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Radiomics of liver MRI predict metastases
in mice
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Abstract

Background: The purpose of this study was to investigate whether any texture features show a correlation with
intrahepatic tumor growth before the metastasis is visible to the human eye.

Methods: Eight male C57BL6 mice (age 8–10 weeks) were injected intraportally with syngeneic MC-38 colon
cancer cells and two mice were injected with phosphate-buffered saline (sham controls). Small animal magnetic
resonance imaging (MRI) at 4.7 T was performed at baseline and days 4, 8, 12, 16, and 20 after injection applying a
T2-weighted spin-echo sequence. Texture analysis was performed on the images yielding 32 texture features
derived from histogram, gray-level co-occurrence matrix, gray-level run-length matrix, and gray-level size-zone
matrix. The features were examined with a linear regression model/Pearson correlation test and hierarchical cluster
analysis. From each cluster, the feature with the lowest variance was selected.

Results: Tumors were visible on MRI after 20 days. Eighteen features from histogram and the gray-level-matrices
exhibited statistically significant correlations before day 20 in the experiment group, but not in the control animals.
Cluster analysis revealed three distinct clusters of independent features. The features with the lowest variance were
Energy, Short Run Emphasis, and Gray Level Non-Uniformity.

Conclusions: Texture features may quantitatively detect liver metastases before they become visually detectable by
the radiologist.

Keywords: Colorectal neoplasms, Computer-assisted image processing, Liver, Magnetic resonance imaging (MRI),
Neoplasm micrometastases

Key points

� Texture features change systematically in livers with
(micro)metastases

� Three clusters of features independently correlated
with tumor growth

� Texture features may quantitatively detect hepatic
micrometastases before they become visually
detectable

Background
The liver is the primary site of distant hematogenous
metastases for cancers of the gastrointestinal tract.

Colorectal cancer, for example, the entity being the sec-
ond highest cause of death in men and women suffering
from cancer in the Western world [1], spreads to the
liver in about 60% of patients and this is often the reason
patients ultimately succumb to their disease [2, 3]. Sec-
ondary tumors of the liver, therefore, are still a devastat-
ing disease and herald poor prognosis. Fortunately,
interventional as well as surgical techniques for treating
liver metastases have made tremendous advances in the
last few years [4–6]. However, if a curative approach is
chosen, preoperative imaging is essential to correctly
identify all tumor lesions and avoid leaving behind small
tumor nodules in the future liver remnant. Furthermore,
in postoperative settings, early and correct diagnosis of
recurrent tumor lesions is essential for timely treatment
decisions such as salvage chemotherapy or repeat sur-
gery. Hence, today, in most cancer centers, magnetic
resonance imaging (MRI) of the liver is an integral part
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of the workup of patients at risk for liver metastases.
Although scan protocols and parameters vary between
institutions, T1-weighted and T2-weighted anatomical
sequences with high spatial resolution are required [7].
Usually, several contrast-enhanced sequences as well as
diffusion-weighted sequence are included as well [8].
Moreover, the advent of intracellular contrast media
shows promising results in differentiating metastases
from primary liver lesions [9].
Texture analysis is a versatile mathematical technique

in the field of image analysis established in the seven-
ties of the past century [10, 11] and expanded in the
subsequent decades [12, 13]. In recent years, there has
been increasing interest in computing texture features
from medical images for quantitative analysis called the
“radiomics” approach [14]. In liver, computed tomog-
raphy texture-based differentiation between normal tis-
sue, benign tumors, and hepatocellular carcinoma has
been demonstrated to be possible [15, 16]. Hepatic MRI
texture analysis is able to differentiate healthy from cir-
rhotic liver [17] and even quantify the degree of liver fi-
brosis [18]. As texture analysis is not only able to
detect morphological lesions but also subtle distortions
of the tissue architecture, we hypothesized that quanti-
tative texture-based analysis of MRI (a radiomics ap-
proach) can identify small niduses of tumor cells earlier
than qualitative evaluation by the human eye.
The purpose of this study was to investigate whether

any texture features show a correlation with tumor
growth before the metastasis can be diagnosed in a
human readout based on morphological changes in the
images.

Methods

Animal experiments
All experiments were carried out in conformity with the
local laws and regulations and had been approved by the
Cantonal veterinary authorities of Zurich before the trial
start. Male C57BL6 mice aged 8–10 weeks, purchased
from Harlan (Horst, The Netherlands), were used for all
experiments. Animals were kept on a 12:12-h day-night
cycle with water and standard rodent chow provided ad
libitum. Injections of tumor cells as well as MRI scans
were conducted between 8 AM and 12 AM.

Experimental design
Mice were injected with MC-38 tumor cells (n = 8) or
phosphate-buffered saline (PBS) as controls (sham, n = 2).
The animals underwent MRI before the injection
(baseline) and at days 4, 8, 12, 16, and 20 post injection.
The study duration was set after a pilot series (three ani-
mals, not included in the current analysis) showed defin-
itely visible liver tumors on MRI after day 20 post
injection. At day 8, two animals of the tumor injection
group were sacrificed to ensure tumor growth by micro-
scopic examination. At day 20, the remaining animals
were sacrificed and the livers harvested for histologic
examination. The study design is illustrated in Fig. 1b.

Tumor cell culture
The murine colon cancer cell line MC-38, syngeneic on a
C57BL6 background, was used for the experiments. Cells
were cultured in Dulbecco’s modified eagle medium (Life
Technologies, Zug, Switzerland) supplemented with 10%

Fig. 1 a Scheme (top) and photography (bottom) of the microsurgical intraportal tumor cell or saline (sham) injection. The portal vein being
injected is marked with a white arrow. b Experimental study design. MRI was performed at baseline (before injection) and at days 4, 8, 12, 16, and
20 post injection. Two animals from the tumor group were sacrificed for histological examination at day 8
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fetal bovine serum and 100 U/mL of penicillin and strepto-
mycin and incubated at 37 °C and 5% CO2. Cell lines were
tested negative for mycoplasma at culture onset (PCR
Mycoplasma Test Kit; PromoCell, Heidelberg, Germany).
Fur tumor cell injections, cells below passage 10 were har-
vested by trypsinization, counted with a nucleocounter
(Nucleocounter NC-200TM; ChemoMetec A/S, Allerod,
Denmark), and prepared in solution of 106 cells/mL PBS.

Mouse model and surgical procedures
An established model of intraportal injection of syngen-
eic tumor cells was used for induction of liver tumors as
described by Limani et al. [19]. However, in our study,
cells were non-selectively injected in all liver lobes. All
animal procedures were undertaken by a surgical
researcher with extensive experience in advanced experi-
mental microsurgery (MAS). Anesthesia was induced
with isoflurane inhalation (Attane, Minrad I, Buffalo,
NY, USA) 2–3% mixed with pure oxygen; intraoperative
analgesia was administered via subcutaneous application
of buprenorphine (0.1 mg/kg body weight). Median
laparotomy of approximately 3-cm length was performed
after fixation of the animal with tape on a heating pad.
The liver was mobilized by cutting the falciform liga-
ment and the membrane between caudate and left lateral
lobe with microsurgical scissors. After display of the por-
tal vein, 1 × 105 MC-38 tumor cells, prepared in 100 μL
PBS, were injected intraportally with a 29-gauge insulin
syringe (12.7-mm needle length; BD Microfine, Franklin
Lakes, NJ, USA) as depicted in Fig. 1a. The needle was
then removed and hemostasis achieved by gentle pres-
sure with cotton swabs and application of small pieces
of Tachosil® (Baxter Inc., Deerfield, IL, USA), if neces-
sary. The abdomen was closed with two layered continu-
ous sutures with 5-0 prolene. Mice were allowed to
recover on a warmed heating pad; food and water were
provided 1 h after the operation. Postoperative analgesia
with buprenorphine was administered via drinking water
for three days. Livers were harvested at indicated time
points (see below) under anesthesia and analgesia as de-
scribed above. After re-opening of median laparotomy,
animals were euthanized by bilateral pneumothorax and
trans-section of inferior vena cava and aorta. Organs
were harvested quickly and immediately stored in 4%
formaldehyde in PBS (% volume/volume).

Histological examination
After storage in 4% formaldehyde for 48 h, whole livers
were embedded in paraffin blocks in a position resembling
transversal slices of the MRI. The whole block was after-
wards cut with a cryotome and representative histological
slides containing liver and tumor tissue prepared at every
millimeter. Slides were colored with hematoxylin-eosin
(H&E) staining according to standard protocols.

All slides were afterwards scanned with a NanoZoomer
XR Digital slide scanner C12000 (Hamamutsu, Japan) and
analyzed with the freely available software NDP.view2
(Version 2.6.13, Hamamutsu, Japan). Each slide was separ-
ately scanned for tumor lesions in the whole depicted liver
parenchyma. Area (μm2) and perimeter (μm) of each
tumor lesion were measured with the Freehand Region of
Interest Tool of the NDP.view2 software, as well as the
total amount of detected tumor lesions in all slides of each
individual animal calculated.

MRI
All mice underwent abdominal MRI examinations in a
dedicated small animal 4.7-T scanner (Bruker 4.7-T Phar-
maScan 47/16 US, Bruker BioSpin MRI GmbH, Ettlingen,
Germany) under general anesthesia with isoflurane
(Attane; Minrad I, Buffalo, NY; 2–3% mixed with pure
oxygen). Spin excitation and signal reception were per-
formed with a linearly polarized 1H whole-body mouse
coil. The mice were placed in supine position in the scan-
ner bed and kept warm with a pad circulating a continu-
ous supply of warm water during continuous anesthesia.
MRI was performed during free breathing with respiratory
control. A T2-weighted rapid acquisition with refocused
echoes sequence was acquired in transverse orientation
with the following parameters: echo time = 19 ms;
repetition time = 1000 ms; echo-train length = 4; pixel
bandwidth = 310 Hz/pixel; excitations = 2; matrix size
= 192 × 192; field of view = 30 × 30 mm; slice thick-
ness = 1.5 mm. The images at each time point were
evaluated qualitatively by two independent readers
(ASB, AB) for visibility of metastases. From the visible
metastases at day 20, in each mouse, one metastasis
not yet visible at day 16 was chosen, with easily repro-
ducible slice position due to anatomical landmarks.

Signal-to-noise and contrast-to-noise evaluation
The signal-to-noise ratio (SNR) was determined as follows:

SNR ¼ SI � ffiffiffi

2
p

noise

where SI is the signal intensity in either the liver paren-
chyma and noise representing the standard deviation in
the background (air) measured in the corner of the
image outside areas of artefacts. Contrast-to-noise ratio
(CNR) was defined as:

CNR ¼ SImeta−SIliver
noise

With SImeta and SIliver meaning the signal intensity in
the metastases and liver parenchyma, respectively.
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Texture analysis
Texture analysis was performed with an in-house de-
veloped MATLAB routine (v2016, The MathWorks
Inc., Natick, MA, USA) by the same readers in con-
sensus. On a single day-20 slice (acquired at post-
injection day 20), a quadrangular 32 × 32 pixel region
of interest (ROI) was placed in the liver, encompass-
ing a distinct metastasis as illustrated in Fig. 2. The
ROI was manually copied to the same slice at the
four earlier time points at the same position, with the
help of anatomical landmarks if the metastasis itself
was not visible. From the two control animals (sham),
two and three slices were analyzed in order to yield
five data points and reasonable confidence intervals.
Before texture analysis, ROI contents were normalized
between the mean and three standard deviations to
minimize intra- and inter-scanner fluctuations in tex-
ture analysis [20].
Thirty-two texture features were computed: four

first-order and 28 higher-order features analogous to
those described by Becker et al. [21] and Vallières et
al. [22], as summarized in Table 1. The first order
features were computed directly from the histogram
of the original image, whereas the higher order
features were obtained from the gray-level co-
occurrence matrix (GLCM), the gray-level run-length
matrix (GLRLM), or the gray-level size zone matrix
(GLSZM). Albeit some of these features have “intui-
tive names” (“intuitive” in this context meaning easily
distinguishable by the human observer), none resem-
ble or describe any intuitive patterns [11]. The math-
ematical definition of the respective features can be
found in the works by Haralick et al. for the GLCM
[23], Mary M. Galloway for the GLRLM [10], and
Thibault et al. for the GLSZM [13].

Statistical analysis
Statistical analysis was performed using the “R” software
(v3.3.1., The R Foundation for Statistical Software,
Vienna, Austria). Graphs were generated using “ggplot2”
[24]. All features were evaluated over the whole time
course with a linear model/Pearson correlation test. A p
value < 0.05 was considered statistically significant. The
p value was not corrected for multiple comparisons due
to the exploratory nature of the analysis. However, the
number of features was reduced with the following three
steps: 1 = significantly changing features in the sham
group were excluded from the final set; 2 = features
were examined for redundancy by co-correlation testing
(Pearson) and hierarchical clustering to determine
groups of independently changing features; and 3 = from
each cluster, the feature with the smallest variance was
selected as the most representative one.

Results
Study procedures
The intraportal tumor cell and sham injections were
performed successfully and without any complications.
MRI scans before injection (baseline) and at days 4, 8,
12, 16, and 20 after injection of MC38 tumor cells were
completed successfully. Presence of tumor cells in the
liver parenchyma was confirmed histologically after
eight days in two mice, which were sacrificed for this
purpose (Fig. 3). At post-injection day 20, T2-weighted
images showed well visible hyperintense liver tumors in
all six remaining mice (Fig. 2, bottom right).

Morphological evaluation
On MRI, the mice exhibited a median of four metas-
tases on day 20 (range = 3–11). In each animal, there
was at least one metastasis near an anatomic

Fig. 2 Sample slices of an animal of the experiment group. The metastases are well delineated after 20 days but not definitely visible beforehand.
The three vessel branches near the ROI (arrowhead) serve as an anatomical landmark to analyze the same volume of liver tissue in the images
before day 20, when the metastasis is not visible yet
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Table 1 Texture features used in the present study

Primary Higher order

Histogram Gray-level co-occurrence matrix (GLCM) Gray-level run-length matrix (GLRLM) Gray-level size-zone matrix (GLSZM)

Variance Contrast Short run emphasis (SRE) Small zone emphasis (SZE)

Skewness Correlation Long run emphasis (LRE) Large zone emphasis (LZE)

Kurtosis Energy Gray-level non-uniformity (GLN) Gray-level non-uniformity (GLN)

Entropy Homogeneity Run length non-uniformity (RLN) Zone-size non-uniformity (ZSN)

Run percentage (RP) Zone percentage (ZP)

Low gray-level run emphasis (LGRE) Low gray-level zone emphasis (LGZE)

High gray-level run emphasis (HGRE) High gray-level zone emphasis (HGZE)

Short run low gray-level emphasis (SRLGE) Small zone low gray-level emphasis (SZLGE)

Short run high gray-level emphasis (SRHGE) Small zone high gray-level emphasis (SZHGE)

Long run low gray-level emphasis (LRLGE) Large zone low gray-level emphasis (LZLGE)

Long run high gray-level emphasis (LRHGE) Large zone high gray-level emphasis (LZHGE)

Gray level variance (GLV)

Zone size variance (ZSV)

Fig. 3 Representative histological images of mouse livers (H&E staining). RML right median lobe, GB gall bladder, LML left median lobe, LLL left
lateral lobe, CL caudate lobe, RL right inferior and superior lobe. Orange squaresmark the area of 40× magnification for the respective images below.
a Overview of mouse liver with control PBS injection, harvested at day 20. Overview in 1.25× magnification shows complete transversal section of the
liver covering RML, GB, LML, LLL, and the bifid CL. 10× magnification and 40× magnification show intact liver parenchyma without any signs of tumor
invasion. b Overview of a mouse liver harvested on day 8 after non-selective intraportal injection of syngeneic MC38 tumor cells. While no tumor can
be detected macroscopically and in the overview of the specimen, 10× and 40× magnification reveal small nests of intraparenchymal and paravascular
tumor cells, accompanied by infiltrating leukocytes. c Overview of mouse liver harvested on day 20 after non-selective intraportal injection of syngeneic
MC38 tumor cells. Multiple tumor nodules can be appreciated already at a macroscopic level in all liver lobes
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landmark which was reliably depicted on all days and
thus suitable for texture analysis. On histology on day
8, the median circumference was 0.173 mm (interquartile
range [IQR] = 0.137–0.205 mm) corresponding to an area
of 0.001812 mm2 (IQR = 0.001243–0.002513 mm2); on
day 20, the circumference had grown to 3.57 mm (IQR =
2.19–9.27 mm) which corresponds to an area of 0.61 mm2

(IQR = 0.24–5.10 mm2).

Signal-to-noise and contrast-to-noise ratios
SNRs were (mean ± standard deviation) 28.98 ± 6.52 (day
0), 23.71 ± 9.90 (day 4), 28.38 ± 6.98 (day 8), 26.44 ± 6.23
(day 12), 26.72 ± 7.32 (day 16), and 28.08 ± 8.15 (day 20).
CNR of metastases on day 20 was 6.88 ± 4.63.

Texture analysis
Texture features were computed successfully for all time
points and animals. Linear fitting revealed significant
correlation in 18 features in the experiment group, as
follows (full names in Table 1):

– First order: Kurtosis
– GLCM: Contrast, Correlation, Energy, Homogeneity
– GLRLM: SRE, LRE, GLN, RLN, RP, LRHGE
– GLSZM: SZE, LZE, GLN, ZSN, ZP, SZHGE, LZHGE

Correlation coefficients and p values are summarized
in Table 2.
A selected set of those features is shown in Fig. 4. Five

features correlated significantly in the sham group:

– GLRLM: LGRE, SRLGE
– GLSZM: LGZE, GLV, ZSV

However, none of them were also significantly corre-
lated in the experiment group.
Hierarchical clustering revealed three distinct, inde-

pendent clusters of features as depicted in Fig. 5. The
most representative features, i.e. the ones with the smal-
lest variance were Energy, SRE (GLRLM), and GLN
(GLSZM).

Discussion
In the present study, we examined whether changes of
texture features may herald metastases in liver MRI be-
fore they can be appreciated visually. We found three
independent features, one derived from each of the
gray-level matrices, which exhibit a linear correlation
before the metastasis is visible to the naked eye, and
several co-dependent features. Thereby, we showed that
texture analysis is able to detect subtle changes of par-
enchymal changes before a morphological lesion is vis-
ible, which may significantly enhance tumor detection
rates in liver imaging.

Recently published studies have demonstrated that
texture analysis can distinguish or classify benign and
malignant lesions in various organs and tumors, for ex-
ample in glioma/glioblastoma [25, 26], breast [27], lung
[28], stomach [29], prostate [30], or liver lesions [15, 31].
Another recent focus of texture analysis has been the as-
sessment of therapy response, e.g. in advanced ovarian
and primary peritoneal cancer [32], or the prediction of
lymph node metastasis from a radiomics analysis of the
primary tumor [33]. However, to the best of our know-
ledge, no study has so far investigated the feasibility to
detect cancerous lesions directly in the target tissue

Table 2 Correlating features with Pearson correlation
coefficients (R) and p values

Feature R p value

Variance 0.204 0.194

Skewness 0.198 0.210

Kurtosis 0.411 0.007

Contrast (GLCM) − 0.361 0.019

Correlation (GLCM) 0.393 0.010

Energy (GLCM) 0.392 0.010

Homogeneity 0.432 0.004

Entropy (GLCM) − 0.014 0.930

SRE (GLRLM) − 0.394 0.010

LRE (GLRLM) 0.410 0.007

GLN (GLRLM) 0.419 0.006

RLN (GLRLM) − 0.398 0.009

RP (GLRLM) − 0.406 0.008

LGRE (GLRLM) − 0.103 0.516

HGRE (GLRLM) − 0.129 0.417

SRLGE (GLRLM) − 0.110 0.486

SRHGE (GLRLM) − 0.286 0.067

LRLGE (GLRLM) − 0.089 0.575

LRHGE (GLRLM) 0.407 0.008

SZE (GLSZM) − 0.447 0.003

LZE (GLSZM) 0.386 0.011

GLN (GLSZM) 0.386 0.011

ZSN (GLSZM) − 0.445 0.003

ZP (GLSZM) − 0.428 0.005

LGZE (GLSZM) − 0.092 0.561

HGZE (GLSZM) − 0.182 0.248

SZLGE (GLSZM) − 0.117 0.462

SZHGE (GLSZM) − 0.345 0.025

LZLGE (GLSZM) − 0.051 0.750

LZHGE (GLSZM) 0.383 0.012

GLV (GLSZM) − 0.269 0.085

ZSV (GLSZM) − 0.086 0.589
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before they appear visible to the human reader. In our
opinion, this application logically follows from the
common denominator of the abovementioned studies:
quantifying underlying histological changes in tissue
below the resolution of the given modality or
protocol.
Leonard et al. [34] as well as Adam et al. [35] showed

that an increased number of patients with liver metastases
undergo potentially curative hepatic resection because of
recent progress in neoadjuvant chemotherapy. Still, opti-
mal surgical planning depends on exact knowledge of the
number and location of all liver lesions. Recently
published studies showed high diagnostic accuracy for the
detection of liver metastases in modern imaging modal-
ities such as MRI and PET/MRI [36]. However, about
two-thirds of the patients who have undergone liver resec-
tion for colorectal metastases suffer from recurrence
within 18 months [37]. One reason is probably the fact
that small liver metastases below or close to the resolution
limit of the current imaging modalities on pre-surgery im-
aging are missed and, therefore, not taken into account.
18F-fluorodeoxyglucose (FDG) PET/CT is of little

adjunctive value in these cases due to the high
background glycolytic activity of the liver [38].
Texture analysis may thus be a new objective method

to detect these lesions and improve post-surgery out-
comes and disease-free survival interval. On the basis of
the current data, it is not possible to determine whether
the textural changes are a result of the metastatic cells
themselves or rather a reflection of reactive changes in
the surrounding liver parenchyma. Interestingly, features
derived from all three gray-level matrices appear to be
influenced by the metastatic growth, which could be an
indication for the destruction of liver acini (alteration of
co-occurrence and size-zones) or the tumor neovascular-
ization (run-lengths of vessels). Further research in this
area may be desirable as understanding the exact mech-
anism may aid for example in development of better
MRI sequences suitable for texture analysis.
Our study has several limitations that need to be ac-

knowledged. First, although the images were prospect-
ively acquired, ROI definition had to be performed
retrospectively after a suitable lesion was identified at
the study end. Furthermore, we have only evaluated

Fig. 4 Set of features which change significantly after the injection of tumor cells at day 0, but not in the control group after sham injection of PBS
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single slices. Because we aimed for a maximum in-plane
resolution, the sequence was not acquired with isotropic
voxel size and respective slice gaps. Performing three-
dimensional texture analysis would have either required
interpolation (which has been shown to confound the
analysis [39]) or a lower resolution. Thus, we believe that
three-dimensional analysis would not have added value
to our results or altered our conclusion. Second, we only
computed a limited set of features. We chose to do so,
instead of analyzing a larger set of multiple hundred or
thousand (compound) features, because the selected fea-
tures have repeatedly been found useful in the analysis
of medical images [15, 28, 30, 40] and robust against var-
iations between scanners and protocol parameters [41],
especially after normalization [20]. Moreover, our small
sample size did not allow us to use multiparametric/hy-
brid imaging or machine learning algorithms to assess
the usefulness of such a large number of features, which
is the third main limitation. However, adhering to the
3R-principle (“Replace-Reduce-Refine”) [42], the small
number of animals was a deliberate effort to keep the
suffering of animals as low as possible. Hence, we think
that the next step after this small pilot study should not

be more experiments in animals, but rather a longitu-
dinal study directly in human patients, e.g. a cohort at
risk for hepatic (colorectal cancer) metastases. Until fur-
ther validation in human studies, the implications of this
work for patient care remain unclear.
In conclusion, we found in our small pilot study that

texture analysis of MRI data may have the potential to
detect liver metastases at a sub-resolution level, before
they become visible to the human eye.
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