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Abstract

Background The intricate three-dimensional anatomy of the inner ear presents significant challenges in diagnostic
procedures and critical surgical interventions. Recent advancements in deep learning (DL), particularly convolutional
neural networks (CNN), have shown promise for segmenting specific structures in medical imaging. This study aimed
to train and externally validate an open-source U-net DL general model for automated segmentation of the inner ear
from computed tomography (CT) scans, using quantitative and qualitative assessments.

Methods In this multicenter study, we retrospectively collected a dataset of 271 CT scans to train an open-source
U-net CNN model. An external set of 70 CT scans was used to evaluate the performance of the trained model. The
model’s efficacy was quantitatively assessed using the Dice similarity coefficient (DSC) and qualitatively assessed using
a 4-level Likert score. For comparative analysis, manual segmentation served as the reference standard, with
assessments made on both training and validation datasets, as well as stratified analysis of normal and pathological
subgroups.

Results The optimized model yielded a mean DSC of 0.83 and achieved a Likert score of 1 in 42% of the cases, in
conjunction with a significantly reduced processing time. Nevertheless, 27% of the patients received an indeterminate
Likert score of 4. Overall, the mean DSCs were notably higher in the validation dataset than in the training dataset.

Conclusion This study supports the external validation of an open-source U-net model for the automated
segmentation of the inner ear from CT scans.

Relevance statement This study optimized and assessed an open-source general deep learning model for
automated segmentation of the inner ear using temporal CT scans, offering perspectives for application in clinical
routine. The model weights, study datasets, and baseline model are worldwide accessible.

Key Points
● A general open-source deep learning model was trained for CT automated inner ear segmentation.
● The Dice similarity coefficient was 0.83 and a Likert score of 1 was attributed to 42% of automated segmentations.
● The influence of scanning protocols on the model performances remains to be assessed.

Keywords Artificial intelligence, Ear (inner), Image processing (computer-assisted), Neural networks (computer),
Tomography (x-ray computed)
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Graphical Abstract

• The model achieved a mean Dice 
similarity coefficient value of 0.83 and 
a proportion of 42% of Likert score 1.

• Significant decrease in processing 
time supporting its utility in clinical 
routine.

• The model weight, optimized from a 
general open-source deep learning 
model, is made globally accessible.

WWe optimized and assessed an open-source deep learning model
for automated segmentation of the inner ear using temporal CT scans

Training and validation of a deep learning U-net
architecture general model for automated
segmentation of inner ear from CT scans
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Background
The inner ear, nestled within the temporal bone, con-
stitutes the innermost part of the ear and includes the
vestibule and cochlea, as well as the semicircular canals.
Variability in its structure among individuals [1, 2] poses
challenges for diagnosis and treatment. Computed
tomography (CT) has become crucial for surgeons, pro-
viding insights into the spatial relationships between
surgical targets and critical structures. Image-guided
technologies, such as mastoidectomy [3], cochlear
implantation [4–7], and treatment of otosclerosis [8, 9]
have proven valuable because of the precision required in
these intricate surgeries.
However, effectively visualizing the complex three-

dimensional (3D) inner ear anatomy remains difficult [10]
on two-dimensional temporal bone CT scans. Manual 3D
segmentation of the inner ear is traditionally labor-intensive.
Although semi-automatic and automatic methods such as
volume rendering [11], growing region, thresholding, edge
detection, and model/atlas-based approaches [12] have been
explored, human involvement still introduces errors.
Although these methods achieve high accuracy, their routine
clinical application is limited [3, 4].
Recent advancements in artificial intelligence, particu-

larly deep learning (DL), have notably enhanced 3D inner

ear segmentation [13–15]. Convolutional neural networks
(CNN), a subset of DL, facilitate novel approaches to
automated segmentation in medical imaging by utilizing
sophisticated multilayer neural networks [16, 17]. These
networks extract complex structural features from input
images [18], subsequently generating targeted structures
as outputs, showcasing the unique and significant
enhancements that DL contributes to computer vision
and image segmentation techniques.
This study aimed to assess the development and

external validation of a DL general model optimized for
automatic inner ear segmentation in external clinical
practice. The model quantitative and qualitative evalua-
tions of both healthy and pathological CT scans offer a
comprehensive perspective. In this study, weights of the
optimized model and study data are made available as
open sources.

Methods
Ethics
This multicenter study adhered to the ethical guidelines
outlined in the Helsinki Declaration and was approved by
the National Ethic Committee (Comité d’Ethique pour la
Recherche en Imagerie Médicale−CERIM; code: CRM-
2310-363; 19/10/2023). All data and patients’ written
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consents were retrospectively collected. No data were uti-
lized for interventional purposes, or experimentation, or
posed any harmful risks to the subjects or study. Our study
was classified as non-interventional, observing ethical
considerations throughout the research process. A large
language model, ChatGPT version 4.0, was used only for
translation purposes from native language to English.

Data collection
This study consisted of two distinct steps. In the initial
phase, 146 normal temporal CT scans were randomly
chosen from three medical centers for model develop-
ment and internal validation. These scans, collected
between 2016 and 2021 in the same city, aimed to
investigate neurological and ear-nose-throat pathologies.
Among these, 76 scans were from Center 1 (Morvan
Regional University Hospital, Brest, France) using a
Somatom Definition A64 scanner (Siemens Healthineers,
Erlangen, Germany), 50 from Center 2 (Cavale Blanche
General University Hospital, Brest, France) using a
Somatom Definition AS+ scanner (Siemens Healthineers,
Erlangen, Germany), and 20 from Center 3 (Clermont-
Tonnerre Military Instruction Hospital, Brest, France)
using a Revolution CT scanner (GE Healthcare, Wauke-
sha, United-States). The model was trained and validated
on this dataset using a 2:1 ratio, respectively. All scans
were obtained from healthy individuals without surgery,
malformations, or pathologies.
In the second step, an additional set of 146 CT scans

was added to the database at a 1:1 ratio, including healthy
and abnormal ears. These scans originated from Center 4
(Grenoble Alpes University Hospital, Grenoble, France)
and its affiliated satellite hospitals, collected between 2016
and 2021 from patients with clinical hearing loss and
vertigo, and from a variety of scanners. Of the 292 scans in

the training dataset, 21 were excluded because of poor
spatial resolution or inner ear anatomical issues.
For the external validation test, 70 CT scans were col-

lected from Center 5 (CLIMAL: Medical Imaging Center
of Lille Metropolitan Area, Lille, France) in 2022. They
were performed on an Aquilion Prime SP scanner (Canon
Medical Systems, Otawara, Japan).
Temporal bone protocols from scanners are shown in

Supplementary Table 1. All scans were retrospectively
collected.
In this study, we employed a bone analysis filter to

process each scan with a width of 4,000 HU and a center
range of 600 to 800 HU. Image data were provided in
DICOM and NifTI-1 formats, employing the “dcm2nii”
software (https://www.nitrc.org/projects/dcm2nii/) for
conversion purposes.

Ground truth manual segmentation using ITK-SNAP
software
ITK-SNAP is a globally available software used for 3D
manual segmentation [19] based on edge detection and
growing region algorithms. Mask outcomes from manual
segmentation were exported as mesh volumes (Fig. 1). The
initial set of 146 CT scans was manually segmented by a
junior radiologist (A.A.) with four years of experience and
reviewed by an expert neuroradiologist (J.O.) with 10 years
of experience. Following internal validation, an additional
70 CT scans were manually segmented by another junior
radiologist (J.L.) with four years of experience.

Training and development of a DL model into automated
segmentation
Automated segmentation workflow and model architecture
The model’s architecture is based on a U-net DL open
source [20] and is adaptable to various specific tasks via

Fig. 1 Example of manual ground truth segmentation (a) and its associated automated segmentation (b). Dice similarity coefficient value= 0.93
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optimization of the model’s weight. The proposed method
utilizes a symmetrical architecture characterized by a
sequential arrangement of contraction blocks (encoder),
expansion blocks (decoder), and skip connections. Con-
traction blocks employ convolution layers to reduce the
image size while capturing essential features for identifi-
cation. Conversely, the expansion path consists of a series
of up-convolutions and concatenations that merge feature
maps to facilitate accurate image segmentation. The
inclusion of skip connections between the encoder and
decoder enables retrieval of fine details that may be lost
during spatial down-sampling. This approach involves the
selection and analysis of relevant feature patches within
an image for classification, rather than utilizing the entire
image. The DL framework is presented in Supplementary
material (S1).

First training dataset
The first training was performed using 102 randomly
selected CT scans from the first set. Ground truth labels
were used as the gold standard. All steps were performed
on a single dedicated workstation with the following
characteristics: GPU 2*GEFORCE GTX1080Ti, Linux-
x86_64, NVIDIA Driver Version: 450.119.03, CUDA
Version: 11.0; Python 3.8.10; libraries: matplotlib ≥ 3.3.0;
scipy ≥ 1.4.0; numpy ≥ 1.18.5; nibabel ≥ 3.1.0. Training
hyperparameters are displayed in Supplementary material
(S2). It is worldwide available at https://github.com/
perslev/.

Optimization
A new dataset of 146 CT scans, including abnormal ones,
and their additional ground truth labels conducted by
senior (R.Q.) and junior (V.D.) radiologists (with 15 and 4
years of experience, respectively) were added to the pre-
vious database in a 1:1 ratio, resulting in a total of
292 scans. Of these, 21 scans were excluded from the
analysis due to issues such as poor spatial resolution, or
absence of anatomical structures of the inner ear. Con-
sequently, an additional training session was conducted
using a final comprehensive dataset of 271 CT scans to
enhance model performance. The same workstation and
hyperparameters, as outlined earlier, were employed
during the training process.
Overall study design associated data management is

shown in Fig. 2. The learning of the model over successive
iterations follows a logarithmic curve, as demonstrated in
Supplementary material (S3).
Finally, a set of 70 healthy and abnormal scans was used

as the external validation dataset to assess the perfor-
mance of the final model.
All automatic segmentations performed for training

and validation were post-processed using a sequential

approach to remove noise and smooth the volumetric
contour. First, a 3D Gaussian filter (sigma: 2.5)
was applied, followed by the application of the
Otsu thresholding method [21] to the 256-bin filtered
image.
The model’s weight, post-comprehensive training, and

study datasets are accessible at https://ieee-dataport.
org/documents/ct-training-and-validation-series-3d-
automated-segmentation-inner-ear-using-u-net. Our
study quantitatively evaluated the performance of a DL
model by calculating the Dice similarity coefficient
(DSC) between manual segmentations and automatic
segmentations using the model.
Additionally, qualitative assessment was conducted

through a 4-level Likert scale (LS), and we assessed U-net
architecture model performance on healthy and abnormal
CT scans as a reflection of clinical routine.

Quantitative assessment using DSC
A quantitative assessment of automatic segmentation was
performed using the DSC. DSC is a spatial overlap index
that quantifies the concordance between manual ground
truth segmentations and automatic segmentations. The
DSC ranges from 0 to 1, where a higher DSC value
indicates a closer resemblance of the automatic segmen-
tation to the ground truth [22].

Qualitative assessment using a 4-level LS
A qualitative assessment of the automatic segmentation
was conducted using a Likert score. The scale was
divided into four levels, based on practical observations
of the most observed anomalies in the analyzed 3D
volumes, with a score of 1 being the best value and a
score of 4 being the worst value (Table 1). The inner ear
was divided into five structures: each one of semicircular
canal (superior, lateral, and posterior), vestibule, and
cochlea. LS 1 was attributed for complete 3D segmen-
tations on mesh volumes. LS 2 was attributed for
segmentations missing one structure, LS 3 for segmen-
tations missing two structures, and LS 4 for segmenta-
tions missing three structures or presenting substantial
inner ear architecture disorganization (Fig. 3). The
evaluation was performed by a junior radiologist with
four years of experience (J.L.), who was blinded to the
DSC values, and conducted on both training and vali-
dation datasets.

Statistical analysis
We investigated differences in DSC and LS scores in
healthy and abnormal CT scans from training and vali-
dation datasets. A Spearman rank-order correlation was
conducted to assess the relationship between Likert values
and Dice values, for each set.
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Table 1 Likert scale

Likert Score Criteria

1 Complete 3D shape: no loss of 3D volume parts

2 Minor loss: at least one structure missing with no substantial architectural disorganization in the inner ear

3 Medium loss: at least two structures missing with no substantial architecture disorganization in the inner ear

4 Major loss: at least three structures missing or any substantial architectural disorganization in the inner ear

Structures of the 3D shape of the inner ear are vestibule, cochlea, and superior, lateral, or posterior semicircular canal

Fig. 2 Flowchart of study design associated data management. a Centers 1, 2, and 3; b Center 4 and satellite hospitals; c Center 5, DSC, Dice similarity
coefficient; LS, Likert scale
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Results
Internal validation set
In the validation phase, the model was run on the
remaining 44 CT scans. The average DSC was computed
as 0.89, indicating a high level of agreement between the
automatic segmentations and the manual ground truth.
The LS score of the qualitative evaluation was distributed
as follows: LS1 8/44 (18%); LS2 21/44 (48%); LS3 11/44
(25%); and LS4 4/44 (9%). An inversely proportional
relationship was observed between the LS score and DSC
results.

Population characteristics
Among the 271 scans in the training set, 171 (63%)
represented right ears, 94 (35%) left ears, and 6 (2%) had
both sides. After review, CT scans were categorized into
three groups: normal (n= 192), abnormal (n= 79), and
incomplete (n= 5). The abnormal group included scans
with middle ear disorders and inner ear malformations:
current or past media otitis (n= 25), otosclerosis (n= 23)

[23], postoperative changes (n= 21), and vestibuloco-
chlear dysplasia (n= 18), including semicircular canal
dehiscence (n= 7) or Mondini syndrome (n= 3).
Incomplete refers to scans missing the upper part of the
superior semicircular canal (SSCC) in the acquisition,
which could cause segmentation ambiguity.
Within this dataset of 271 scans, 77 (28%) inner ears

came from patients who exhibited clinical hearing loss, 92
(34%) had vertigo and 22 (8%) had undergone middle ear
surgery.
The validation dataset comprised 70 CT scans. Among

these, two (3%) demonstrated SSCC dehiscence, and none
were incomplete; 35 (50%) represented right ears, and 35
(50%) represented left ears.
Both training and validation datasets exhibited com-

parable proportions of normal scans, with 192 (71%) and
55 (79%), respectively, while 79 (29%) of the scans in the
training dataset and 15 (21%) in the validation dataset
were categorized as abnormal. In-depth analysis of data-
sets showed similar proportions of inner ear dysplasia,

Fig. 3 Examples of three-dimensional (3D) volumes with assigned Likert scale score. a Score 1: complete 3D volume; b Score 2: loss of the upper part of
the superior semicircular canal (SSCC); c Score 3: loss of the upper part of SSCC and part of the lateral semicircular canal; d Score 4: loss of parts of SSCC,
lateral semicircular canal and cochlea
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past surgery, and otosclerosis. Subsets were constructed
from these categories at risk of segmentation inaccuracies.
Population characteristics are shown in Table 2.

Quantitative performance on the validation dataset
The model performance acquired from the validation
dataset yielded an average DSC of 0.83 (Table 3), and a
DSC median of 0.88, underscoring the prevalence of high
DSC values. Subset analysis showed consistency in mean
DSC values, as pathological and otosclerosis mean DSC
values tend to drop to 0.75 and 0.72 respectively, and the
normal subset yielded a higher mean DSC of 0.85. The
malformation subset showed the highest mean DSC of
0.90.
The average time required to manually segment each

inner ear on a conventional computer was 463 s, resulting
in approximately 7 h of segmentation for the validation
data. The total training time was 176 h. The average time

for automated segmentation of one volume using the
GPU was 12 s.

Qualitative evaluation
Among the 70 scans in the validation set, 29 (42%) inner
ears were scored 1, indicating a robust level of segmen-
tation accuracy. Notably, 41 (58%) CT scans exhibited
segmentation discrepancies in at least one inner ear
structure. Within this subset, the majority were assigned
LS 4 level, accounting for 19/70 (27%) of the cases. Score
2 was attributed to 17/70 (24%) of the cases, while score 3
was observed in 5/70 (7%) cases. In scans where the sole
anomaly was a clinical SSCC dehiscence, without missing
concurrent structures, a score of 1 was assigned for
matching volume loss. Following clinical analysis of 3D
volume rendering, the main information loss (score > 1)
was notably concentrated in the semicircular canals,
especially the superior canal, contributing to a significant
85% information loss in LS 2, 3, and 4 levels combined.
Figure 4 shows examples of structural losses in automated
segmentation.
Table 4 summarizes the mean DSC for each LS score.

Mean DSC was highest for score 1 and score 2. DSC
notably dropped from score 1 to score 4, indicating a
marked decline in segmentation accuracy.

Performances between training and validation sets
Table 3 shows the DSC subgroups comparison. The
overall validation dataset and subsets mean DSCs out-
performed those in the training dataset. The overall mean
DSC exhibited 0.83 (+ 0.07), the normal subset 0.85
(+ 0.08), the pathological subset 0.75 (+ 0.03), and the
malformation subset 0.90 (+ 0.09). However, the oto-
sclerosis subset showed a slight decrease, with a mean
DSC of 0.72 (-0.01). These results maintained a consistent
standard deviation, except for the malformation subset
(0.04 versus 0.12). Similarly, the median values aligned
with this trend in the overall validation dataset and its

Table 2 Number (percentage) according to characteristics of
patients in the training and validation datasets

Patients’ characteristics Training

dataset

(n= 271)

Validation

dataset

(n= 70)

Left 94 (35%) 35 (50%)

Ear laterality Right 171 (63%) 35 (50%)

Both sides 6 (2%) 0 (0%)

Incomplete 5 (2%) 0 (0%)

Abnormal Inner ear

dysplasia

18 (7%) 7 (10%)

Past surgery 21 (8%) 4 (6%)

Otosclerosis 23 (8%) 7 (10%)

Middle ear

disorders

79 (29%) 14 (20%)

Normal 192 (71%) 55 (79%)

Table 3 Subgroups analysis and comparison between training and validation datasets

Training dataset Validation dataset

Subsets n Mean DSC (SD) Median Min Max n Mean DSC (SD) Median Min Max

Overall dataset 271 0.76 (0.13) 0.79 0.17 0.92 70 0.83 (0.14) 0.88 0.16 0.94

Normal 192 0.77 (0.12) 0.81 0.17 0.92 55 0.85 (0.11) 0.89 0.43 0.94

Pathological 79 0.72 (0.14) 0.76 0.19 0.90 15 0.75 (0.20) 0.85 0.16 0.92

Malformation 18 0.81 (0.12) 0.76 0.48 0.92 7 0.90 (0.04) 0.90 0.87 0.92

Otosclerosis 23 0.73 (0.14) 0.77 0.19 0.90 7 0.72 (0.14) 0.67 0.55 0.89

Incomplete 5 0.63 (0.05) 0.64 0.54 0.66 0 NA NA NA NA

DSC Dice similarity coefficient, NA Not available, SD Standard deviation
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subsets, reaching the highest value in the normal subset
(0.89). No comparable data were available for the
incomplete subset compared to the validation set.
A detailed analysis of the model predictions (Table 5)

showed similar proportions of score 1 between the
training and validation groups. However, the validation
group exhibited more scores of 4. A declining correlation
was observed between the mean DSC and LS scores,

consistent with the validation group: lower LS levels were
associated with higher mean DSC values. The Spearman
correlation coefficient was -0.47 for the training set and
-0.70 for the validation set (p < 0.001 for both).

Discussion
Results analysis
The predictions yielded a high mean DSC of 0.83 com-
pared to the ground truth, with 42% attaining an LS score
of 1, showcasing acceptable automatic segmentation
under routine clinical conditions. A difference of 0.07
between the mean DSCs of the training (0.76) and vali-
dation (0.83) sets highlights robust external validation.
The lower DSC values in the training dataset were pre-
dominantly due to suboptimal manual segmentation,

Fig. 4 Examples of great and poor predictions. The upper rows show manual segmentation in green. Lower rows show automated segmentation in red.
The first and second columns illustrate inner ear parts, while the third column is a three-dimensional rendering. a Great prediction: DSC= 0.92; LS score 2
(loss of upper part of SSCC); b Poor prediction: DSC= 0.68; LS score 4 (major loss in the cochlea, vestibule, SSCC, and lateral semicircular canal). DSC, Dice
similarity coefficient; LS, Likert scale; SSCC, Superior semicircular canal

Table 4 Mean DSC depending on Likert score

Likert score 1 (n= 29) 2 (n= 17) 3 (n= 5) 4 (n= 19)

Mean DSC (SD) 0.90 (0.03) 0.90 (0.03) 0.83 (0.06) 0.69 (0.13)

DSC Dice similarity coefficient, SD Standard deviation
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which adversely affected the quality of the automated
segmentations. Nevertheless, after a thorough examina-
tion, we did not find cases where inadequate automatic
segmentation led to higher DSC values compared to
subpar manual segmentation. The unexplained higher
prevalence of score 4 in the validation dataset, i.e., 19
(27%) versus 10 (4%), primarily from normal CT scans,
emphasizes the relevance of qualitative evaluation in
refining 3D-rendering DL models, pivotal for specialized
clinical applications such as image-guided robot surgery
and cochlear implants [5, 24, 25]. We believe that, while
quantitative metrics assess model precision against the
reference standard, qualitative assessments provide
insights into the model’s practical clinical applicability, as
illustrated through segmentation structural viability. For
example, accurately predicting SSCC dehiscence through
automatic segmentation is critical and unlikely to impede
cochlear image-guided surgery.

Comparison with literature
Previous studies have demonstrated robust precision, as
indicated by the DSC, of automated inner ear CT scan
segmentations in clinical practice using mixed patholo-
gical and healthy datasets. To our knowledge, prior stu-
dies have primarily focused on the quantitative evaluation
of DL models, lacking insights into qualitative assess-
ments. Furthermore, limited patient-numbered datasets,
specifically in the context of CT scans, constrain insights
into broader applicability. The details of these studies are
presented in Table 6.
Neves et al [26] demonstrated a mean DSC of 0.91 for

inner ear 3D rendering using the complex AH-net DL
model and noted quicker processing times. The AH-net,
more intricate than the U-net due to its attention
mechanisms, hybrid architecture, and advanced feature
extraction techniques, excels in tasks requiring precision
but demands advanced knowledge and specialized
resources. In contrast, U-net is simpler and widely sup-
ported, particularly for image segmentation [20]. Further
recent studies like Wang et al [27] and Ke et al [28]
reported a similar DSC using the detailed W-net model,
which utilizes dual U-net models to tamper for

unsupervised training. Ke et al [28] also included a dis-
tinct pediatric CT-scan set and obtained a DSC of 0.91,
utilizing data augmentation for the training of the model.
Ding et al [29] proposed to approach bony labyrinth

automated segmentation through an image-registration-
based pipeline instead of CNN, acquired on cone beam
CT (CBCT). An anatomical template was generated based
on one out of 16 CBCT images using inverse deformation
fields to tamper with the 3D variations of the inner ear.
Although it showed a DSC of 0.84 and fast runtime, the
absence of extended training and self-taught mistakes like
CNNs renders it unable to adjust to anatomical variations.
Furthermore, no tests have been reported for operated or
pathological ears.
Regarding CNN models, Vaidyanathan et al [13] applied

3D U-Net CNN for inner ear segmentation on MRI scans
using high-resolution T2-weighted sequences, showing
comparable results to our study with a DSC of 0.87. Their
fully trained model in a multicenter study was validated
on MRI scans with pathologies or post-therapeutic
changes, proving substantial quantitative assessment.
Hussain et al [16] employed 17 micro-CT scans from
specimen open dataset, achieving a DSC of 0.90, by
training their CNN from the ground up, using an auto-
context cascaded 2D U-net architecture, allowing for
partitioning of input volumes into 2D segmentation
architecture, with 3D connected component refinement
for segmentation of the inner ear. Additionally, Stebani
et al [30] obtained a DSC of 0.94 by developing their
U-net CNN on a specimen in-house dataset and subse-
quently testing it on a set of 10 clinical CT scans. They
further evaluated the model performance on additional
specimen datasets from open sources to assess its gen-
eralizability, which included datasets from CT scans,
CBCT, and micro-CT, with achieved DSCs of 0.94, 0.89,
and 0.91, respectively. Conversely, Heutink et al [31] used
123 in vivo CT scans from a single scanner model for
training and validation, but solely focused on cochlea
segmentation using a cochlea detection and pixel-wise
classification models, performing a DSC of 0.90.
Although our study exhibits the lowest mean DSC

value, it is of consideration that all scans used in this study

Table 5 Mean DSC correlated to Likert scale scores in training and validation datasets

Likert score 1 2 3 4 Spearman correlation coefficient p-value

Training set (n= 271) n (%) 125 (46%) 97 (36%) 39 (14%) 10 (4%) -0.47 < 0.001

Mean DSC 0.81 0.73 0.70 0.63

Validation set (n= 70) n (%) 29 (42%) 17 (24%) 5 (7%) 19 (27%) -0.7 < 0.001

Mean DSC 0.90 0.90 0.83 0.69

DSC Dice similarity coefficient, LS Likert score
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for training and testing were multicenter in vivo and in-
house CT scans, more widely accessible than micro-CT,
and included entire bony labyrinth without requiring
additional patches or data augmentation for training
supervision, using basic U-net architecture. Moreover, the
distinct origin of the training and validation sets under-
scores the capability for in vivo generalization. Also, we
reported pathological scans in each dataset. The impact of
these on the model performance, especially during train-
ing, is still unclear, though a potential decrease in overall
performance cannot be disregarded.

Strengths and limitations of our study
The strength of this multicentric study lies in its incor-
poration of diverse CT scanners according to manu-
facturers and models into the model training, enabling the
model to train and validate on a broad spectrum of both
normal and pathological CT scans from different centers
and machine models, underscoring its adaptable and
widely applicable nature. This suggests potential utility in
clinical settings, reducing variability introduced by man-
ual segmentation and aiding image-guided surgical
planning.
Moreover, the model showed promising results for the

automatic segmentation of inner ear-challenging lesions
such as inner ear dysplasia, highlighting its capability to
approach subtle anatomical variations that are clinically
significant [32, 33]. The inclusion of more such variations
in the model training is likely to enhance its predictive
accuracy and clinical relevance, offering perspectives for
identifying and classifying minor anatomical differences in
future research.
In addition, it stands out for its rigorous qualitative

assessment, blinded to DSC values, offering a refined level
of evaluation not seen in prior work. While Vaidyanathan
et al [13] showed a 67% preference for automatic seg-
mentation in a blind comparison, our use of the LS pro-
vided a more nuanced understanding of evaluative
subjectivity. Neves et al [26] conducted a similar evalua-
tion but were limited to four CBCTs. Our approach,
applied to a broad array of CT scans from both training
and validation sets, demonstrated consistent outcomes
and negated the likelihood of overfitting. The initial
dataset used for internal validation consisted solely of
scans from healthy temporal regions, ensuring a con-
sistent baseline for evaluation.
As for limitations, a few should be considered. Although

we demonstrated high DSC values from the neural net-
work applied to a complete external CT scans dataset, we
could not cover the correlation between technical CT
scan parameters (slice thickness, voxel size, pitch, kV, or
mAS) with DSC values or the LS score. Given that the
validation dataset mostly comprised scans of normal innerTa
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ears, it is unlikely to attribute the higher proportion of
score 4 in the validation set to confounding pathological
voxels exclusively. This observation prompts investiga-
tions concerning the influence of scanning protocols on
the performance of the model, especially from a qualita-
tive perspective.
In addition, this study exclusively used CT scans, not

covering other commonly used CT modalities for tem-
poral bone imaging such as CBCT, particularly in the
pediatric population due to concerns about radiation
dosage [34]. Recent studies from Ding et al [15] demon-
strated consistent accuracy for inner ear automated seg-
mentation using a DL pipeline in CBCT, as well as Benson
et al [35] showing higher resolution at a reduced radiation
dose in photon-counting detector CT, warranting further
exploration in these domains.
Finally, only one junior radiologist manually segmented

the validation dataset. Although he was under the
supervision of an expert radiologist, the quality of the
manual segmentation could not be guaranteed and was
likely to influence the performance of the model.
Increasing the number of labelers and evaluating their
impact on model outcomes are potential avenues for
future studies.

Clinical implications and future strategies
The model yielded substantially reduced processing time
(12 s) compared to manual segmentation (463 s), sup-
porting its utility in clinical routine as a radiologist seg-
mentation tool. Furthermore, existing research illustrated
the proficiency of DL models in segmenting crucial ear
structures [26–29]. Specifically, models have been suc-
cessfully trained to identify the facial nerve, ossicles, and
sigmoid sinus, all of which play indispensable roles in
high-precision surgical interventions [9, 24]. Given the
demonstrated capabilities, the model presents opportu-
nities for expanding its recognition to additional anato-
mical features, thus enhancing its clinical utility [30, 36].
Moreover, the emerging use of CT images in augmented
reality for otologic surgery [37] is noteworthy, repre-
senting a promising avenue for future advancements.
While it is still in nascent stages, integration of segmen-
tation DL models into radiological software offers
opportunities for advancements in personalized
patient care.
On another front, new research has emerged suggesting

that the shape of the 3D inner ear may vary depending on
sex [38] particularly in individuals below 15 years of age
[39]. Bonczarowska et al [39] highlighted sexual
dimorphism in the inner ear dimensions, specifically in
the width, height, and curvature radius of the cochlea and
dimensions of the posterior semicircular canals. As our
model’s segmentation closely aligns with ground-truth

labels, it is likely that it could be adapted for forensic
applications.
While its applicability yields multiple outcomes, it is

pivotal to highlight that thorough optimization of the
proposed model is required for specific purposes. Also,
given its worldwide online availability—through the
optimized model weight and base general model—con-
fidence is vested in the feasibility of foreign utilization for
inner ear 3D automated segmentation.

Conclusions
A 3D U-net model architecture was trained and evaluated
for the automated and precise segmentation of the inner
ear using temporal bone CT scans. The resulting CNN
demonstrated high accuracy in segmenting both healthy
and pathological CT scans, substantiated through quan-
titative and qualitative assessments on an external dataset,
ensuring its validation and emphasizing qualitative
enhancement in developing 3D-rendering DL models.
Given its robust performance, we believe this model holds
promise for substantial advancements in otology educa-
tion, surgical simulation, image-guided surgery, and its
incorporation into regular clinical practices.
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