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Abstract

Proton-density fat fraction (PDFF) of the paraspinal muscles, derived from chemical shift encoding-based water-fat
magnetic resonance imaging, has emerged as an important surrogate biomarker in individuals with intervertebral
disc disease, osteoporosis, sarcopenia and neuromuscular disorders. However, quantification of paraspinal muscle
PDFF is currently limited in clinical routine due to the required time-consuming manual segmentation procedure.
The present study aimed to develop an automatic segmentation algorithm of the lumbar paraspinal muscles based
on water-fat sequences and compare the performance of this algorithm to ground truth data based on manual
segmentation. The algorithm comprised an average shape model, a dual feature model, associating each surface
point with a fat and water image appearance feature, and a detection model. Right and left psoas, quadratus
lumborum and erector spinae muscles were automatically segmented. Dice coefficients averaged over all six
muscle compartments amounted to 0.83 (range 0.75–0.90).
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Key points

� An MRI-based automatic segmentation algorithm of
the lumbar paraspinal muscles was developed.

� Paraspinal muscles were automatically segmented
with an averaged Dice coefficient of 0.83.

� The algorithm may support the clinical application
of proton-density fat fraction as imaging biomarker.

Background
Magnetic resonance imaging (MRI)-based assessment
of the fat composition of the paraspinal muscles has
been proposed as a surrogate marker in individuals
with intervertebral disc disease, osteoporosis, sarcope-
nia, and neuromuscular disorders [1, 2]. Using chemical

shift encoding-based water-fat MRI, the proton-density
fat fraction (PDFF) of each paraspinal muscle compart-
ment could be reliably extracted [3, 4]. In clinical routine,
water-fat MRI-based assessment of paraspinal muscle
PDFF is currently limited due to the time-consuming
manual segmentation procedure.
Gawel et al. [5] introduced a method for automatic

segmentation of vertebral column tissue based on ma-
chine learning with cascade classifiers, active appearance
model and principal component analysis. Further ap-
proaches have been reported for automatic localisation
and segmentation of vertebral bodies on MRI. For in-
stance, Chu et al. [6] used a random forest regression
and classification framework and Hille et al. [7] used
computed appearance-based vertebral body probability
maps with a subsequent hybrid level-set segmentation.
Available segmentation methods have been summarised
in a review by Rak et al. [8].
However, little research is available on automatic segmen-

tation of paraspinal muscles on MRI. Engstrom et al. [9]
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used statistical shape modelling for the segmentation of the
quadratus lumborum muscle in T1-weighted images. Jur-
cak et al. [10] applied a hybrid atlas-based geodesic active
contour algorithm for the automated segmentation of the
quadratus lumborum muscle.
Therefore, the purpose of this study was to develop

an automatic segmentation algorithm of the paraspinal
muscles relying on chemical shift encoding-based
water-fat MRI and compare the performance of this
algorithm to ground truth data based on manual
segmentation.

Methods
Participants
The study was approved by the local institutional com-
mittee for human research and in accordance with the
1964 Helsinki declaration and its later amendments. All
individuals gave written informed consent before partici-
pation in the study.
Ten healthy individuals were recruited for this

study (eight men and two women, age 29 ± 8 years
[mean ± standard deviation (SD)], and body mass
index 26.7 ± 2.3 kg/m2 [mean ± SD]).

MRI protocol
All participants underwent MRI at two time points
(baseline and six-week follow-up) to obtain longitudinal
imaging data for long-term reproducibility purposes.
The lumbar musculature of the individual was scanned
on a 3-T whole-body scanner (Ingenia, Philips Health-
care, Best, The Netherlands) using the built-in-the-table
posterior coil elements (12-channel array). An axially
prescribed six-echo three-dimensional spoiled gradient-
echo sequence was used for chemical shift encoding-
based water-fat separation. The sequence acquired the
six echoes in a single time of repetition using non-flyback
(bipolar) read-out gradients and the following imaging pa-
rameters: time of repetition 11 ms; minimum time of
echo 1.04 ms; ΔTE 0.8 ms; field of view 220 × 220 ×
219 mm; acquisition matrix 72 × 110 × 73; acquisi-
tion voxel size 3.1 × 2.0 × 3.0 mm; frequency encod-
ing direction left to right; receiver bandwidth
2756 Hz/pixel; scan time 2:01 min. A flip angle of 3°
was used to minimise T1-bias effects [11].

Image-based fat quantification
The gradient-echo imaging data were processed on-line
using the mDIXON Quant software provided by the manu-
facturer. It performs a complex-based water-fat decompos-
ition using a pre-calibrated seven-peak fat spectrum and a
single T2* to model the signal variation with echo time.
PDFF maps were then computed as the ratio of the fat sig-
nal over the sum of fat and water signals.

Manual segmentation
Manual segmentation of the paraspinal muscles was per-
formed on the PDFF maps at baseline and follow-up by
using the free open-source software Medical Imaging
Interaction Toolkit (MITK), developed by the Division
of Medical and Biological Informatics, German Cancer
Research Center, Heidelberg, Germany (www.mitk.org).
The following six muscle compartments were separ-
ately segmented by one operator from the upper end-
plate level of L2 to the lower endplate level of L5: right
and left psoas muscles; right and left quadratus lum-
borum muscles; and right and left erector spinae mus-
cles (Fig. 1a).

Automatic segmentation
Baseline and follow-up images and corresponding man-
ual muscle segmentations of seven individuals were used
as a training dataset and those of the remaining three in-
dividuals as a test dataset. Manual muscle segmentations
in the baseline and follow-up images of the three test
participants served as ground truth and were consid-
ered as gold standard for the automatic muscle seg-
mentation results. Based on the manual segmentations
of the training set, a model of the six muscle compart-
ments was generated. It comprised an average-shaped
model, represented as triangle mesh, a dual-feature
model, associating each surface triangle with a fat and
water image appearance feature, and a detection model
[12]. For its generation, first a shape model was created.
A fuzzy averaging approach as described in Blaffert et
al. [13] was followed to convert the label images result-
ing from the manual segmentation step to an average
multi-compartment surface model. Second, a feature
model that relates surface positions with corresponding
image features, such as intensity edges, was generated
following Peters et al. [14]. To do so, a training set of
images with corresponding mesh models was created
by adapting the average-shaped model from the previ-
ous step to the manual segmentation results. In this
step, a simplified version of the model-based segmenta-
tion method [15] was applied, using a simple gradient
feature to adapt the average-shaped model to the
manually created label images. During the training
phase, optimal local features are determined for the fat
as well as the water image.
For the automatic segmentation of an unseen image,

first a generalised Hough transform for structure local-
isation is performed to initialise the model in the patient
image, followed by a coarse-to-fine individualisation of
the surface model [15, 16]. During individualisation, an
objective function consisting of an image feature
match term and a shape deviation term was evaluated
for optimising pose and shape of the model. Two
image features, for water and fat image, were evaluated

Baum et al. European Radiology Experimental  (2018) 2:32 Page 2 of 5

http://www.mitk.org


simultaneously. The procedure was iterated, allowing
first only a rigid transformation of the model and later
a free-form deformation to obtain a detailed muscle
delineation (Fig. 1b and c; Additional file 1).

Statistical analysis
Dice coefficients [17] were determined to compare the
automatic muscle segmentations with the corresponding
ground truth. Wilcoxon signed rank tests were used to
assess differences of muscle volume and PDFF based on
automatic segmentation and ground truth, respectively.

Results
The Dice coefficient averaged over all six muscle com-
partments amounted to 0.83 (range 0.75–0.90). The
highest Dice coefficients were observed for the erector
spinae muscles (right 0.89, left 0.90), followed by the
psoas muscles (right 0.83, left 0.77). The lowest Dice co-
efficients were found for the quadratus lumborum mus-
cles (right 0.75, left 0.76).

Mean volume and PDFF of each muscle compartment
for the training dataset are listed in Table 1. The auto-
matic segmentation algorithm significantly overesti-
mated the muscle volumes of right (p = 0.012) and left
(p = 0.012) erector spinae and right (p = 0.025) and left
(p = 0.017) psoas muscles. Absolute differences in PDFF
values obtained with the automatic and the manual
muscle segmentation were relatively small (range 0.02–
0.58%), but statistically significant (p < 0.012) in the
erector spinae muscles (Table 1).

Discussion
The proposed algorithm for automatic paraspinal muscle
segmentation on chemical shift encoding-based water-fat
MRI showed small absolute errors in PDFF (range 0.02–
0.58%) in the scanned healthy participants.
The Dice coefficients observed in our study were com-

parable to those reported by Jurcak et al. [10]. They applied
a hybrid atlas-based geodesic active contour algorithm for
the automated segmentation of the quadratus lumborum

Fig. 1 Representative PDFF maps. a Manually segmented muscle compartments as ground truth: 1, left erector spinae muscle; 2, right erector
spine muscle; 3, left psoas muscle; 4, right psoas muscle; 5, left quadratus lumborum muscle; 6, right quadratus lumborum muscle. b Results of
the automatic segmentation of the muscle compartments. c Average triangular surface model with cross-sectional cut-contour of central axial
slice depicted in white
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muscle and obtained Dice coefficients for the right and left
quadratus lumborum muscles of 0.78 and 0.75, respectively.
Similarly, Engstrom et al. [9] reported Dice coefficients of
0.87 for automated segmentation of the quadratus lum-
borum muscles based on statistical shape modelling. Differ-
ences in PDFF values between the automatic segmentation
and ground truth were relatively small and clinically accept-
able (absolute difference range from 0.02% to 0.58%). In the
future, machine learning methods may be an alternative ap-
proach for the segmentation of the paraspinal muscles in
water-fat MR images as previously applied for the segmen-
tation of the vertebral column tissues [5].
PDFF in the erector spinae muscles and the volumes

of erector spinae and psoas muscle were significantly
greater by using the automated segmentation algorithm
compared to the manually segmented ground truth.
These findings may result from the different segmenta-
tion approaches. The operator tried to avoid the acci-
dental inclusion of epimuscular fat and placed the
regions of interest (ROI) within in the inner contour of
the visible muscle boundaries. The automated segmenta-
tion algorithm detected the muscle boundaries and exactly
placed the ROIs on the muscle boundaries. In the future,
a circular shrinking of the automatically placed ROIs can
be implemented to reduce the volume differences between
automated and manual segmentation.
To further improve our existing algorithm, an in-

creased number of participants for the training dataset is
necessary to reliably extract muscle volume and PDFF of
the erector spinae muscles, especially when applying the
method in atrophic muscles affected by pathology.
In conclusion, an automatic segmentation algorithm

of the lumbar paraspinal muscles was developed and
an averaged Dice coefficient of 0.83 was obtained
between automated segmentations and manually seg-
mented ground truth.

Additional file

Additional file 1: Representative fat images with automated segmentation
results of the six muscle compartments (red contours). (MOV 1036 kb)
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