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Abstract

Background Renal quantitative measurements are important descriptors for assessing kidney function. We
developed a deep learning-based method for automated kidney measurements from computed tomography (CT)
images.

Methods The study datasets comprised potential kidney donors (n= 88), both contrast-enhanced (Dataset 1 CE) and
noncontrast (Dataset 1 NC) CT scans, and test sets of contrast-enhanced cases (Test set 2, n= 18), cases from a
photon-counting (PC)CT scanner reconstructed at 60 and 190 keV (Test set 3 PCCT, n= 15), and low-dose cases (Test
set 4, n= 8), which were retrospectively analyzed to train, validate, and test two networks for kidney segmentation and
subsequent measurements. Segmentation performance was evaluated using the Dice similarity coefficient (DSC). The
quantitative measurements’ effectiveness was compared to manual annotations using the intraclass correlation
coefficient (ICC).

Results The contrast-enhanced and noncontrast models demonstrated excellent reliability in renal segmentation
with DSC of 0.95 (Test set 1 CE), 0.94 (Test set 2), 0.92 (Test set 3 PCCT) and 0.94 (Test set 1 NC), 0.92 (Test set 3 PCCT),
and 0.93 (Test set 4). Volume estimation was accurate with mean volume errors of 4%, 3%, 6% mL (contrast test sets)
and 4%, 5%, 7% mL (noncontrast test sets). Renal axes measurements (length, width, and thickness) had ICC values
greater than 0.90 (p < 0.001) for all test sets, supported by narrow 95% confidence intervals.

Conclusion Two deep learning networks were shown to derive quantitative measurements from contrast-enhanced
and noncontrast renal CT imaging at the human performance level.

Relevance statement Deep learning-based networks can automatically obtain renal clinical descriptors from both
noncontrast and contrast-enhanced CT images. When healthy subjects comprise the training cohort, careful
consideration is required during model adaptation, especially in scenarios involving unhealthy kidneys. This creates an
opportunity for improved clinical decision-making without labor-intensive manual effort.

Key Points
● Trained 3D UNet models quantify renal measurements from contrast and noncontrast CT.
● The models performed interchangeably to the manual annotator and to each other.
● The models can provide expert-level, quantitative, accurate, and rapid renal measurements.
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Graphical Abstract

• Trained 3D UNet models 
quantify renal measurements 
from contrast and noncontrast 
CT. 

• The models performed 
interchangeably to the manual 
annotator and to each other.

• The models can provide with 
expert-level, quantitative, 
accurate, and rapid renal 
measurements.

DL-based networks can automatically obtain renal clinical descriptors
from CT images, both with and without the presence of contrast agent
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(b1,b2) Renal axes 
measurement error 
between ground 
truth, contrast 
enhanced, and 
noncontrast models.
(c1,c2) Bland-

Altman analysis for 
the volumetric 
agreement between 
ground truth, 
contrast enhanced, 
and noncontrast 
models.

Background
Renal quantitative measurements such as kidney length
and volume are important clinical indicators used daily in
radiology to describe morphological characteristics, assess
renal functionality, determine the presence and/or pro-
gression of renal disease, and evaluate an individual’s
eligibility as a kidney donor [1–4]. In kidney donor-
recipient matching pairs, kidney size is of great impor-
tance [5]. Graft volume has been shown to correlate sig-
nificantly with improved transplantation outcomes both
in terms of glomerular filtration rate and 1-year serum
creatinine level [6–9].
Ultrasound imaging is noninvasive, can be acquired fast,

and does not expose the subject to ionizing radiation,
making it the preferred imaging modality for obtaining
such measurements [1, 10–12]. Nevertheless, the suit-
ability of ultrasound has been controversial because of
its two-dimensional nature and the fact that it requires
basic geometric assumptions about renal morphology
[13]. Previous studies have demonstrated that renal
measurements in computed tomography (CT) provide
more consistent results compared to ultrasound [14].
The inclusion of three-dimensional (3D) information

from CT scanners stabilized the measurements even
further [15].
Manual CT measurements, although accurate, are

labor-intensive and subject to interobserver and intraob-
server variability [16, 17]. Therefore, in many studies,
renal volume estimates have been obtained from simple
ellipsoid fitting to the kidney [6, 7, 10, 18, 19]. This
approach provides a significant speed-up in the mea-
surement process but leads to suboptimal results as the
kidneys are not ellipsoid [1]. Furthermore, this method
suffers from observer variability because the three axes of
each kidney must be defined manually [20].
Deep learning-based renal volume measurements have

also been studied, especially as part of the Kidney and
Kidney Tumor Segmentation Challenge (KiTS) (https://
kits-challenge.org/kits23/). Multiple teams have either
participated in the challenge or used its dataset to obtain
accurate measurements of the kidney and the kidney
tumor [21–26]. Although the performance reached that
of the manual annotators, the challenge dataset included
the renal sinus fat that does not contain functional renal
tissue [1]. Such a dataset is not entirely representative of
real-world settings, where measuring the actual renal
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parenchyma is often considered during transplantation
planning. Additionally, KiTS focuses only on contrast-
enhanced (CE) CT that does not accurately resemble
real clinical settings. Especially in patients with kidney
impairment, the toxicity risks of using intravenous
iodinated contrast agents are taken into consideration,
and patients are scanned, when possible, without con-
trast administration [27]. In addition, it is known
that contrast agents slightly increase the size of the
kidneys [14].
Therefore, we aimed to develop a deep learning-based

method to obtain quantitative renal measurements for
both CE and noncontrast (NC) CT images.

Methods
Datasets
This retrospective study used different datasets, with due
ethical clearance by the ethical committee at the Uni-
versity Hospital of Leuven (internal reference number
S66718). The first one (Dataset 1) comprised CT images
of kidney donors who, from February 2018 to April 2022,
underwent at our institution a standard CT examination
with NC scans followed by CE phases, in order to assess
eligibility to donate (acquisition protocol described in
Supplementary material “Dataset 1 protocol”). Of note,
part of Dataset 1 has been use as a first test set (Test set
1). The second dataset (Test set 2) is composed of CE
images and was randomly sampled from our institution’s

Picture archiving and communications system. The
selection process included images scanned using identical
protocol to the one of Dataset 1, but without necessarily
images of healthy kidneys, in an attempt to resemble real-
world settings as closely as possible. The third dataset
(Test set 3) was constructed by randomly sampling ima-
ges obtained using a photon-counting CT (PCCT) scan-
ner (acquisition protocol described in Supplementary
material “Test set 3 (PCCT) protocol”). The fourth dataset
(Test set 4) comprised images obtained using lower
radiation exposure, approximately 25% of the dose applied
using the protocol of Dataset 1. The dose reduction was
measured using CT Dose Index (CTDvol) values (these
examinations were conducted following a request for
suspected nephrolithiasis).
The inclusion process is depicted in Fig. 1. Test sets 2, 3,

and 4 were used only for testing purposes. The ground
truth labels for this study were constructed using the
SegmentEditor module of 3D Slicer [28]. Manual deli-
neation of both the left and right kidneys was performed,
excluding the renal sinus fat. The annotation process of
Dataset 1 was performed by a medical student (radiology
intern with 2 years of experience ('sH.R.)) under the
guideline and inspection of an expert radiologist with
15 years of experience (D.W.L.). Test set 2 annotation was
performed by this expert radiologist, in order to validate
the model performance against the labels of an experi-
enced clinician.

Fig. 1 Subject inclusion process. PACS, Picture archiving and communications system; CE, Contrast-enhanced; NC, Noncontrast; CT, Computed
tomography; PCCT, Photon-counting CT
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Test set 3 comprised virtual monoenergetic images
obtained using a PCCT scanner, reconstructed at 60 and
190 keV. The low energy (60 keV) reconstructions visually
resemble CE images, while the high energy ones (190 keV)
resemble NC images respectively. The annotation of Test
set 3 was performed by the same expert radiologist who
performed Test set 2 annotation. Test set 4 was composed
of scans obtained using lower x-ray doses compared to
that of Dataset 1 in order to assess the model performance
when CT images are obtained at low x-ray doses. The
annotation of Test set 4 was performed by the same
expert radiologist. Examples of manual segmentations for
CE and NC CT images of Dataset 1 are shown in
Fig. 2a1, a2. PCCT images, reconstructed at 60 and
190 keV, are depicted in Fig. 2b1, b2. Data collection
involved the measurement of kidney volumes and multi-
dimensional axes using the generated manual labels, as
summarized in Table 1, along with relevant dataset
characteristics.

Preprocessing
The studied cohort of Dataset 1 was randomly split into
training, validation, and test sets (ratio of 0.65, 0.175, and
0.175, respectively). CE and NC images were used to train
two separate networks. To facilitate the network training
process, NC images underwent resampling using trilinear
interpolation to achieve isotropic spacing of 1.5 mm3,
resulting in a median image size of 236 × 236 × 156. CE
images were not resampled but rather used at their ori-
ginal resolutions, as their spacing had much less variation.
NC and CE images were truncated with a window level/
width of 65/170 HU and 200/300 HU, respectively, and
then normalized to [0, 1] using min-max normalization.
The choice of this windowing setting was based on the
kidney HU distribution of the NC and CE images. Kidney
labels were transformed to one-hot encoded representa-
tions for both CE and NC cases using three represented
classes: background, right kidney, and left kidney. Data
augmentation techniques were used to artificially extend

Fig. 2 a1, a2 Contrast-enhanced (left) and noncontrast (right) computed tomography scans and ground truth segmentations. The renal sinus fat has
been excluded during the manual delineation process. b1, b2 Photon-counting computed tomography image reconstructed at 60 keV (left) and 190 keV
(right). The 60-keV image resembles an image acquired using contrast agent, while the 190 keV reconstruction resembles an image without contrast. c1
Three-dimensional point cloud constructed from the segmentation mask. c2 Bounding box. c3 Renal axes calculation
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the training cohort, including random patch extraction,
random flipping in x, y, and z axes, random intensity
shifting (offset < 0.1), and addition of Gaussian noise
(0 ± 0.05, mean ± standard deviation).

Network implementation and training
Each of the CE and NC image sets was used to train a 3D
UNet [29] convolutional neural network for the auto-
mated segmentation of both the left and right kidneys.
The architecture of both networks was identical, as
depicted in Fig. 3. The corresponding blocks of the
encoder and decoder made use of residual connections
[30], in order to facilitate the network training and
minimize vanishing gradients that would halt the con-
vergence. We used Adam [31] to optimize the parameters
of each model with a constant learning rate of 3 × 10−4,
and Dice loss [32] as objective criterion. Furthermore, to
avoid overfitting, a dropout rate of 0.3 was used in both
networks. The batch size was 8 and each sample in the
batch consisted of a random cropped patch from
the initial CT, Pi 2R96x96x96i ¼ f1; ¼ ; 8g. For each of
the training experiments, we made use of 1 NVIDIA
GeForce RTX 3090 with 24 GB of memory, and all models

were trained for 1500 epochs. The network architecture
was implemented using PyTorch v1.10.0 (https://pytorch.
org/) and MONAI v1.0.1 (https://monai.io/), while the
training was implemented using CUDA 11.3. The CECT
model took approximately 9 h to train while the NCCT
took about 4 h, as NC images were smaller due to the
resampling process.

Inference and post-processing
During model inference, 24 overlapping patches, Pi 2
R96x96x96; i ¼ 1; ¼ ; 24, for every scan are passed through
the network in a sliding window setting, using a patch
overlap of 0.5 and averaging the predictions of over-
lapping pixels. At the model output, the argmax function
was applied to the raw logits, converting it to a one-hot
encoded representation of three classes (background,
right kidney, left kidney). We then perform connected
component analysis to each of the kidney classes, keeping
only the largest segment (i.e., the kidney). NC images are
also upsampled to the original resolution using trilinear
interpolation. As this interpolation process assigns
nonzero values to neighboring voxels of the kidney mask,
an appropriate threshold needs to be set to avoid

Table 1 Datasets characteristics

Parameter Dataset 1 CE Dataset 1 NC Test set 2 Test set 3 PCCT Test set 4

Number of

subjects

88 88 18 15 8

Females/males 49/39 49/39 13/5 9/6 3/5

kVp [100, 100] (100) [100, 120] (100) [82.5, 100] (100) (120) [100, 125] (110)

Kidney density

(HU)

[141, 204] (171) [18, 38] (28) [148, 219] (182) 60 keV [176, 247] (214) [17, 48] (33)

190 keV [24, 45] (35)

CTDIvol (mGy) [8.13, 10.51] (8.16) [8.73, 9.81] (9.41) [7.08, 9.30] (8.77) [3.68, 6.73] (5.22) [1.58, 2.15] (1.83)

Scanner

Manufacturer Siemens Siemens Siemens Siemens Siemens

Model SOMATOM Definition

Flash, Force

SOMATOM Definition

Flash, Force

SOMATOM Definition Flash, Force,

Definition Edge

NAEOTOM Alpha SOMATOM Definition

Flash, Force

Image size (512, 512, 101) (512, 512, 48) (512, 512, 101) (513, 512, 677) (512, 512, 131)

Pixel spacing

(mm)

(0.86, 0.86) (0.69, 0.69) (0.83, 0.82) (0.82, 0.82) (0.69, 0.69)

Slice thickness

(mm)

(3) (5) (3) (0.7) (3)

Age (years) [36, 59.2] (49) [36, 59.2] (49) [39, 56] (47) [54.5, 70] (60) [31.5, 45.2] (40)

Volume (mL) [121.39, 160.43] (139.83) [125.81, 159.26] (140.87) [118.1, 151.46] (135.97) [106.27, 148.97] (118) [137.79, 181.49] (146.96)

Length (mm) [107.36, 120.29] (113.96) [109.25, 121.82] (115.80) [106.32, 119.2] (112.81) [100.16, 114.14] (111.78) [112.66, 124.79] (117.27)

Width (mm) [63.21, 69.18] (66.28) [63.13, 69.67] (66.58) [62.79, 69.52] (65.97) [57.46, 66.16] (61.52) [66.97, 70.61] (69.33)

Thickness

(mm)

[44.56, 53.43] (49.18) [45.47, 53.31] (48.89) [46.26, 52.13] (48.53) [43.72, 48.81] (46.52) [47.93, 54.42] (51.57)

Values in brackets represent interquartile ranges; values in parentheses represent medians. Kidney density values are given in HU by retrospective analysis using
manual annotations
CE Contrast-enhanced, NC Noncontrast, PCCT Photon-counting computed tomography
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under/over-estimation of the kidney. To this end, we
predict the validation set cases using different threshold
settings Ti 2 ½0; 1�, and choose the most suitable one
based on the segmentation performance.

Quantitative measurements
Once both kidneys had been segmented, volumetric mea-
surements were straightforward to derive by multiplying
the number of foreground voxels by the initial spacing,
available in the DICOM header. Nevertheless, to calculate
the three kidney axes (length, width, and thickness)
requires additional processing. To this end, each kidney is
first interpolated to an isotropic spacing of 1 mm3, and the
main kidney axes are obtained by principal component
analysis of the 3D point cloud of kidney voxels. The
minimal bounding box oriented along these axes and
enclosing the kidney is then determined and its extents are
measured from the center along each axis direction. In this
way, the three axes are defined as the longest distances
inside the kidney in the following directions: length
(inferior to superior), width (medial to lateral), and thick-
ness (ventral to dorsal). Figure 2b1–b3 illustrates the pro-
cess of calculating the renal axes. The kidney length equals
the distance LL’, while the width is equal to WW’, and the
thickness equals TT’. The kidney bounding box was cal-
culated using Open3D v0.15 (https://www.open3d.org/).

Performance benchmarking using TotalSegmentator
In order to obtain a baseline performance for the test
subset of Dataset 1, we used a publicly available model,

namely TotalSegmentator [33], to predict both the CE and
NC cases. The model was directly downloaded from its
GitHub repository (https://github.com/wasserth/
TotalSegmentator). To allow for a fair comparison, we
used the 3mm resolution model to segment the CE cases,
while for the NC dataset, we used the higher resolution
model of 1.5 mm.

Volumetric measurements based on the ellipsoid model
Manual delineations for both the left and right kidneys
were used to calculate renal volumes of Test set 1 based
on the ellipsoid model. Once the kidney axes have been
calculated using the aforementioned bounding box
approach, the kidney volume can be estimated using the
formula below:

Ellipsoid volume ¼ π

6
x length xwidth x thickness

Statistical analysis
The accuracy of the automated measurements calculated
based on the segmentations of the deep learning models
was determined by comparison against the ground truth
measurements from manual delineation. Statistical ana-
lysis was performed using Python v3.9.18. The perfor-
mance of our deep learning-based networks is based on
their ability to measure accurately the renal volumes and
axes. This is first evaluated in terms of the Dice similarity
coefficient (DSC), a measure of spatial overlap between
segmentations where a DSC of 1 implies perfect overlap

Fig. 3 UNet architecture. The input CT patch is downsampled 4 times by a factor of two in every encoding layer while the number of channels is
doubled. The reverse process takes place in the decoder path. Both the encoder and decoder blocks are based on residual units
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while a DSC of 0 means complete mismatch. The mean
percentage volume error and the mean absolute error
were incorporated to compare renal volume and axes
measurements, defined as:

Mean percentage volume error %ð Þ ¼ volman � volpred
�
�

�
�

volman
x100

Mean absolute error ¼ xman� xpred
�
�

�
�; x2½length;width; thickness�

where man and pred denote manual and predicted values,
respectively. Intraclass correlation coefficient (ICC) esti-
mates the reliability of automated versus manual mea-
surements. ICC values were calculated using the pingouin
Python package v0.5.3 (https://pingouin-stats.org/build/
html/index.html) based on a single-rater, consistency
measurements, 2-way mixed effects model. ICC values
can be interpreted as follows [34]: poor (ICC < 0.50);
moderate (0.50 ≤ ICC < 0.75); good (0.75 ≤ ICC < 0.90);
and excellent (ICC ≥ 0.90); 95% confidence intervals
(CIs) were also calculated. Furthermore, Bland-Altman
analysis was used to demonstrate the differences in
volumetric agreement between the models and the
ground truth.

Results
Manual intraobserver variability
The intraobserver variability between the CECT and
NCCT ground truth measurements was evaluated using
the ICC. For renal volume, the ICC reached 0.93 (95% CI:
[0.91, 0.95]) (p < 0.001), demonstrating a high level of
agreement between the observer’s measurements in
CECT and NCCT. Similarly, for kidney length, width, and
thickness, the ICC values were 0.92 (95% CI: [0.90, 0.94])
(p < 0.001), 0.93 (95% CI: [0.91, 0.95]) (p < 0.001), and 0.94
(95% CI: [0.92, 0.96]) (p < 0.001) respectively. Volume and
axes correlation plots for the entire Dataset 1 (n= 88) are
depicted in Fig. 4a1, a2.

CECT model evaluated against CECT ground truth of
Test set 1
Table 2 demonstrates the CECT model performance, in
Test set 1 (n= 16), in estimating the renal volume, length,
width, and thickness, and the average model inference
time. The ICCs substantiated the reliability of this
method, which suggests that the model reliability is good
to excellent when estimating renal volume, while for the
rest of the renal parameters the reliability was excellent.
Figure 5a1, b1 demonstrates the correlation and error for
measured axes compared to the manual ground truth,
while the Bland-Altman analysis for the volumetric
measurements between the model and the manual

annotator demonstrated excellent agreement (Fig. 5c1).
Example CECT images of Test set 1, along with their
corresponding manual segmentations and model predic-
tions, can be found in Fig. S1a1, a2 and Fig. S2a1, a2 in the
Supplementary material.

NCCT model comparison with NCCT ground truth of
Test set 1
Renal volume estimation error and ICC values for volume,
length, width, and thickness measurements of the NCCT
model are depicted in Table 2, along with average model
inference time, akin to the performance observed in the
CECT scenario. ICC values indicate reliability which is on
par with the CECTmodel for the renal axes measurements,
while in the case of renal volume, the NCCT model
demonstrates excellent reliability, based on the measured
95% CI. Figure 5a2, b2 demonstrate the correlation and
measured error in axes calculation between the model and
the ground truth, while the Bland-Altman analysis for the
volumetric agreement between the two methods is depic-
ted in Fig. 5c2. Example NCCT images from Test set 1,
along with their corresponding manual segmentations and
model predictions can be found in Fig. S1b1, b2 and Fig.
S2b1, b2 in the Supplementary material.

CECT versus NCCT model agreement for Test set 1
A comparison was conducted between the CECT and
NCCT segmentation models. The ICCs for renal volume,
length, width, and thickness were consistently high, with
values of 0.96 (95% CI: [0.94, 0.99]) (p < 0.001), 0.96 (95%
CI: [0.9, 0.98]) (p < 0.001), 0.92 (95% CI: [0.85, 0.96])
(p < 0.001), and 0.95 (95% CI: [0.90, 0.98]) (p < 0.001),
respectively. Figure 4b1, b2 demonstrates the level of
agreement between the models.

TotalSegmentator benchmark for Test set 1
The TotalSegmentator model was used to obtain a base-
line performance on Test set 1. The 3-mm resolution
model, segmenting CECT images, achieved a DSC of 0.92
(95% CI: [0.91, 0.92]), and our CECT model had a DSC of
0.95 (p < 0.001). The average volume error was 7% mL,
and the ICC for renal volume was 0.94 (95% CI: [0.84,
0.98]) (p < 0.001), indicating good to excellent reliability in
renal volume estimation. The 1.5-mm resolution model,
segmenting NCCT images, achieved a DSC of 0.93 (95%
CI: [0.91, 0.94]), and our NCCT model achieved a DSC of
0.95 (p < 0.001). The average volume error was 3% mL,
and the ICC value for renal volume was 0.98 (95% CI:
[0.96, 1]) (p < 0.001), demonstrating excellent reliability.
The average prediction time for the CECT images was
8.9 ± 1.0 s, while for the NCCT was 46.3 ± 6.2 s (mean ±
standard deviation).
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Comparison with the ellipsoid model
An additional comparative analysis was conducted
between the CECT and NCCT ground truth labels and
the ellipsoid formula for renal volume calculation on the
entire dataset (n= 88). The ellipsoid model exhibited a
mean volume measurement error of 38 ± 12% mL and
39 ± 10% mL for the CE and NC images (mean ± standard
deviation) respectively, indicating a considerable dis-
crepancy in volume estimation when compared to the
manual segmentations, as shown in Fig. 6. The ICC value
for renal volume estimation was 0.83 (95% CI 0.78–0.87,
p < 0.001) and 0.85 (95% CI 0.81–0.89, p < 0.001) for CE
and NC cases respectively, implying good reliability but
significantly inferior compared to that of the CECT and
NCCT models.

CECT model validation on Test set 2
The CECT model was evaluated against a separate test
set constructed by the expert radiologist. The average
manual annotation time per case was measured as
25.8 ± 3.4 min (mean ± standard deviation). The model
segmentation performance demonstrated a high DSC,
comparable with the performance of Test set 1. Renal

volume estimation error and ICC values for renal length,
width, and thickness were akin to the ones obtained in
Test set 1, as depicted in Table 2. Figure 7a1, a2
demonstrates the correlation and errors of renal axes
predicted by the model, compared to the expert radi-
ologist. Bland-Altman analysis of renal volume estima-
tion is depicted in Fig. 7a3.

CECT and NCCT model validation on PCCT Test set 3
The CECT and NCCT models we evaluated against an
external dataset of PCCT images reconstructed at 60 keV
and 190 keV, respectively. Images reconstructed at 60 keV
resembled those acquired with contrast agent in a non-
PCCT scanner, while the ones reconstructed at 190 keV
resembled images acquired using a NC protocol. The
models demonstrated high DSC and ICC values in esti-
mating renal quantitative measurements, supported by
95% CI, reported in Table 2. Figure 8a1, b2 illustrates
correlation and error diagrams of the CECT and NCCT
models compared to the manual measurements, while
Fig. 8c1, c2 demonstrates Bland-Altman plots for the
volumetric agreement between the models and the
ground truth volumes.

Fig. 4 a1, a2 Correlation of measured renal volumes and axes in CECT and NCCT images by the manual annotator (entire Dataset 1, n= 88). b1, b2
Correlation of measured renal volumes and axes in CECT and NCCT images by CECT and NCCT models (Test set 1, n= 16). CECT, Contrast-enhanced
computed tomography; NCCT, Noncontrast computed tomography
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NCCT model validation on Test set 4
The NCCT was evaluated against a test set obtained using
significantly lower dose levels compared to the training
cohort. The segmentation performance demonstrated
high DSC, comparable to that of Test set 1. Estimation of
renal volume and ICC values for renal length, width, and
thickness did not decrease significantly compared to Test
set 1, depicted in Table 2. Renal axes measurement cor-
relation and errors, predicted by the NCCT model,
compared to the ground truth from the expert radiologist
are demonstrated in Fig. 7b1, b2. Figure 7b3 illustrates the
Bland-Altman analysis of renal volume estimation.

Discussion
In this study, we developed two 3D UNet segmentation
networks for kidney segmentation based on CE and NC
CT images, to help radiologists derive quantitative renal
measurements.
Intraobserver variability between the CE and NC

ground truth emphasized the consistent and reliable
nature of the manual annotation process, providing a solid
foundation for the subsequent evaluation of automated
methods.
Evaluation of the CECT model compared to the ground

truth revealed promising results. The DSC demonstrated

a high level of agreement, and the model exhibited
accurate renal volume estimations with a limited volume
error. The ICCs (ICC, 95% CI) for volume (0.94,
0.88–0.97), length (0.99, 0.98–1.0), width (0.97,
0.95–0.99), and thickness (0.97, 0.95–0.99) demonstrate
good-to-excellent reliability in deriving quantitative renal
measurements. Validation of the CECT model on a
separate test set, annotated by an expert radiologist,
demonstrates excellent reliability in estimating renal
volume (0.95, 0.91–0.98), length (0.98, 0.97–0.99), width
(0.95, 0.91–0.98), and thickness (0.97, 0.94–0.99). Fur-
thermore, the CECT model was able to generalize its
predictions in an external test set obtained using PCCT
scanner images reconstructed at 60 keV. The model pre-
served high DSC and excellent reliability for measure-
ments of renal volume (0.95, 0.91–0.98), length (0.99,
0.98–1), width (0.97, 0.94–0.99), and thickness (0.94,
0.89–0.97).
Similar to the CECT case, the evaluation of the NCCT

segmentation model against the NCCT ground truth
demonstrated robust performance. The measured DSC
highlights the model’s ability to delineate renal structures
even for NC scans. The ICCs for volume (0.97, 0.94–0.99),
length (0.95, 0.92–0.98), width (0.95, 0.91–0.98), and
thickness (0.97, 0.95–0.99) manifest the NCCT model

Table 2 Automated versus manual measurements

Parameter Test set 1 CE Test set 1 NC Test set 2 Test set 3 60 keV Test set 3

190 keV

Test set 4

Dice similarity coefficient

(mean ± SD)

0.95 ± 0.01 ([0.94,

0.95])

0.94 ± 0.01 ([0.93,

0.94])

0.94 ± 0.01 ([0.94,

0.96])

0.92 ± 0.03 ([0.89,

0.94])

0.92 ± 0.03 ([0.91,

0.94])

0.93 ± 0.02 ([0.92,

0.94])

Mean percentage volume error (mean ± SD)

Renal volume (mL) 4.15 ± 2.92% 4.06 ± 3.18% 3.85 ± 3.62% 6.16 ± 5.58% 5.65 ± 6.04% 7.16 ± 4.98%

Mean absolute error (mean ± SD)

Length (mm) 0.80 ± 0.61 2.02 ± 1.69 1.51 ± 1.70 1.74 ± 1.26 1.90 ± 1.72 1.14 ± 1.12

Width (mm) 0.78 ± 0.73 1.13 ± 0.89 1.14 ± 0.91 1.61 ± 1.50 0.91 ± 0.64 1.14 ± 0.74

Thickness (mm) 0.80 ± 0.94 1.01 ± 0.82 0.94 ± 1.12 1.84 ± 1.12 1.28 ± 2.56 0.63 ± 0.49

Intraclass correlation coefficient

Volume 0.94 ([0.88, 0.97],

p < 0.001)

0.97 ([0.94, 0.99],

p < 0.001)

0.95 ([0.91, 0.98],

p < 0.001)

0.95 ([0.91, 0.98],

p < 0.001)

0.96 ([0.94, 0.99],

p < 0.001)

0.95 ([0.88, 0.98],

p < 0.001)

Length 0.99 ([0.98, 1.0],

p < 0.001)

0.95 ([0.92, 0.98],

p < 0.001)

0.98 ([0.97, 0.99],

p < 0.001)

0.99 ([0.98, 1.00],

p < 0.001)

0.96 ([0.93, 0.98],

p < 0.001)

0.98 ([0.95, 0.99],

p < 0.001)

Width 0.97 ([0.95, 0.99],

p < 0.001)

0.95 ([0.91, 0.98],

p < 0.001)

0.95 ([0.91, 0.98],

p < 0.001)

0.97 ([0.94, 0.99],

p < 0.001)

0.90 ([0.82, 0.96],

p < 0.001)

0.91 ([0.77, 0.97],

p < 0.001)

Thickness 0.97 ([0.95, 0.99],

p < 0.001)

0.97 ([0.95, 0.99],

p < 0.001)

0.97 ([0.94, 0.99],

p < 0.001)

0.94 ([0.89, 0.97],

p < 0.001)

0.98 ([0.98, 0.99],

p < 0.001)

0.98 ([0.96, 1.0],

p < 0.001)

Inference time (s)

(mean ± SD)

7.9 ± 1.3 4.6 ± 0.6 8.7 ± 1.6 35.6 ± 3.9 34.4 ± 3.7 18.2 ± 11.1

Values in brackets represent 95% confidence intervals. The inference time is that taken by the model to predict a CT scan
SD Standard deviation
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excellent reliability in measuring renal parameters.
Additional validation of the NCCT model with images of
a PCCT scanner reconstructed at 190 keV highlights its
robustness. The ICCs in estimating volume (0.96,
0.94–0.99), length (0.96, 0.93–0.98), width (0.90,
0.82–0.96) and thickness (0.98, 0.98–0.99) manifest the
NCCT model ability to generalize well in new datasets,
acquired using different CT scanners. The validation of
the NCCT model in a separate test set (Test set 4),
obtained using lower dose levels compared to those of the

training cohort (~ 25% of the dose) demonstrates good-
to-excellent reliability in renal volume estimation (0.95,
0.88–0.98), and measurement of renal length (0.98,
0.95–0.99), width (0.91, 0.77–0.97), and thickness (0.98,
0.96–1.0).
These findings indicate excellent agreement between

the automated methods and the manual reference stan-
dard. Our analysis highlights the remarkable consistency
and reliability of both CECT and NCCT, emphasizing
their comparable performance in capturing key

Fig. 5 Test set 1 (n= 16) a1, a2 Correlation in axes measurements between CECT model versus manual and NCCT model versus manual. b1, b2 Mean
absolute error in axes measurements between CECT model versus manual and NCCT model versus manual. c1, c2 Bland-Altman analysis of differences in
kidney volume between CECT model versus manual and NCCT model versus manual. CECT, Contrast-enhanced computed tomography; NCCT,
Noncontrast computed tomography
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anatomical features. Such interchangeability adds versa-
tility to their application, suggesting that both approaches
can be effectively employed conversely depending on the
imaging modality or clinical requirements, offering flex-
ibility and robust performance in renal imaging analyses.
Our investigation also underpins the effectiveness of
automated measurement methods in assisting radiologists
with accurate and reproducible quantification of renal
clinical descriptors. The widespread ellipsoid formula
tends to overestimate renal volumes, especially when the
kidney size becomes large, demonstrating low reliability
and extensive large-volume measurement errors for both
CE and NC cases. Moreover, validation of an external,
freely available and publicly recognized segmentation
model (TotalSegmentator) enabled to establish a perfor-
mance benchmark for the study dataset. Our methods
performed slightly better than TotalSegmentator in terms
of DSC both for the CE (0.95 and 0.92 respectively,
p < 0.001) and the NC (0.95 and 0.93 respectively,
p < 0.001) cases, while being faster at segmenting the
structure of interest.
Although many studies have demonstrated excellent

performance in kidney segmentation, most of them did

not address the issue of clinical evaluation of renal axes,
limiting their applicability. Methods developed using part
of the KiTS challenge dataset, although accurate and
developed using a diverse and rich dataset, suffer from the
inclusion of the renal sinus fat, which does not contribute
as functional tissue. Additionally, the challenge is based
on CE images only, while in clinical settings, the use of
intravenous contrast agent may need to be avoided.
Excluding the non-functional tissue, Milecki et al [35]
reported a DSC of 0.89 ± 0.31 when segmenting kidneys
without the sinus fat in MRI sequences of 32 patients
subject to kidney transplantation. Korfiatis et al [36]
segmented renal cortex and medulla separately in arterial
phase CT, achieving a DSC of 0.94 ± 0.01 for the cortex
and 0.90 ± 0.03 for the medulla using an extended dataset
from a single institution (n= 1,930) and two additional
external test sets (n= 1,226). Valente et al [37] used two-
dimensional ultrasound to segment the kidneys and
reported a DSC of 0.86 ± 0.11 using a cohort of size
similar to the one in our study (n= 66). The large var-
iance reported in their results attests to the inferiority of
ultrasound-based measurements compared to CT. Muller
et al [38] used 210 low-dose NCCT images with manual

Fig. 6 Dataset 1 (n= 88) a1, a2 Bland-Altman analysis between ellipsoid model versus manual for CE and NC cases. b1, b2 Correlation of measured
volumes between ellipsoid model versus manual for CE and NC cases. CECT, Contrast-enhanced computed tomography; NCCT, Noncontrast computed
tomography
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segmentations to develop a network and tested it against
22 semiautomated volume estimates from radiologists,
reporting DSCs of 0.91 for the right and 0.86 for the left
kidney. A limitation of their work is the use of a two-
dimensional convolutional neural network, which can
prolong the segmentation process considerably compared
to the 3D counterpart and can lead to suboptimal results
in terms of segmentation performance. Oliveira et al [39]
used only five CT images to test an active contour model,
segmenting the kidney and the renal collecting system
separately, reporting DSCs of 0.92 ± 0.01 and 0.63 ± 0.10,
respectively. However, a user must manually provide seed
points for the entire model to start the segmentation
process.
Measuring renal axes is a topic that has been studied

extensively using manual approaches [11, 19, 40, 41].
Knowledge about the overall renal morphology and ana-
tomical characteristics of renal axes can facilitate surgical
planning (e.g., in kidney transplantation procedures), and
further assist in post-transplantation renal assessment
where the remaining kidney is expected to increase in size.

Pre- and post-transplantation renal axis measurements
can help the clinicians to identify how the remaining
kidney developed, i.e., increase in length and/or width.
Furthermore, measuring renal axes is commonly per-
formed in ultrasound [1, 2, 4] because it is fast. Having a
method to obtain similar measurements on different
modalities, such as CT, is of high clinical importance.
Numerous studies in the literature depend on the use of
the ellipsoid formula and tools that calculate the renal
volume based on manually-defined axes are readily
available to clinicians (Mayo Clinic, https://www.mayo.
edu/research/documents/pkd-center-adpkd-classification/
doc-20094754). Obtaining automated, quantitative mea-
surements of those axes, which is the main novelty of our
work, is important in order to compare results reported in
previous studies.
Our study has limitations. Our training dataset origi-

nates from a single institution, and all subjects were
scanned using the same protocol. This could possibly
drive the models to inadvertently learn and perpetuate
biases inherent to the modeled data and hinder the

Fig. 7 Test set 2 (n= 18). a1 Correlation in axes measurements between CECT model versus manual; a2 mean absolute error in axes measurements
between CECT model versusmanual; a3 Bland-Altman analysis of differences in kidney volume between CECT model versusmanual. Test set 4 (n= 8). b1
Correlation in axes measurements between NCCT model versus manual; b2 mean absolute error in axes measurements between NCCT model versus
manual; b3 Bland-Altman analysis of differences in kidney volume between NCCT model versus manual. CECT, Contrast-enhanced computed
tomography; NCCT, Noncontrast computed tomography
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model’s generalizability in unseen cases from different
healthcare institutions. Additionally, while we mitigated
this by using multiple test sets, the overall size of each of
them was not sufficiently large. Although the model was
able to perform accurately in images obtained using lower
dose levels (Test set 4), an additional study using a larger
cohort of dose levels and protocols is required to assess
the performance. Furthermore, since our training cohort
comprised healthy individuals (potential kidney donors),
the models might not be able to extrapolate meaningful

clinical descriptors in scenarios involving unhealthy kid-
neys. A supplementary future study incorporating a gen-
eral population would shed light on possible failure modes
and trends of the models. Moreover, separate automated
assessment of renal cortex and medullary volumes is of
clinical importance, something that our study did not
address. Such a limitation to our work stems from the fact
that segmentation of cortex and medulla requires sig-
nificant labor-intensive and time-consuming manual
annotations performed on arterial phase CECT.

Fig. 8 Test set 3 (PCCT, n= 15). a1, a2 Correlation in axes measurements between CECT model versus manual and NCCT model versus manual. b1, b2
Mean absolute error in axes measurements between CECT model versus manual and NCCT model versus manual. c1, c2 Bland-Altman analysis of
differences in kidney volume between CECT model versus manual and NCCT model versus manual. CECT, Contrast-enhanced computed tomography.
NCCT, Noncontrast computed tomography; PCCT, Photon-counting computed tomography
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In conclusion, the proposed automated segmentation
methods can calculate clinical renal descriptors accu-
rately, reliably and promptly using both CE and NC CT
images, using only a fraction of the time needed during
the manual measurement process. Automated measure-
ments of renal volume and axes, which is something
introduced in our work, demonstrate excellent agreement
compared to manual measurements and are now a pro-
mising candidate to help, verify and guide clinical
decision-making.
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