectively. Resulting
sensitivities were 42.3%, 43.5%, 46.2%, and 47.2% re-
spectively, while specificities were 96.2%, 93.4%, 91.4%,

Fig. 1 Different volumes of interest on PET images of a primary lung adenocarcinoma, produced by different segmentation techniques
(presented with different colours), resulting in different values of semiquantitative metabolic parameters. MTV Metabolic tumour volume, PET
Positron emission tomography, TLG Total lesion glycolysis, SUVmean Mean standardised uptake value
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and 92.6% respectively. Corresponding calculated thresh-
old values were > 386.7, > 272.5, > 509.4, and > 277.5.

Multiparametric modelling and grade differentiation
Sensitivity, specificity, and overall accuracy obtained for
each optimal selected model in all of four segmentation
datasets for each tumour grade are shown in Table 2.
The highest value to discriminate tumour differentiation
grade was achieved in ITK-SNAP segmentation subset.

Discussion
Differentiation grade is an important biologic feature of
malignant tumours, frequently incorporated into prognosti-
cation and influencing strategic decisions in patient man-
agement. Though being routinely identified during
histopathological examination of biopsy samples or surgical
material, noninvasive identification of tumour grade by
means of semiquantitative and quantitative analysis of

medical images represents interest in the context of com-
bining radiomics with important clinical data. In the
current study, we attempted to incorporate multiple semi-
quantitative and quantitative metabolic features into
multiparametric modelling in order to try to differenti-
ate tumour grades noninvasively.
In our dataset, we used multiparametric analysis by

group method of data handling, incorporating all the ex-
tracted semiquantitative and quantitative features to cre-
ate models that appeared to discriminate all three tumour
grades in epithelial tumours with an overall accuracy ran-
ging from 71 to 100%. It should be noted that these results
were achieved for all four different segmentation tech-
nique datasets. The relatively most accurate model was
achieved in subset with active contouring technique (ITK-
SNAP segmentation).
Tumour segmentation in metabolic PET images is one

of the most important steps in radiomics as it defines a

Table 1 Stable radiomic parameters, independent from segmentation technique

GLCM homogeneity Energy Sphericity

Absolute values in different segmentation techniques

SUVmax 2.5 threshold 0.37 ± 0.09 0.08 (0.06–0.12) 1.03 ± 0.05

Liver pool fixed threshold 0.38 ± 0.09 0.08 (0.06–0.12) 1.03 ± 0.04

41% SUVmax threshold 0.37 ± 0.08 0.09 (0.07–0.13) 1.04 ± 0.06

ITK-SNAP segmentation 0.37 ± 0.09 0.08 (0.06–0.13) 1.04 ± 0.05

p values for hypothesis of significant difference

2.5 versus liver 0.582 0.632 0.844

2.5 versus ITK-SNAP 0.788 0.954 0.541

2.5 versus 41% 0.968 0.344 0.534

Liver versus 41% 0.554 0.122 0.633

Liver versus ITK-SNAP 0.423 0.596 0.653

41% versus ITK-SNAP 0.819 0.303 0.932

Data are presented as mean ± standard deviation or median with interquartile range in parentheses
GLCM Grey level co-occurrence matrix, SUV Standardised uptake value

Table 2 Diagnostic accuracy of group method of data handling models to discriminate tumour differentiation grade in volumes
from different segmentation techniques

Tumour differentiation
grade

Segmentation techniques

SUVmax 2.5 Liver pool 41% SUVmax ITK-SNAP

Model value (sensitivity %/specificity
%/overall accuracy %)

1 78.6/100.0/82.4 100.0/100.0/100.0 83.3/100.0/86.7 100.0/100.0/100.0

2 66.7/75.0/70.6 90.9/100.0/93.8 87.5/85.7/86.7 83.3/100.0/93.8

3 81.8/66.7/76.5 71.4/88.9/81.3 90.0/80.0/86.7 80.0/100.0/90.6

Model value (C-statistic/root mean
square error/F-measure)

1 0.818/0.457/0.778 0.989/0.244/0.943 0.961/0.288/0.921 0.976/0.244/0.946

2 0.672/0.606/0.618 0.928/0.349/0.875 0.940/0.335/0.887 0.975/0.233/0.988

3 0.672/0.679/0.540 0.967/0.321/0.892 0.955/0.301/0.901 0.944/0.216/0.991

SUV Standardised uptake value
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group of voxels that are being assigned as representing
active tumour tissue and all further mathematical ma-
nipulations for extraction of quantitative indices relies
on these selected voxels. The segmentation is affected by
various factors, both intrinsic and extrinsic, such as spatial
resolution, noise level, shape, and location of pathologic
tracer uptake [21]. Low spatial resolution of metabolic PET,
especially, compared to anatomic imaging modalities,
makes it difficult to define the precise tumour borders.
Through recent years of research, a wide variety of segmen-
tation or delineation techniques were proposed, including
manual, thresholding-based, and boundary-based methods.
Unfortunately, still no general agreement exists on optimal
segmentation technique for PET radiomic studies.
First of all, different segmentation methods produce

different values of quantitative parameters, mostly due
to the inclusion or non-inclusion of necrotic tumour
portions. The thresholding techniques with different cut-
off values (SUV 2.5, relative thresholds of certain per-
centage of SUVmax, adaptive thresholding, for example
Nestle’s method [22]) are ones that are more commonly
used due to simplicity and intuitive and rapid workflow.
Nevertheless, they are known to underestimate tumour
volume and are susceptible to contrast variations, noise
levels, and heterogeneity [23, 24].
In the current study, we used segmentation techniques

offering different approaches. SUV 2.5 threshold tech-
nique was chosen as representing an “everyday practical”
approach, as one of the simplest and less time consum-
ing method, being easily incorporated into everyday
practice. However, since SUV 2.5 threshold was first in-
troduced in 2001, its clinical value was validated just for
the solitary pulmonary nodule scenario [25]. Liver pool
threshold technique was chosen in order to try to extend
principles implemented in PET/CT imaging in lymph-
omas, being one of the reference sites in Deauville scor-
ing system [26]. Forty-one percent SUVmax threshold
technique was chosen as one of the methods suggested
by EANM guidelines [13]. ITK-SNAP algorithm segmen-
tation was chosen as representing an alternative, non-
threshold approach, relying on three-dimensional active
contour methods.
As theoretically expected, initial analysis of both semi-

quantitative and quantitative texture features showed
that different techniques or thresholds to segment MTV
results in significantly different values of this parameter.
It should be noted that there was no significant dif-

ference for all three conventional volumetric parame-
ters between SUVmax with 2.5 fixed threshold
technique and liver pool fixed threshold technique.
This can be explained by the small difference between
liver pool values (usually fluctuating between 2 and 3
SUV with our scanner, imaging protocol, and recon-
struction algorithm) and SUVmax 2.5 threshold value.

Nevertheless, incorporating all extracted features into
multiparametric modelling provided comparable ability
of extracted data from different segmentation subsets to
predict tumour differentiation grade.
Previously published studies have demonstrated how

single semiquantitative PET parameters may be utilised
to differentiate tumour grades, for instance in meningi-
omas [27], by means of tumour to grey matter ratio of
18F-FDG uptake (TGR). The TGR in high-grade men-
ingioma (World Health Organization [WHO] grade II
and III) was significantly higher than that in low-grade
ones (WHO grade I) (p = 0.002) and significantly corre-
lated with the MIB-1 labelling (cell proliferation marker)
index (r = 0.338, p = 0.009) and mitotic count of the
tumour (r = 0.284, p = 0.03). The ROC analysis revealed
that the TGR of 1.0 was the best cutoff value for detect-
ing high-grade meningioma with 43% sensitivity, 95%
specificity, and 81%accuracy.
Dual-phase metabolic 18F-FDG PET approach with

subsequent quantitative analysis was undertaken by
Ghany et al. [28] in order to discriminate grading of gli-
omas. They found good correlation between the dual-
phase PET grading and the histopathological grading of
gliomas. When a 23% increase was used as the cutoff for
analysis of the difference in SUVmax of the lesion versus
normal grey matter over time, sensitivity was 88.9%, spe-
cificity 85.7%, and accuracy 89.4% (p = 0.003; AUC =
0.94). Nakamura et al. [29] investigated the connection
between quantitative features of 18F-FDG uptake by
endometrial carcinomas and International Federation of
Gynaecology and Obstetrics (FIGO) grade: they found
significant correlations between the SUVmax of the pri-
mary tumour and the FIGO grade, maximum tumour
size, and glucose transporter-1 expression. Furthermore,
multivariate analysis showed that the FIGO grade of
endometrial cancer was most significantly identified as a
relation factor of SUVmax (≥ 17.6). Rakheja and Probst
[30] studied 18F-FDG uptake parameters for grading sar-
comas and concluded that while 18F-FDG PET/CT can-
not replace histopathology in the diagnosis of sarcoma,
it is certainly of use in guiding surgeons and pathologists
to biopsy the most aggressive regions of the tumour.
Similar to the above-mentioned studies, current one in-

vestigates connection of various metabolic PET parame-
ters to tumour grade, but the most promising results are
achieved when multiparametric modelling, utilising both
semiquantitative and textural parameters, is applied.
Several limitations of the current study should be ac-

knowledged. First of all, it was based on a single institution
dataset, collected from one PET/CT scanner. Secondly, dis-
tribution of different tumour grades in our dataset is rather
unequal, with grade 1 tumours comprising roughly only
10% of the sample. Consequently, these results should be
further validated in a multi-institutional or multi-scanner
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scenario, in order to test whether the suggested model will
withstand the difference in values of quantitative parame-
ters extracted from images generated with different recon-
struction algorithms, and on a larger patient population.
In conclusion, multiparametric modelling with GMDH

utilising both semiquantitative and texture quantitative
metabolic PET parameters seems to be an interesting
tool for noninvasive malignant epithelial tumours grade
differentiation. Results achieved in our dataset allow for
hypothesise that, despite difference in absolute values
generated by segmentation techniques, relative differ-
ences in combination of multiple parameters inside the
subsets from different segmentation techniques allow to
correlate with different tumour grades. Among extracted
features, conventional semiquantitative and volumetric
parameters demonstrated significant dependence from
segmentation technique, while three quantitative texture
indices remained stable. This allows to speculate that
metabolic image features responsible for reflecting dif-
ference in tumour biology and grade are possibly more
likely to be represented by heterogeneity of tracer up-
take, rather than its intensity. Further investigation is re-
quired with larger patient population in order to validate
the potential value of this approach.
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