
Lai et al. European Radiology Experimental           (2024) 8:107 
https://doi.org/10.1186/s41747-024-00504-7

OR IG INAL ART ICLE Open Ac c e s s

Quality control of elbow joint radiography
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Abstract

Background To explore an artificial intelligence (AI) technology employing YOLOv8 for quality control (QC) on elbow
joint radiographs.

Methods From January 2022 to August 2023, 2643 consecutive elbow radiographs were collected and randomly
assigned to the training, validation, and test sets in a 6:2:2 ratio. We proposed the anteroposterior (AP) and lateral (LAT)
models to identify target detection boxes and key points on elbow radiographs using YOLOv8. These identifications
were transformed into five quality standards: (1) AP elbow positioning coordinates (XA and YA); (2) olecranon fossa
positioning distance parameters (S17 and S27); (3) key points of joint space (Y3, Y4, Y5 and Y6); (4) LAT elbow positioning
coordinates (X2 and Y2); and (5) flexion angle. Models were trained and validated using 2,120 radiographs. A test set of
523 radiographs was used for assessing the agreement between AI and physician and to evaluate clinical efficiency of
models.

Results The AP and LAT models demonstrated high precision, recall, and mean average precision for identifying
boxes and points. AI and physicians showed high intraclass correlation coefficient (ICC) in evaluating: AP coordinates
XA (0.987) and YA (0.991); olecranon fossa parameters S17 (0.964) and S27 (0.951); key points Y3 (0.998), Y4 (0.997), Y5
(0.998) and Y6 (0.959); LAT coordinates X2 (0.994) and Y2 (0.986); and flexion angle (0.865). Compared to manual
methods, using AI, QC time was reduced by 43% for AP images and 45% for LAT images (p < 0.001).

Conclusion YOLOv8-based AI technology is feasible for QC of elbow radiography with high performance.

Relevance statement This study proposed and validated a YOLOv8-based AI model for automated quality control in
elbow radiography, obtaining high efficiency in clinical settings.

Key Points
● QC of elbow joint radiography is important for detecting diseases.
● Models based on YOLOv8 are proposed and perform well in image QC.
● Models offer objective and efficient solutions for QC in elbow joint radiographs.
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Graphical Abstract

• Quality control (QC) of elbow 
joint radiography is important 
for detecting diseases.

• Model based on YOLOv8 is 
proposed and performs well 
in image QC.

• Model offers objective and 
efficient solutions for QC in 
elbow joint radiographs.

WWe validated a YOLOv8-based AI model for QC of elbow radiography,
obtaining high efficiency in clinical settings

Quality control of elbow joint radiography using
a YOLOv8-based AI technology

Eur Radiol Exp (2024) Lai Q, Chen W, Ding X et al.;
DOI: 10.1186/s41747-024-00504-7

Predefined 
key points 
and boxes 
for the 
image 
quality 
control of 
elbow joint.

The architecture of YOLOv8 algorithm, 
divided into backbone, neck, and head.

Visualization
of the AI 
models’ 
predictions 
and 
clinician’s 
annotation in 
anteroposteri
or and lateral 
views.

Background
The elbow is a joint at risk of injuries from various
sources, including trauma, routine activities, aging, over-
use, and diseases such as rheumatoid arthritis, osteoar-
thritis, infections, and tumors [1]. Despite advanced
orthopedic treatments, outcomes for elbow injuries often
fall short of optimal due to its intricate anatomy. This
complexity necessitates regular radiological evaluations.
Radiography remains a vital diagnostic resource, even
with the development of more advanced imaging techni-
ques [2, 3]. Anteroposterior (AP) and lateral (LAT)
radiographs are extensively used to determine whether
patients have disorders such as fractures, dislocations, and
arthritis [4]. High-quality elbow radiographs are critical
for the precise depiction. Poor-quality radiographs, largely
due to incorrect patient positioning or radiographer
errors, can compromise clinical decision-making. The
current rejection rate for elbow radiographs is approxi-
mately 9.3% [5].
Quality control (QC) in radiography is crucial for

diagnosing elbow diseases, involving key metrics like
signal-to-noise ratio, sharpness, and contrast. Although
many studies assess x-ray quality based on factors such as
sharpness and contrast [6, 7], these are not the primary
focus in digital radiography. A crucial QC factor is the

correct alignment of the irradiated body part in relation to
the x-ray equipment: an x-ray image, regardless of its
sharpness and contrast, is ineffective if it fails to accu-
rately display anatomical structures due to misalignment.
Therefore, for clinical requirements, the focus for image
QC should be on positioning.
Elbow joint radiographs must meet the following spe-

cific standards as follows. For AP elbow joint radiographs,
the following conditions should be met [4]: (1) the distal
humerus, proximal ulna and radius, and their joint spaces
are centered in the image; (2) the elbow joint surfaces are
tangentially aligned, sharply defined, with the coronoid
fossa slightly ulnar to the center of the medial and lateral
epicondyles of the humerus; and (3) the bone trabeculae
and surrounding soft tissues of the elbow joint are clearly
visible. For LAT elbow joint radiographs, the standards
include: (1) the distal humerus and proximal ulna and
radius form a 90° angle, with the ulnohumeral joint space
clearly and sharply displayed [8]; (2) the lateral epicondyle
of the humerus overlaps, forming a circular projection;
and (3) bone trabeculae of the elbow joint is distinct, with
clear delineation of surrounding soft tissues. Currently,
AP and LAT elbow radiograph QC primarily depend on
visual evaluation, potentially influenced by radiologists’
subjective factors. This underscores the need for
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automated real-time QC tools in x-ray radiography to
determine if retakes are necessary, thereby reducing
medical errors and improving patient satisfaction.
The rapid advancement in artificial intelligence (AI),

particularly deep learning, shows significant potential in
medical image QC. Deep learning models, trained on
extensive data, can match or even exceed human experts
in medical image QC. Various studies focus on the
development of deep learning models for QC in chest x-
rays, knee radiographs, ankle radiographs, and lumbar
spine x-rays, often matching or exceeding human experts
[9–12]. To our knowledge, there are no AI-based methods
for QC assessment of elbow joint radiographs.
For AI-based medical image QC, real-time performance

is essential. YOLO, short for “You Only Look Once”, is
acclaimed for its fast real-time detection and diverse
applications. This algorithm’s primary advantage is its
ability to rapidly and accurately detect objects’ class and
location in real-time, aligning well with the needs of
medical image QC [13, 14]. In April 2023, Ultralytics
(Frederick, Maryland, USA) released the latest version of
the YOLO algorithm, YOLOv8, which further enhances
detection accuracy while maintaining high speed [15–18].
In this study, we aimed to explore the feasibility of

applying the latest AI technology based on the YOLO
model for automated QC of elbow joint radiographs. The
goal was to determine if our model aligns with profes-
sional standards, offering a reliable AI solution for elbow
radiograph QC.

Methods
This retrospective study was granted ethical approval by
our university hospital (No. (2024)681). Retrospective
imaging data were utilized, and all individual data were
anonymized, obviating the need for personal written
informed consent.

Data collection
Drawing upon the methodologies outlined in the perti-
nent literature [10], the data collection in this study
adhered to strict inclusion and exclusion criteria. The
inclusion criteria were: (1) subjects were adults aged over
18 years; (2) subjects underwent radiography of the elbow;
and (3) the obtained elbow joint radiographs complied
with relevant radiological standard guidelines. The
exclusion criteria included: (1) elbow joint radiographs
were not in AP or LAT view; (2) elbow joint radiographs
were blurry or partially obscured; (3) elbow joint radio-
graphs showed fractures, foreign objects, or postoperative
changes; or (4) elbow joint radiographs were obtained
under incorrect shooting conditions.
Based on the above inclusion and exclusion criteria, we

conducted a retrospective analysis of 2,643 elbow joint

radiographs collected from January 2022 to August 2023
at our hospital. These images were derived from 1,679
consecutive patients, including both outpatients and
inpatients. Among these radiographs, 1,317 were AP
views, and 1,326 were LAT views. To construct a deep
learning model, we randomly selected 1,598 images from
1,038 patients as the training set (including 800 AP views
and 798 LAT views), 522 images from 317 patients as the
validation set (including 257 AP views and 265 LAT
views), and the remaining 523 images from 324 patients
(including 260 AP views and 263 LAT views) as the test
set. The distribution of these datasets was approximately
in a 6:2:2 ratio.
All elbow joint radiographs were acquired using digital

radiography systems: an AXIOM Aristos unit Siemens,
Forchheim, Germany, (1,448/2,643, 54.8%); a RADspeed
Pro unit, Shimadzu, Kyoto, Japan (933/2,643, 35.3%); and
a DX6290 unit, ANGELL, Guangzhou, China (262/2,643,
9.9%), ensuring complete anonymization of all sensitive
information. Utilizing this dataset, we trained AI QC
models, and the flowchart is illustrated in Fig. 1.

Data annotations
To ensure that the image quality met diagnostic stan-
dards, a panel consisting of radiology residents, radi-
ologists, and technicians conducted thorough discussions
and evaluations referencing to the elbow joint radiograph
QC standards [4], and ultimately identifying five critical
quality control criteria to assess the effectiveness of our
subsequent AI-based models. Specifically, three criteria
were established for the AP view (AP elbow joint posi-
tioning, AP olecranon fossa positioning, and AP joint
space) and two for the LAT view (LAT elbow joint
positioning, and LAT flexion angle), as detailed below.

QC standards for AP view

1. To minimize image distortion and ensure complete
capture of joint structures, the image center should
display the distal humerus, proximal ulna and radius,
and their inter-joint space. This requires precise
measurement of the elbow joint’s central position.

2. To ensure correct alignment of the elbow’s
anatomical structure, the olecranon fossa should be
centrally positioned between the medial and lateral
epicondyles of the humerus, slightly biased toward
the ulnar side. This involves measuring the distance
from the olecranon fossa to the medial and lateral
epicondyles.

3. To ensure proper joint alignment, the elbow joint
space should be fully expanded and horizontally
displayed. This requires measuring key points related
to the joint space.
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QC standards for LAT view

1. To ensure the complete display of joint structures,
the elbow joint should be centered in the image. This
involves measuring the elbow joint’s central position.

2. To reflect normal anatomical alignment and provide
a clear view of the joint space, the elbow’s flexion
angle should be approximately 90°. This requires
measuring the angle between the humerus and the
radius in the LAT view.

Computing QC results directly from images poses sig-
nificant challenges. We defined a set of key points aiming
to delineate crucial anatomical landmarks in elbow joint
images. YOLOv8 is an object detection algorithm that can
predict both bounding box and key points. Accordingly,
by integrating the described QC standards with the fea-
tures of the YOLOv8 algorithm, we employed one target
detection box and seven key points for AP view and one
target detection box and three key points for LAT view.
The “target detection box” refers to the bounding box
used in object detection tasks for our YOLOv8 model.
The primary function of the target detection box is to
accurately locate the elbow joint’s boundaries, while the
key points are designated to precisely mark specific ana-
tomical locations. A comprehensive definition of the
detection box and key points, manifested by their coor-
dinates, is provided in Table 1.
To ensure the accuracy of data annotation, two radi-

ology technicians (X.H. and W.C.), with 6 and 20 years of
experience, respectively, initially annotated all elbow joint
radiographs by utilizing Labelme software (version 5.3.1).
Following this initial phase, a committee comprising two
seasoned radiologists with 10 and 26 years of clinical
experience, respectively, reviewed all annotations. They

corrected any inaccuracies in the key points and discarded
any ambiguous labels, ensuring that all annotations were
consistent and undisputed. The final, verified annotations
were confirmed to be error-free. Specific examples of the
annotations are illustrated in Fig. 2.

Image quality criteria and quantitative indices
Through the above-detailed standards and computational
metrics, we conducted a comprehensive image quality
assessment of elbow joint radiographs and also provided
clear and definitive evaluation guidelines for subsequent
deep learning models focusing on the key points detection
tasks (Table 2). Based on our five criteria for elbow joint
image quality assessment, we proposed two YOLOv8L-
based detection models for the AP and LAT images of the
elbow joint to automate QC assessment. We used the AP
model to assess the predictive performance of one target
detection box and seven key points in the AP view,
whereas the LAT model was used to assess the predictive
performance of three key points in the LAT view. Speci-
fically, in the AP view, the primary role of the target
detection box was to locate the position of the elbow joint.
In the processing of LAT view, we used the key point
located at the center of the humeral trochlea (key point 2)
for precise localization of the elbow joint.

Preprocessing
We optimized a data preprocessing method for x-ray
image analysis using Python-3.9.13. We utilized the
pydicom library to read DICOM files and employed the
PIL library to convert the DICOM into JPEG images
instead of PNG format because the impact of JPEG
compression on image quality is minimal while reducing
storage space and processing requirements. Subsequently,

Fig. 1 Flowchart of the model training, validation and test on the dataset. AP, Anteroposterior; LAT, Lateral
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the images were normalized and resized into 640 × 640
using the built-in functionality of YOLOv8. Additionally,
we used the built-in data augmentation library provided
by YOLOv8. The parameters for image augmentation
were as follows: brightness adjustment (hsv-v= 0.4),
translation (translate = 0.1), scaling (scale = 0.5), vertical
flipping (flipud = 0.5), horizontal flipping (fliplr = 0.5),
and image mosaic (mosaic = 1.0).

Model training
We employed the YOLOv8 for two primary tasks in elbow
joint x-ray analysis: detecting the elbow joint and loca-
lizing key anatomical points. The model delineated the
joint’s location with a bounding box in AP and LAT views,
facilitating accurate localization of key anatomical points.
Seven key points in the AP view and three in the LAT
view were identified for automated QC.

Fig. 2 Annotations of key points and auxiliary lines. a Anterioposterior view of the elbow joint. b Lateral view of the elbow joint. Auxiliary lines S17 and
S27 in the anterioposterior view represent distances between points 1 and 7, and between points 2 and 7, respectively, along with the flexion angle α in
the lateral view are shown

Table 1 Detailed description of key points together with their coordinates

AP/LAT Box/Key point Description Coordinates

AP A Box for detecting the location of the elbow joint in the AP view XA, YA
1 The key point of the medial epicondyle of the humerus X1, Y1
2 The key point on the lateral epicondyle of the humerus X2, Y2
3 The key point located in the medial joint space inferior to the humerus X3, Y3
4 The key point located in the lateral joint space inferior to the humerus X4, Y4
5 The key point located in the medial joint space superior to the radius X5, Y5
6 The key point located in the lateral joint space superior to the radius X6, Y6
7 The key point located at the central position of the coronoid fossa in the elbow joint X7, Y7

LAT A Box for detecting the location of the elbow joint in the LAT view XA, YA
1 The key point located at the mid-humerus X1, Y1
2 The key point located at the center of the humeral trochlea X2, Y2
3 The key point located at the mid-radius X3, Y3

AP Anteroposterior, LAT Lateral
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In this study, we selected the YOLOv8 Large
(YOLOv8L) variant, the precise and extensive models in
the YOLOv8 series, characterized by a parameter size of
43.61 million, to train our key points detection models
for both AP and LAT views of the elbow joint, and the
architecture of the YOLOv8 algorithm is shown in
Fig. 3. The architecture consists of three key compo-
nents: a backbone for feature extraction from elbow
x-ray images, a neck for feature fusion, and a head for
outputting the final predictions, including the classifi-
cation of object detection box, the position and size of
the detection box, and the position of key points.
Transfer learning was employed using pre-trained
weights from the YOLOv8L. The training regimen
utilized the following software configurations: Ultra-
lytics YOLOv8.0.62, Python-3.9.13, and PyTorch-1.13.1
on a GPU framework. The computational setup inclu-
ded a server-grade computer powered by an AMD
Ryzen Threadripper 5975wx CPU and an NVIDIA
GeForce RTX 3,090 GPU. Key training parameters were
as follows: optimizer set to stochastic gradient descent
(SGD), an initial learning rate of 0.001, and a training
duration of 100 epochs.
We assessed our model’s object detection accuracy

using standard metrics: mean average precision (mAP),
precision, and recall. We evaluated bounding box accu-
racy based on intersection over union (IoU) and key point
accuracy based on Object Keypoint Similarity (OKS),
referencing the published research on YOLO-Pose [19].
The mAP was computed at 0.5 threshold (mAP50) for
basic accuracy and at 0.5 to 0.95 incremental thresholds
(mAP50–95) for detailed analysis.

Assessment of models
This study utilized the intraclass correlation coefficient
(ICC) to assess consistency between the AI system and
clinical physician in annotating elbow joint on x-ray
images in the test set. We used the ICC (3, k) model,
which is a “two-way mixed effects, absolute agreement,
and average measures” model, evaluating consistency
between multiple raters by considering both subject and
rater variability [20, 21]. We used this model to assess the
absolute agreement between our AI system and clinical
physicians, ensuring precise and clinically relevant con-
sistency [22]. ICC above 0.75 indicated good reliability,
and above 0.9, excellent reliability.
We evaluated the AI model’s correlation with clinical

radiologists using key QC indicators in elbow joint x-ray
imaging, including joint positioning in AP and LAT views,
coronoid fossa location in AP, joint space in AP, and
flexion angle in LAT. Through detailed analysis of the test
set, we thoroughly evaluated the performance of the AI
model in actual clinical applications.Ta
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Clinical efficiency evaluation
The time efficiency of image quality control using the
YOLOv8-QC model was compared with that of the tra-
ditional manual method on the test set. Two radiologists,
Analyst 1 (X.D., 3 years of experience) and Analyst 2
(X.H., 6 years of experience), independently conducted
the tests in two phases. The first phase involved tradi-
tional manual quality control, where the analysts manu-
ally evaluated the quality of elbow joint radiographs. The
second phase utilized our AI-assisted quality control,
employing the image quality assessment results auto-
matically generated by the YOLOv8-QC model.

Results
Performance evaluation of models for AP and LAT views
After completing the training for the development of AP
and LAT models, performance in the evaluation of the

elbow joint x-ray image quality from both views is shown
in Table 3. For identifying box and points using the AP
model, precision reached more than 0.99, with recall rates
of more than 0.98, mean mAP50 scores of more than 0.99,
and mAP50-95 scores of more than 0.81 and more than
0.99, respectively. To identify key points using the LAT
model, the precision was 0.993, with a recall rate of 0.994,
mAP50 of 0.991, and mAP50-95 of 0.987. Examples of the
key point detection results and the clinician’s annotations
are visualized in Fig. 4, where the red key points and box
are from the clinician’s annotations, and the blue key
points and box are generated by the AI models.

Image quality assessment by AI model versus radiologists
In assessing the ICC in AP and LAT projections of elbow
joint radiography between the AI-based model and clinical
doctors, our findings demonstrated high consistency across

Fig. 3 The architecture of the YOLOv8 algorithm, which is divided into three parts, including backbone, neck, and head
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most evaluation standards (Table 4). For AP, the elbow joint
positioning showed excellent consistency with an ICC of
more than 0.98, and the positioning of the coronoid fossa
also exhibited strong consistency with an ICC of more than
0.95. The assessment of the joint space further reinforced
these findings, showing almost perfect consistency with an
ICC of more than 0.95. In LAT, the elbow joint positioning
exhibited high consistency with an ICC of more than 0.98.
However, the assessment of the flexion angle showed slightly
lower but still considerable consistency with an ICC of 0.865.
The correlation between the AI-based model and clinical

radiologists across multiple key QC indicators in elbow joint
x-ray imaging is depicted in Fig. 5. In the figure, the blue
diagonal line represents perfect consistency between the AI
model and clinical radiologist assessments. The axes in
Fig. 5a–e are normalized, while the flexion angle range in

Fig. 5f is set from 0 to 180°. Figure 5a–e presents scatter
plots for AP elbow joint positioning, AP coronoid fossa
location, AP joint space, and LAT elbow joint positioning,
respectively. In these charts, most data points are tightly
clustered near the blue diagonal line, representing perfect
consistency, demonstrating the high consistency and mini-
mal deviation of the AI model’s assessments compared to
those of clinical radiologists in these QC indicators. Figure 5f
specifically focuses on the scatter distribution of the LAT
flexion angle.

Clinical efficiency
This study developed a graphical user interface (GUI)
software package using Python’s Tkinter module (Fig. 6a)
based on our YOLOv8-QC model, which allowed for both
individual and simultaneous quality assessments of AP
and LAT images. The software yielded QC results avail-
able to users (Fig. 6b). Two analysts independently eval-
uated a test set comprising 260 AP images and 263 LAT
images. In the initial phase of traditional manual quality
control, Analyst 1 took 165min to evaluate AP images
and 131 min for LAT images, while Analyst 2 took
151min to evaluate AP images and 123min for LAT
images. In the second phase, with the AI-assisted quality
control, the evaluation time for Analyst 1 reduced to

Table 3 Performance in AP and LAT models

Precision Recall mAP50 mAP50-95

AP (box) 0.988 0.984 0.995 0.814

AP (points) 0.995 0.996 0.994 0.992

LAT (points) 0.993 0.994 0.991 0.987

AP Anteroposterior, LAT Lateral

Fig. 4 Visualization of the artificial intelligence (AI) models’ predictions and clinician’s annotation. The red key points and box are from the clinician’s
annotations, and the blue key points and boxes are generated by the AI model. a Anterioposterior view, showing one target detection box and seven
key points; b lateral view, showing one target detection box and three key points
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99min for AP images and 75 min for LAT images, and the
evaluation time for Analyst 2 reduced to 82 min for AP
images and 66min for LAT images. Under the AI assis-
tance, the average processing time for AP and LAT ima-
ges was 91min for AP images and 70min for LAT images.
The results demonstrated that our AI assistance sig-
nificantly reduced the time for image quality control, with
reductions of 42.59% for AP images and 44.63% for LAT
images (t-test, p < 0.001). Consequently, the GUI software

was implemented on our post-processing workstations
associated with DR systems, employing the procedural
framework depicted in Fig. 6c.
We installed the GUI software on the post-processing

workstations of the DR system. This YOLOv8-QC GUI
enabled real-time assessment of elbow joint images cap-
tured by radiographers. When substandard images were
detected, the radiographers could re-photograph these
views.

Table 4 ICC measurements between the AI-based model and clinicians in AP and LAT views

Projection direction Quality criteria Quantitative indices ICC (95% CI)

AP Positioning: elbow joint XA 0.987 (0.98–0.99)

YA 0.991 (0.99–0.99)

Positioning: olecranon fossa S17 0.964 (0.95–0.97)

S27 0.951 (0.94–0.96)

Joint space evaluation Y3 0.998 (0.99–1.0)

Y4 0.997 (0.99–1.0)

Y5 0.998 (0.99–1.0)

Y6 0.959 (0.95–0.97)

LAT Positioning: elbow joint X2 0.994 (0.99–1.0)

Y2 0.986 (0.98–0.99)

Flexion angle evaluation α 0.865 (0.83–0.95)

AP Anteroposterior, CI Confidence interval, ICC Intraclass correlation coefficient, LAT Lateral

Fig. 5 Scatter plots of correlations between AI predictions and clinician annotations in the test set. a ICC for XA and YA in AP view; b ICC for S17 and S27
in AP view; c ICC for Y3 and Y4 in AP view; d ICC for Y5 and Y6 in AP view; e ICC for X2 and Y2 in LAT view; f ICC for flexion angle α in LAT view. AP,
Anteroposterior; ICC, Intraclass correlation coefficient; LAT Lateral
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Fig. 6 YOLOv8-QC GUI software and its application. a YOLOv8-QC GUI software. b QC results available to users. c Application of YOLOv8-QC GUI
software. AP, Anteroposterior; LAT, Lateral; QC, Quality control; GUI, Graphical user interface
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Discussion
We proposed an innovative AI-driven automatic QC
model for elbow joint x-ray images. This model employs
the cutting-edge YOLOv8 algorithm to identify pre-
defined target detection box and key points within the
images. We use this algorithm to train the model for the
first time in the field of image quality control. Computing
QC results directly from images poses significant chal-
lenges [10], so the models employ a series of meticulous
geometric calculations to transform these detection boxes
and key points into five above-described QC standards.
Our results indicate that the AI-based models are reliable

across all five quality control standards. For the ICC
assessment in the test set, the proposed AI model and
clinical doctors showed high consistency in evaluating the
AP elbow joint positioning coordinates XA and YA. In
assessing the AP olecranon fossa positioning distance
parameters S17 and S27, the ICC values showed a high cor-
relation of our AI models with radiologists. For the four key
points of the AP joint space (Y3, Y4, Y5, Y6), the ICC values
were excellent. In the LAT assessments, the ICC values for
the elbow joint positioning coordinates X2 and Y2 were also
excellent, and the ICC value for the LAT elbow flexion angle
was good. Compared to other QC indicators, the scatter
distribution in this chart is relatively more dispersed,
reflecting the specific challenges in measuring the LAT
flexion angle. This dispersion may stem from the complexity
of measuring flexion angle, such as minor deviations in the
AI model’s predictions of LAT flexion angle. Nevertheless,
most data points are still closely clustered near the blue
diagonal line, representing perfect consistency, indicating
the high accuracy and reliability of the AI model in mea-
suring the LAT flexion angle. In summary, the results
showed high consistency and reliability of our AI model in
elbow joint x-ray image QC, providing strong support for its
application in clinical practice.
Furthermore, based on the trained model, we developed

a GUI software named YOLOv8-QC. This software is
specifically designed to automatically assess the quality of
AP and LAT x-ray images of the elbow joint and to dis-
play the assessment results in real time. The results
demonstrated that our AI assistance significantly reduced
the time for image quality control, with reductions of
42.6% for AP images and 44.6% for LAT images. Com-
pared to the conventional manual quality control method,
the GUI software enhances the efficiency in quality
management, presenting practical implications. This not
only significantly reduces the time required for image
quality assessment in clinical settings, but also optimizes
workflow in radiology departments, enhancing overall
efficiency.
Several AI models in different anatomical regions have

been published and can provide timely feedback on

unqualified images [9–12, 23]. Nousiainen et al [23]
employed convolutional neural networks for automated
diagnostic quality control of chest radiographs, achieving
immediate feedback. Similarly, Yu et al [9] developed a
quality control system combining deep learning models
with linear regression to assess the layout and positioning
of chest radiographs with high accuracy. In the context of
knee digital radiography, Sun et al [10] utilized a key
inspection algorithm for quality control, achieving high
concordance with clinical experts in evaluating image
quality issues caused by incorrect positioning. Mairhofer
et al [11] developed a modular deep learning framework
leveraging anatomical features for automated quality con-
trol of ankle radiographs, achieving an average accuracy of
94.1%, surpassing radiologists’ performance. Chen et al [12]
developed a U-Net-based framework for quality control of
lumbar spine x-rays, accurately segmenting and identifying
unqualified images. Our study, utilizing advanced object
detection algorithms, successfully automated the quality
assessment of elbow digital radiographs, thereby addressing
a critical gap in AI-based quality control for this anatomical
region and broadening the potential applications of AI in
medical imaging quality assessment.
Although our model demonstrates commendable per-

formance in its current application, certain limitations
warrant attention. As an initial feasibility study, we have
trained the model using only normal elbow radiographs,
and the model’s performance in extreme scenarios, such
as severe elbow deformities or rare pathological condi-
tions, remains to be further validated. Future research will
consider training AI quality control models for more
complex elbow conditions, including fractures, metallic
artifacts, and postoperative changes. Additionally, our
study currently focuses on the five QC criteria for image
positioning. We aim to explore additional quantitative
metrics in the future, including imaging quality and
supplementary positioning standards, to propose a more
comprehensive and clinically applicable QC system.
Finally, we plan to evaluate other quantitative metrics to
assess the consistency between clinical practitioners and
the AI model.
In conclusion, the practical application prospects of the

findings in clinical practice are promising. By integrating
AI-based automatic quality control technology for elbow
x-ray images, we can effectively address the issues asso-
ciated with traditional manual quality control, such as
high workload and subjective inconsistency in evaluation
results. This technology enables real-time monitoring of
imaging quality, significantly reducing the potential for
errors by radiographic technicians during the imaging
process, thereby effectively preventing disputes between
medical practitioners and patients. The automated quality
assessment can further ensure a high degree of
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consistency and accuracy in diagnostic images, and
enhance the quality of medical services provided to
patients by optimizing the medical process. Furthermore,
with the continuous advancement of deep learning tech-
nology in the field of medical imaging, our models have
the potential to become an important component of
future intelligent healthcare systems.

Abbreviations
AI Artificial Intelligence
AP Anteroposterior
GUI Graphical user interface
ICC Intraclass correlation coefficient
LAT Lateral
mAP Mean average precision
QC Quality control
YOLOv8 “You Only Look Once” version 8

Acknowledgements
We did not use any Large Language Models (LLMs), such as ChatGPT or Bard,
or other generative AI software, for this manuscript.

Authors contributions
TWC, ZZ, DG, and JC proposed the study. QL, WC, XD, XH, WJ, and LZ
performed the research and collected the data. QL, XD, XH, WJ, and LZ
analyzed the data. QL and WC wrote the first draft. All authors contributed to
the interpretation of the study and to further drafts. All the authors have read
and approved the final manuscript. TWC is the guarantor.

Funding
The authors state that this work has not received any funding.

Data availability
Please contact the corresponding author (TWC) for data requests.

Declarations

Ethics approval and consent to participate
The study was conducted according to the guidelines of the Declaration of
Helsinki and approved by the Medical Ethics Committee of the Second
Affiliated Hospital of Chongqing Medical University (No. (2024)681, July 6,
2024). Patient consent was waived by the Institutional Ethics Committee due
to the retrospective study design.

Consent for publication
Not applicable.

Competing interests
All authors declare that they have no competing interests in this study.

Received: 15 May 2024 Accepted: 21 August 2024

References
1. Javed M, Mustafa S, Boyle S, Scott F (2015) Elbow pain: a guide to

assessment and management in primary care. Br J Gen Pract 65:610–612.
https://doi.org/10.3399/bjgp15X687625

2. Luceri F, Cucchi D, Rosagrata E et al (2021) Novel radiographic indexes for
elbow stability assessment: part A—cadaveric validation. Indian J Orthop
55:336–346. https://doi.org/10.1007/s43465-021-00407-4

3. Sheehan SE, Dyer GS, Sodickson AD, Patel KI, Khurana B (2013) Traumatic
elbow injuries: what the orthopedic surgeon wants to know. Radio-
graphics 33:869–888. https://doi.org/10.1148/rg.333125176

4. Crosby NE, Greenberg JA (2014) Radiographic evaluation of the elbow. J
Hand Surg Am 39:1408–1414. https://doi.org/10.1016/j.jhsa.2014.04.035

5. Jones AK, Polman R, Willis CE, Shepard SJ (2011) One year’s results from a
server-based system for performing reject analysis and exposure analysis
in computed radiography. J Digit Imaging 24:243–255. https://doi.org/10.
1007/s10278-009-9236-2

6. Huda W, Abrahams RB (2015) Radiographic techniques, contrast, and
noise in X-ray imaging. AJR Am J Roentgenol 204:W126–W131. https://
doi.org/10.2214/AJR.14.13116

7. Huda W, Abrahams RB (2015) X-ray-based medical imaging and resolu-
tion. AJR Am J Roentgenol 204:W393–W397. https://doi.org/10.2214/AJR.
14.13126

8. Seiber K, Gupta R, McGarry MH, Safran MR, Lee TQ (2009) The role of the
elbow musculature, forearm rotation, and elbow flexion in elbow stability:
an in vitro study. J Shoulder Elb Surg 18:260–268. https://doi.org/10.1016/
j.jse.2008.08.004

9. Meng Y, Ruan J, Yang B et al (2022) Automated quality assessment of chest
radiographs based on deep learning and linear regression cascade algorithms.
Eur Radiol 32:7680–7690. https://doi.org/10.1007/s00330-022-08771-x

10. Sun H, Wang W, He F et al (2023) An AI-based image quality control
framework for knee radiographs. J Digit Imaging 36:2278–2289. https://
doi.org/10.1007/s10278-023-00853-6

11. Mairhöfer D, Laufer M, Simon PM et al (2021) An AI-based framework for
diagnostic quality assessment of ankle radiographs. PMLR 143:484–496

12. Chen X, Deng Q, Wang Q et al (2022) Image quality control in lumbar
spine radiography using enhanced U-net neural networks. Front Public
Health 10:891766. https://doi.org/10.3389/fpubh.2022.891766

13. Wang Z, Liu Y, Duan S, Pan H (2023) An efficient detection of non-
standard miner behavior using improved YOLOv8. Comput Electr Eng
112:109021. https://doi.org/10.1016/j.compeleceng.2023.109021

14. Inui A, Mifune Y, Nishimoto H et al (2023) Detection of elbow OCD in the
ultrasound image by artificial intelligence using YOLOv8. Appl Sci
13:7623. https://doi.org/10.3390/app13137623

15. Ju RY, Cai W (2023) Fracture detection in pediatric wrist trauma x-ray
images using YOLOv8 algorithm. Sci Rep 13:20077. https://doi.org/10.
1038/s41598-023-47460-7

16. Sharma N, Baral S, Paing MP, Chawuthai R (2023) Parking time violation
tracking using YOLOv8 and tracking algorithms. Sensors 23:5843. https://
doi.org/10.3390/s23135843

17. Chabi Adjobo E, Sanda Mahama AT, Gouton P, Tossa J (2023) Automatic
localization of five relevant dermoscopic structures based on YOLOv8 for
diagnosis improvement. J Imaging 9:148. https://doi.org/10.3390/
jimaging9070148

18. Li P, Zheng J, Li P, Long H, Li M, Gao L (2023) Tomato maturity detection
and counting model based on MHSA-YOLOv8. Sensors 23:6701. https://
doi.org/10.3390/s23156701

19. Maji D, Nagori S, Mathew M, Poddar D (2022) YOLO-pose: enhancing
YOLO for multi person pose estimation using object keypoint similarity
loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, New Orleans. pp 2637–2646. https://doi.org/10.
1109/CVPRW56347.2022.00297

20. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater
reliability. Psychol Bull 86:420. https://doi.org/10.1037/0033-2909.86.2.420

21. McGraw KO, Wong SP (1996) Forming inferences about some intraclass
correlation coefficients. Psychol Methods 1:30. https://doi.org/10.1037/
1082-989X.1.1.30

22. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. J Chiropr Med 15:155–163.
https://doi.org/10.1016/j.jcm.2016.02.012

23. Nousiainen K, Mäkelä T, Piilonen A, Peltonen JI (2021) Automating chest
radiograph imaging quality control. Phys Med 83:138–145. https://doi.
org/10.1016/j.ejmp.2021.03.014

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Lai et al. European Radiology Experimental           (2024) 8:107 Page 12 of 12

https://doi.org/10.3399/bjgp15X687625
https://doi.org/10.1007/s43465-021-00407-4
https://doi.org/10.1148/rg.333125176
https://doi.org/10.1016/j.jhsa.2014.04.035
https://doi.org/10.1007/s10278-009-9236-2
https://doi.org/10.1007/s10278-009-9236-2
https://doi.org/10.2214/AJR.14.13116
https://doi.org/10.2214/AJR.14.13116
https://doi.org/10.2214/AJR.14.13126
https://doi.org/10.2214/AJR.14.13126
https://doi.org/10.1016/j.jse.2008.08.004
https://doi.org/10.1016/j.jse.2008.08.004
https://doi.org/10.1007/s00330-022-08771-x
https://doi.org/10.1007/s10278-023-00853-6
https://doi.org/10.1007/s10278-023-00853-6
https://doi.org/10.3389/fpubh.2022.891766
https://doi.org/10.1016/j.compeleceng.2023.109021
https://doi.org/10.3390/app13137623
https://doi.org/10.1038/s41598-023-47460-7
https://doi.org/10.1038/s41598-023-47460-7
https://doi.org/10.3390/s23135843
https://doi.org/10.3390/s23135843
https://doi.org/10.3390/jimaging9070148
https://doi.org/10.3390/jimaging9070148
https://doi.org/10.3390/s23156701
https://doi.org/10.3390/s23156701
https://doi.org/10.1109/CVPRW56347.2022.00297
https://doi.org/10.1109/CVPRW56347.2022.00297
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1037/1082-989X.1.1.30
https://doi.org/10.1037/1082-989X.1.1.30
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.ejmp.2021.03.014
https://doi.org/10.1016/j.ejmp.2021.03.014

	Quality control of elbow joint radiography using a YOLOv8-based artificial intelligence technology
	Background
	Methods
	Data collection
	Data annotations
	QC standards for AP view
	QC standards for LAT view
	Image quality criteria and quantitative indices
	Preprocessing
	Model training
	Assessment of models
	Clinical efficiency evaluation

	Results
	Performance evaluation of models for AP and LAT views
	Image quality assessment by AI model versus radiologists
	Clinical efficiency

	Discussion
	Acknowledgements




