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Abstract

Background: The aim of this work was to evaluate detection of low-contrast objects and image quality in
computed tomography (CT) phantom images acquired at different tube loadings (i.e. mAs) and reconstructed with
different algorithms, in order to find appropriate settings to reduce the dose to the patient without any image
detriment.

Methods: Images of supraslice low-contrast objects of a CT phantom were acquired using different mAs values.
Images were reconstructed using filtered back projection (FBP), hybrid and iterative model-based methods. Image
quality parameters were evaluated in terms of modulation transfer function; noise, and uniformity using two
software resources. For the definition of low-contrast detectability, studies based on both human (i.e. four-
alternative forced-choice test) and model observers were performed across the various images.

Results: Compared to FBP, image quality parameters were improved by using iterative reconstruction (IR)
algorithms. In particular, IR model-based methods provided a 60% noise reduction and a 70% dose reduction,
preserving image quality and low-contrast detectability for human radiological evaluation. According to the model
observer, the diameters of the minimum detectable detail were around 2 mm (up to 100 mAs). Below 100 mAs, the
model observer was unable to provide a result.

Conclusion: IR methods improve CT protocol quality, providing a potential dose reduction while maintaining a
good image detectability. Model observer can in principle be useful to assist human performance in CT low-
contrast detection tasks and in dose optimisation.
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Key points

� Detection of low-contrast objects and image quality
in CT phantom images were evaluated

� Different tube loadings and image reconstruction
methods were tested

� Iterative reconstruction in CT provided significant
mAs reduction without image detriment

� Model observers are useful for parameter
optimisation in CT dose reduction tasks

Background
The overall per caput mean effective dose per year to
the population in European countries, due to X-ray pro-
cedures, is about 1.05 mSv. Computed tomography
(CT), which is a key medical imaging modality within
clinical diagnostic applications, contributes, on average,
to 57% of this dose (range 5.31–83.1%) [1], with a mean
value of 7.44 mSv [2]. In Switzerland, through 2013 the
number of CT exams was 117 per 1000 inhabitants, with
an average dose per exam of 8.54 mSv. CT alone con-
tributed to about 70% of the collective dose, with an
average annual effective dose of 1 mSv per inhabitant
[3]. In light of these data, reduction of radiation dose
from CT has become an essential field of study. In the
last years, the advent of faster microprocessors, CT
iterative reconstruction (IR) methods were launched to
integrate already existing algorithms such as filtered
back projection (FBP) as a way to reduce patient
radiation exposure while maintaining high-contrast
spatial resolution.
iDose4 (Philips iDose4™ system, Philips Healthcare,

Cleveland, OH, USA) belongs to the first generation of
iterative hybrid reconstruction algorithms, which com-
bine FBP and IR algorithms [4]. On the contrary, Itera-
tive Model Reconstruction (IMR; Philips Healthcare,
Cleveland, OH, USA) is an advanced knowledge-based
algorithm that models the process of physical data ac-
quisition through the iterative minimisation of the differ-
ences between image raw data and the estimated image
[5]. IMR differs from FBP methods in that the recon-
struction becomes an optimisation process that takes
into account data statistics, image statistics, and system
models. IMR levels differ by number of processing cycles
which increase concurrently with increasing levels. The
main difficulty is to preserve an adequate diagnostic
image quality reducing exposure mAs values and there-
fore reducing the dose to the patient [6, 7].
Medical image quality assessment involves both a sci-

entific and philosophical approach to define how ‘well’
specific information of interest is obtained from images.
One method to define medical image quality is called
‘statistical task-based assessment approach’ and consists
of the evaluation of the observer performance during

tasks such as patient classification or estimation of vol-
ume and/or other characteristics of tumours. However,
studies based on human observers are resource-
demanding and involve a significant variability of intra-
observer and interobserver performance. Being able to
extract as much statistical information as possible from
the available images, computational model observers can
be used as convenient and objective surrogates of hu-
man beings to predict and/or define their expected per-
formance [6, 8].
In medical imaging, model observers were developed

to study how system parameters affect signal detection
[9], taking into account physical factors that degrade
image quality. They are also useful to evaluate and opti-
mise software systems, such as image reconstruction or
processing methods, both to study and predict their ef-
fects on human-observer performance [10–12].
The purpose of this work was to evaluate image qual-

ity and low-contrast object detectability in CT phantom
images acquired at different tube loadings (i.e. mAs) and
reconstructed with different algorithms in order to re-
duce mAs and consequently CT dose, with respect to a
standard reference value, without detriment of the im-
ages. Model observer performance in terms of minimum
diameter of the detectable low-contrast details was also
evaluated.

Methods
CT phantom image acquisition
In this study, a Catphan 504 phantom (The Phantom
Laboratory, Salem, NY, USA) was used to perform all
image quality tests. It is a cylindrical phantom of 20-cm
length and 20-cm diameter, containing several test mod-
ules: a solid image uniformity module (CTP486), a 21-
line pair and point source high resolution module
(CTP528), a module for slice width, sensitometry and
pixel size evaluation (CTP401), and a low-contrast mod-
ule (CTP515). In particular, the low contrast CTP515
module contains two sub-regions: the supraslice region
with three groups of low-contrast objects, consisting of
nine circular objects with diameters in the range of 2–
15 mm and contrast of 0.3%, 0.5% and 1.0%, respectively,
and a subslice region with three groups of four circular
objects each (diameters in the range of 3–9 mm, con-
trast of 1.0%).
CT scans of the Catphan phantom were acquired with

a Philips 256 iCT multi-slice CT unit (Brilliance iCT,
Philips, Best, The Netherlands), aligning the phantom
main axis with the axis of rotation of the scanner (z-
axis). Acquisitions were performed selecting a beam col-
limation of 128 × 0.625 mm, scanning field of view of
214 mm, scan length of 213 mm, helical acquisition with
0.976 pitch factor, tube voltage of 100 kVp, scan time
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2.5 s, rotation time 0.5 s, slice thickness 3 mm and zoom
100%.
The product of tube current and exposure time per ro-

tation (i.e. tube load) was in the range of 15–300 mAs.
Image reconstruction was performed using the following
reconstruction algorithms: FBP; iDose with levels in the
range of 1–6; and IMR with levels in the range of 1–3.

Software for image analysis
For image quality analysis, one software product was
used and compared, in terms of numerical results, with
an advanced automated quality assurance software ser-
vice available on the web. For the definition of low-
contrast detectability, however, studies based on both
human and model observers were performed.
CT image quality parameters were evaluated with two

different software resources, CTQA_cp and Catphan
QA (Image Owl, Inc., Greenwich, NY, USA), in order to
cross-check the obtained results and validate CTQA_cp
results with a reference. CTQA_cp (version 0.3.1) is a
freeware software package developed to aid CT quality
assurance programs and able to automatically produce
image quality reports. In particular, the following param-
eters are analysed with CTQA_cp: slice thickness, pixel
size, CT number linearity, uniformity, homogeneity,
image noise across detector rows, and modulation trans-
fer function (MTF). A low-contrast resolution analysis
tool of the Catphan CP515 module based on a model
observer is also available.
Catphan QA executes an automatic analysis of CT

Catphan images and produces an image quality report.
The following CT imaging performance parameters are
evaluated: sensitometry; MTF (i.e. from beads and wires
analysis); critical frequency; CT linearity; phantom pos-
ition; rotation and yaw; slice width; and contrast
detectability.
Catphan QA also includes a contrast diameter detail

function that returns dimensions of the smallest detect-
able target for each of the three contrast values and was
used in order to obtain image quality low-contrast
information.
Image quality parameters were evaluated with

CTQA_cp and Catphan QA and on the phantom images
acquired with the different CT mAs values and recon-
structed with different reconstruction algorithms.

Physical metrics quantification with CTQA_cp and
Catphan QA
For each adopted scanning protocol (i.e. different mAs)
and reconstruction algorithms, noise, uniformity, and
high-contrast spatial resolution were evaluated in order
to quantify how the different CT acquisition parameters
impact on the physical metrics. Both CTQA_cp and

Catphan QA were used and the obtained results were
compared.

Noise
Noise was characterised on the images of the Catphan
CTP 485 uniform module as the standard deviation of
pixel values within a square region of interest (ROI) lo-
cated at the centre of the phantom module.

Uniformity
Uniformity was calculated in the homogeneous region of
the CP486 module as the deviation in CT numbers of
the mean value of upper, right, lower, and left circular
off-centre ROIs from the mean value of a ROI placed at
the centre of the image of the phantom. Position and di-
mension of the ROIs could change between the two soft-
ware products. In any case, the closer to unity was the
result, the more uniform was the image.

High-contrast spatial resolution
MTF was calculated as the Fourier transform of the
point spread function of a region of interest centred on
the lower bead point object of the Catphan CTP 528-
point source module.

Low-contrast spatial resolution
As described below, empirical and computational
methods were evaluated in this study to quantify low-
contrast spatial resolution.

Evaluation with the four-alternative forced test
Four-alternative forced-choice (4-AFC) [13] test was ex-
ecuted to evaluate low-contrast spatial resolution by five
radiologists with at least 15 years of experience in clin-
ical CT and four experienced radiology technicians [14].
Observers were trained on all technical aspects and ob-
jectives of the study and frontal training was performed
through examples before the test.
The 4-AFC test was performed in a darkened room

with a constant level of low ambient lighting and images
were presented on a DICOM-calibrated megapixel
colour LCD screen (Radiforce RX320 LCD, EIZO Cor-
poration) with a native resolution of 1536 × 2048. Initial
window and level values of 100 and 1090 were sug-
gested, respectively, but observers were free to modify
them if necessary. No limitations on viewing distance
and time were set and no reference image was provided
before the start. Each human observer analysed 543
stacks of four images containing either just background
or the 6-mm and 7-mm diameter objects (1% contrast)
of the low-contrast supraslice region of the Catphan
phantom. To create the stack of images for the 4-AFC
test, dedicated macros were created using the freeware
software ImageJ (National Institute of Health Image,
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Bethesda, MD, USA) that automatically executes the fol-
lowing steps: (1) extracts samples of the low-contrast
objects (diameters 6–7 mm, 1% contrast) or of the back-
ground from low-contrast Catphan module (Fig. 1); (2)
generates a series of images each containing four quad-
rants with low-contrast circular objects or background,
randomly chosen from Catphan images acquired at dif-
ferent experimental conditions (i.e. mAs in the range of
30–300) and reconstructed by means of FBP, iDOSE (i.e.
levels 1–6) and IMR (i.e. levels 1–3). Sixteen images for
each CT protocol modality were overall selected and
randomly arranged over the stack of 543 images. One
example of images is provided in Fig. 2, each quadrant
possibly representing the particular of the Catphan
CTP515 low-contrast module shown in Fig. 1; (3) cre-
ates a stack of 543 images in a single DICOM image se-
quence that was loaded to a picture archiving and
communication system PACS (Philips IntelliSpace PACS
Enterprise 4.4.532.1, Philips Healthcare Informatics, Inc.,
Foster City, CA, USA) for further evaluation by the
observers.
In this study, observers had to identify the presence of

one or more quadrants with low-contrast lesions and to
indicate their position within the image. In principle, in
each one of the 543 images, low-contrast objects were in
none, one, two, three, or any quadrant. The percentage
of correct answers given by each observer subjected to
the 4-AFC experiment was analysed and evaluated.
Inter-CT protocol modality (i.e. each combination of mAs
and reconstruction algorithms) analysis was performed.

Computational evaluation
The computer model observer provided with CTQA_cp
was used to define low-contrast detectability on the Cat-
phan low-contrast supraslice images acquired at differ-
ent experimental conditions (i.e. mAs in the range of
15–300) and reconstructed by means of FBP, iDOSE (i.e.
levels 1–6) and IMR (i.e. levels 1–3). According to the
method, which is exhaustively described by Hernandez-
Giron et al. [6], output of the software system is the
smallest ‘visible’ object size at 1%, 0.5%, and 0.1% con-
trast. Only objects with 1% contrast were evaluated be-
cause 0.5% and 0.1% objects were often not visible
during first visual evaluations after phantom CT acquisi-
tions. Catphan QA also includes a function for low-
contrast diameter detail evaluation, which returns
dimensions of the smallest detectable target for each of
the three contrast values. This function is not based on
a model observer-based statistical approach, but it is re-
lated on the use of an algorithm for image analysis.

Results
Physical metrics quantification with CTQA_cp and
Catphan QA
Noise and uniformity evaluations are provided in Figs. 3
and 4, respectively; the high-contrast spatial resolutions
for 50% and 10% MTF are given in Table 1. Numerical
results of both software systems resulted to be compar-
able in terms of noise analysis, whereas a difference
arose for uniformity. High-contrast spatial resolutions
evaluated with Catphan QA resulted furthermore

Fig. 1 Image of the low-contrast module of the Catphan phantom

Fig. 2 Example of image for the 4-AFC test. In this case, low-contrast
objects were in quadrants a, b and c while quadrant d is empty
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systematically higher than those evaluated with
CTQA_cp, although the difference was limited and al-
ways below 1. At mAs values less than or equal to 30,
Catphan QA was unable to quantify MTF. Uniformity
results, shown in Fig. 4, showed small deviations vari-
ability, especially below 80 mAs, for CTQA_cp.

Low-contrast spatial resolution evaluation
Figure 5 shows the average and standard deviation of the
percentage of correct answers provided by the human
observers at changing CT protocol. For mAs in the
range from 240 to 160, using FBP or iDOSE (levels 1–6),
the average of correct answers is suboptimal, indicating
a net degradation of the perceived image quality and of

the low-contrast object detectability [15]. Introducing
IMR (levels 1–3), the average of the percentage of cor-
rect answers increases significantly and remains above
90% while lowering the mAs values up to 40.
Table 2 shows Catphan QA low-contrast results. De-

tectability of objects with 1% contrast is incremented
from 3 mm to 2 mm details with the introduction of
IMR, indicating that the use of iterative algorithms
slightly improves the detection of low-contrast objects
[16].
Table 3 shows model observer results in terms of

minimum diameter of the detectable low-contrast de-
tails. Results from 300 to 200 mAs showed a high vari-
ability, whereas from 180 to 100 mAs they were almost

Fig. 3 Noise quantification with Catphan QA and CTQA_cp for the different CT protocols and reconstruction algorithms

Fig. 4 Uniformity quantification with Catphan QA and CTQA_cp for the different CT protocols and reconstruction algorithms
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constant, with the diameters of the minimum detectable
detail all being around 2 mm. Below 100 mAs the soft-
ware system was unable to detect objects probably due
to intrinsic algorithm limitations.

Discussion
The purpose of this work was to use IR algorithms for
obtaining a percentage threshold value of mAs in order
to reduce CT dose while maintaining image quality. Hu-
man and computational detection performances were

also evaluated. In general, results obtained by means of
CTQA_cp and Catphan QA in terms of image quality
were approximately in agreement. The resolution of a
CT imaging system is well characterised with the MTF,
which indicates its ability to reproduce various levels of
detail from a region of the patient to its image. Small
differences obtained for uniformity and MTF are likely
due to small differences between the applied calculation
algorithms. In particular, for uniformity analysis, position
and dimension of the ROIs may change between

Table 1 High-contrast resolution results for 50% and 10% MTF, obtained with Catphan QA and CTQA_cp

MTF results Catphan QA CTQA_cp

CT acquisition parameter MTF (ll/cm) 50% MTF (ll/cm) 10% MTF (ll/cm) 50% MTF (ll/cm) 10%

300 mAs FBP 3.7 6.4 3.0 6.1

280 mAs FBP 3.7 6.3 3.0 6.5

260 mAs FBP 3.7 6.4 3.5 6.1

240 mAs FBP 3.7 6.3 3.0 6.1

220 mAs FBP 3.8 6.5 3.5 6.5

200 mAs FBP 3.9 6.6 3.1 6.5

180 mAs IDOSE 1 3.8 6.5 2.8 6.0

180 mAs IDOSE 2 3.7 6.5 3.1 6.0

180 mAs IDOSE 3 3.8 6.5 3.5 6.5

180 mAs IDOSE 4 3.9 6.6 3.4 6.0

170 mAs IDOSE 4 3.8 6.5 3.0 6.0

170 mAs IDOSE 5 3.8 6.5 3.0 6.1

170 mAs IDOSE 6 3.9 6.7 3.0 6.1

160 mAs IDOSE 6 3.7 6.5 2.9 5.6

160 mAs IMR1 4.2 7.1 3.6 6.5

150 mAs IMR1 4.1 7.1 3.6 6.6

140 mAs IMR1 4.1 6.9 3.5 6.5

140 mAs IMR2 4.0 6.8 3.7 6.4

130 mAs IMR2 4.2 7.1 3.8 6.5

130 mAs IMR3 4.0 6.8 3.5 6.3

120 mAs IMR3 3.9 6.7 3.5 6.0

110 mAs IMR3 4.1 7.0 3.9 6.5

100 mAs IMR3 3.9 6.7 3.5 6.1

90 mAs IMR3 3.9 6.7 3.6 6.1

80 mAs IMR3 4.0 6.8 3.6 6.4

70 mAs IMR3 3.6 6.2 3.5 6.0

60 mAs IMR3 3.8 6.5 3.5 5.9

50 mAs IMR3 3.4 6.0 3.6 5.7

40 mAs IMR3 3.4 6.0 3.2 5.6

30 mAs IMR3 NE NE 4.4 6.9

25 mAs IMR3 NE NE 3.5 6.0

20 mAs IMR3 NE NE 3.7 7.0

15 mAs IMR3 NE NE 4.0 7.0

NE not evaluated by the software
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CTQA_cp and Catphan QA. It is only specified that in
CTQA_cp the area of the ROIs correspond to the area
of a circle with diameter 10% of the diameter of the
homogeneous region in the CP486 module. Whereas for
Catphan QA, it is indicated that the outer edge of each
ROI is located 1 cm from module border. For MTF
evaluation, the small changes might be due to differ-
ences in the Fourier transform analysis of the images.
Image quality analysis anyway confirmed data already

reported in literature, supporting the efficiency of the
novel IR methods if compared to standard reconstruc-
tion algorithms such as FBP [17, 18]. Regarding noise, it
initially increased while mAs values were lowered using
FBP reconstruction. The application of iDose con-
stantly reduced it, even at decreasing mAs, and IMR
kept it low while tube loading reduced to 50 mAs.
Below this value, noise increased with a consequent
degradation of the image quality due to IR limits at
very low mAs values [19]. It was observed that the
uniformity values were within the advised limit
(ΔHU ≤ 4) [20]. iDOSE provided, therefore, a similar
image resolution to that obtained with FBP at signifi-
cantly higher mAs values. Our results represent,
therefore, a valuable confirmation that the use of IR
algorithms preserves the spatial resolution while redu-
cing mAs [21], except at very low tube load (i.e. < 50
mAs) where a very small decrease in spatial reso-
lution was found [19].

Evaluation of the low-contrast performance in CT im-
aging is a difficult task. It is related to the ability of an
operator to distinguish between two objects or regions
with similar CT number and it depends on statistical
noise levels, contrast and size of the signal.
Referring to Fig. 5, on the one hand the percentage of

correct answers is a proper quantification of the effi-
ciency of the application of the various reconstruction
algorithms for low-contrast details identification, on the
other hand the standard deviation is a good descriptor
of inter-observer’s variability of image quality evaluation.
The comparison between the different acquisition and
image reconstruction modalities confirmed the highest
efficiency for IMR, level 3 [22]. In fact, in all tested con-
ditions low-contrast detection rates were greater for
IMR than for FBP or iDOSE; low-contrast detectability
was preserved with IMR up to a tube loading reduction
to 40 mAs. In accordance to Katsura et al. [23], a conse-
quent decrease of dose to the patient by a factor up to 7
(i.e. 80% dose reduction) seems, therefore, to be possible
without producing any significant detriment to the
images.
Interestingly, the variability of the percentage of cor-

rect answers was high for iDose in the range of 220–160
mAs, whereas it was much lower with IMR, even at re-
duced tube loading. This was due to possible reconstruc-
tion limitations of iDOSE, which might stress the
perception variability among observers. As previously

Fig. 5 Percentage of mean correct answers (histogram) and of their variability (error bars representing the standard deviation, k = 1) at changing
CT protocols and reconstruction algorithms
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described, psychological factors could, in fact, affect the
test results [10]. As observers have performed the test in
different moments of the day, diagnostic accuracy, visual
accommodation, reading time, subjective ratings of fa-
tigue and visual strain, before and after a day of clinical
reading, may all have contributed as confounding factors
in terms of image quality evaluations. Image texture, ar-
tefacts and over-smoothing of images with higher
strengths of IR may have affected diagnostic results [24].
One could argue that, different from our work, a large

amount of papers compared iterative with exact methods

for specific clinical applications (e.g. morphological
evaluation of tumours) in specific anatomical regions
and diseases. We did not focus on specific anatomical
regions and diseases because the approach described in
this study could be adopted in many different clinical
applications, including the low-contrast regions/tissues
detection task, such as liver lesion identification in
abdominal CT [24, 25].
The performance of model observer software was, in

general, good in terms of low-contrast detectability up
to 100 mAs. Below this value, the model observer did

Table 2 1%, 05% and 0.3% low-contrast detectability obtained with Catphan QA

CT acquisition parameter Detail at 1% contrast (mm) Detail at 0.5% contrast (mm) Detail at 0.3% contrast (mm)

300 mAs Standard 2 5 7

280 mAs Standard 3 5 7

260 mAs Standard 3 5 7

240 mAs Standard 3 5 7

220 mAs Standard 3 5 8

200 mAs Standard 3 6 8

180 mAs ISODOSE 1 3 6 9

180 mAs ISODOSE 2 3 6 9

180 mAs ISODOSE 3 3 5 9

180 mAs ISODOSE 4 3 5 8

170 mAs ISODOSE 4 3 6 9

170 mAs ISODOSE 5 3 5 8

170 mAs ISODOSE 6 2 5 9

160 mAs ISODOSE 6 3 5 9

160 mAs IMR1 2 5 6

150 mAs IMR1 2 3 6

140 mAs IMR1 2 3 6

140 mAs IMR2 2 3 5

130 mAs IMR2 2 3 6

130 mAs IMR3 2 2 5

120 mAs IMR3 2 3 6

110 mAs IMR3 2 3 6

100 mAs IMR3 2 3 6

90 mAs IMR3 2 2 5

80 mAs IMR3 2 3 7

70 mAs IMR3 2 3 6

60 mAs IMR3 2 3 6

50 mAs IMR3 2 3 8

40 mAs IMR3 2 4 15

30 mAs IMR3 NE NE NE

25 mAs IMR3 NE NE NE

20 mAs IMR3 NE NE NE

15 mAs IMR3 NE NE NE

NE not evaluated
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not work well probably due to software intrinsic limita-
tions. Different from human observers, model observer
software recognised objects of 2 mm in diameter as a
prediction of human observer performance also between
220 and 160 mAs. This difference was particularly evi-
dent on the 220-mAs images, where the mean value of
correct answers by human observers was 9%, whereas
according to the model observer a 2-mm diameter ob-
ject is detectable.

The model observer given in CTQA_cp showed to be
a valid tool for a first evaluation of the analysed data,
but presented the following limitations that would re-
quire upgrades and improvements: (1) no optimisation/
adaptation is possible to ‘instruct’ the system for specific
study conditions; (2) no univocal and absolute detect-
ability scoring is provided as output. In particular, a de-
tectability scoring could be important to better quantify
the right mAs reduction percentage, optimised in terms
of human-perceived image quality. In general, a better
model observer software, with sophisticated interfaces
and specific setup possibilities, should probably be
adopted in future to assist better and predict human
observer’s performance. Implementation of a more ad-
vanced software, which is beyond the aim of this study,
is, however, very complex, as it requires a thorough
knowledge of model observer theory, statistics and in-
formatics [26].
In conclusion, this study demonstrated that the appli-

cation of the IR algorithm IMR to phantom images pre-
serves a good image quality and object detectability for
human radiological evaluation of CT exams, with a po-
tential noise reduction up to 60% and, in particular, an
85% dose reduction to the patient. With respect to other
studies, the method presented in this work can be easily
implemented and contains a thorough analysis for the
evaluation and optimisation of mAs according to the
adopted reconstruction algorithms. The model observer
can, in principle, be useful to assist human performance
in CT low-contrast detection tasks and in dose optimisa-
tion, but needs to be optimised in order to extract useful
information to support and predict human observer
evaluations on CT images. Further studies are required
to confirm the reported findings.
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