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Abstract

Background Computed tomography (CT) reconstruction algorithms can improve image quality, especially deep
learning reconstruction (DLR). We compared DLR, iterative reconstruction (IR), and filtered back projection (FBP) for
lesion detection in neck CT.

Methods Nine patient-mimicking neck phantoms were examined with a 320-slice scanner at six doses: 0.5, 1, 1.6, 2.1,
3.1, and 5.2 mGy. Each of eight phantoms contained one circular lesion (diameter 1 cm; contrast -30 HU to the
background) in the parapharyngeal space; one phantom had no lesions. Reconstruction was made using FBP, IR, and
DLR. Thirteen readers were tasked with identifying and localizing lesions in 32 images with a lesion and 20 without
lesions for each dose and reconstruction algorithm. Receiver operating characteristic (ROC) and localization ROC
(LROC) analysis were performed.

Results DLR improved lesion detection with ROC area under the curve (AUC) 0.724 ± 0.023 (mean ± standard error of
the mean) using DLR versus 0.696 ± 0.021 using IR (p= 0.037) and 0.671 ± 0.023 using FBP (p < 0.001). Likewise, DLR
improved lesion localization, with LROC AUC 0.407 ± 0.039 versus 0.338 ± 0.041 using IR (p= 0.002) and 0.313 ± 0.044
using FBP (p < 0.001). Dose reduction to 0.5 mGy compromised lesion detection in FBP-reconstructed images
compared to doses ≥ 2.1 mGy (p ≤ 0.024), while no effect was observed with DLR or IR (p ≥ 0.058).

Conclusion DLR improved the detectability of lesions in neck CT imaging. Dose reduction to 0.5 mGy maintained
lesion detectability when denoising reconstruction was used.

Relevance statement Deep learning enhances lesion detection in neck CT imaging compared to iterative
reconstruction and filtered back projection, offering improved diagnostic performance and potential for x-ray dose
reduction.

Key Points
● Low-contrast lesion detectability was assessed in anatomically realistic neck CT phantoms.
● Deep learning reconstruction (DLR) outperformed filtered back projection and iterative reconstruction.
● Dose has little impact on lesion detectability against anatomical background structures.
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Graphical Abstract

• Deep learning reconstruction 
(DLR) improves low-contrast 
lesion detection compared to 
iterative reconstruction (IR) 
and filtered back projection 
(FBP).

• Dose has no consistent 
impact on lesion detection 
when denoising image 
reconstruction is used.

• DLR enables dose reduction 
to 0.5 mGy without 
compromising diagnostic 
detection.

DDLR enhances lesion detection offering improved diagnostic performance
and potential dose reduction

Low-contrast lesion detection in neck CT: a multireader
study comparing deep learning, iterative, and filtered
back projection reconstructions using realistic phantoms

Eur Radiol Exp (2024) Bellmann Q, Peng Y, Genske U, Yan L, Wagner M,
Jahnke P. DOI: 10.1186/s41747-024-00486-6

Background
Image reconstruction algorithms in computed tomography
(CT) improve image quality and dose efficiency by opti-
mizing raw data processing and photon yield. In modern CT
scanners, iterative reconstruction (IR) methods, with their
strong denoising capabilities, have largely replaced tradi-
tional filtered back projection (FBP)methods. More recently,
the latest generation of deep learning reconstruction (DLR)
algorithms has been introduced to address the limitations of
IR and to further optimize photon yield [1].
IR methods use nonlinear operations to denoise images

and can maintain an acceptable contrast-to-noise ratio
even at very low x-ray doses [2]. However, IR also alters
image texture and affects contrast-dependent spatial
resolution, which in turn may degrade lesion detectability
and diagnostic confidence [3]. In contrast, DLR methods
using convolutional neural networks have been reported
to denoise images without introducing alterations in noise
texture commonly associated with IR [4, 5]. DLR may
therefore enable more reliable lesion detection and
improve diagnostic performance.
Several phantom studies indicate superior low-contrast

detection performance for images reconstructed using DLR

compared with IR [6, 7]. However, these studies were con-
ducted on uniform phantoms, and it has been shown that
the complexity of background texture significantly affects
low-contrast lesion detection tasks [8, 9]. Only a few studies
have addressed the potential of DLR to actually improve
lesion detection in patients, and thus far, the emphasis has
been on abdominal imaging [10, 11]. Performing this type of
evaluation in patient studies faces challenges including lim-
ited patient availability, dose exposure concerns, difficulties
in reproducibility, and a lack of ground truth knowledge,
which is essential to validate detection outcomes.
To address these challenges, previous work has pre-

sented realistic neck phantoms, which allow researchers
to combine the advantages of studying low-contrast
detectability in patients (offering realism) and phantoms
(ensuring standardization) [12]. In an assessment of these
phantoms, radiologists found lesions of 1 cm in diameter
and -30 HU contrast to the background to be at the
threshold of detectability.
In the present study, we used this type of phantom to

evaluate lesion detectability by comparing DLR, IR, and
FBP at six doses. The study was motivated by the
hypothesis that DLR improves lesion detection in
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anatomical backgrounds. Based on this assumption, the
aim of the study was to evaluate DLR for low-contrast
lesion detection in neck CT imaging in comparison with
IR and FBP.

Methods
Study design
The institutional Ethics Committee approved the study
(see Declarations) and waived informed consent. Nine
anatomically realistic neck phantoms were examined by
CT with six different radiation doses (each of eight
phantoms containing a low-contrast lesion and one
phantom not containing any lesion). Images were recon-
structed using DLR, IR, and FBP. Lesion detectability was
evaluated by 13 radiologists.

Phantoms
The design, production, and validation of the phantoms
used in this study have been reported in detail in pre-
vious work [12]. Briefly, circular lesions of 1 cm in dia-
meter and -30 HU contrast were digitally inserted at
eight different positions in the parapharyngeal space into
a contrast-enhanced neck CT image of a female patient
aged 22 years who had undergone the examination fol-
lowing a traffic accident (lesions were inserted by pixel-
wise subtraction of 30 HU). The selected lesion contrast
aimed to position the lesions at the interface between
detectable and undetectable, as determined by earlier
research [12, 13]. The original non-lesion image and the
eight lesion-containing images were then used to
create nine phantoms of 1-cm thickness using radio-
paque three-dimensional printing [14, 15]. The resulting
phantoms each contained the same anatomy and
the same lesion (or no lesion) across the entire thickness
of 1 cm. They differed only in lesion position or absence,
but not in anatomical background. Figure 1 shows
CT scans of each phantom and illustrates lesion
positions.

Image acquisition
The phantoms were scanned using a Canon Aquilion One
Genesis CT scanner (Canon Medical Systems, Otawara,
Japan). The tube voltage was 120 kVp, the rotation time
0.5 s, the pitch was 0.813, the field of view had a diameter
of 280mm, and the image matrix was 512 × 512 pixels.
Fixed tube currents of 10, 20, 30, 40, 60, and 100mA were
used, corresponding to volume CT dose indices−CTDIvol
of 0.5, 1, 1.6, 2.1, 3.1, and 5.2 mGy. Five acquisitions were
performed per dose and tube current. Images were
reconstructed with 1-mm slice thickness and 0.8-mm
increment using FBP with a soft tissue kernel (FC08) and
the manufacturer’s implementation of IR and DLR:
Adaptive Iterative Dose Reduction 3D (AIDR 3D) and
Advanced intelligent Clear-IQ Engine (AiCE). One central
image slice per acquisition and reconstruction of the
lesion phantoms and four central slices per acquisition
and reconstruction of the non-lesion phantom were
extracted for the subsequent reading experiment.

Lesion detectability assessment
Thirteen observers participated in a reading experiment
to evaluate low-contrast lesion detectability in the phan-
toms. Six participants were board-certified radiologists,
seven participants were radiologists in training. Reader
experience in neck CT imaging ranged from 3 to 14 years
(median 4 years). For every dose and image reconstruc-
tion method, readers were presented with 32 images of
the lesion phantoms (4 images per phantom) and
20 images of the non-lesion phantom. The experiment
thus encompassed 936 images per reader (6 doses × 3
reconstruction methods × 52 images). Images were pre-
sented individually. Readers were asked to decide whether
images contained a lesion in the parapharyngeal space and
to indicate their confidence on a seven-point scale
(1= definitely absent; 2= probably/possibly absent;
3= unsure of lesion absence or presence; 4= probably/
possibly present; 5= definitely present). In addition, they

Fig. 1 Drawings and computed tomography images of the phantoms. Cylindrical lesions are drawn in gray and indicated by white arrows in the images.
Images were acquired with a tube current of 100 mA and reconstructed with the manufacturer’s implementation of deep learning reconstruction (AiCE)
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were asked to label lesions when deemed present by
placing a circular region of interest (ROI). ROIs were
adjustable, enabling readers to label lesions exactly as they
observed them. Participants were instructed to search for
a maximum of one circular low-contrast lesion of 1 cm in
diameter per image. Every reader completed a training
session involving 20 images at 5.2 mGy prior to the
experiment to get familiar with the experimental setup,
including the process of labeling ROIs. Readings were
randomly assigned and readers were unaware of lesion
positions and the number of possible different lesion
positions, forcing them to perform a search task for each
presented image. No consensus agreement was made.
Readings were performed in four separate sessions;
the interval between reading sessions ranged from 1 to
58 days (median 1 day). There was no time limit, enabling
readers to pause in case of fatigue. Images were read on
diagnostic workstations using a dedicated open-source
software platform (Human Observer Net) [16].

Statistical analysis
To analyze reader responses to lesion absence or pre-
sence, the data was formatted and analyzed according to
the receiver operating characteristic (ROC) paradigm
using only the confidence scores of the readings as pre-
viously described [17, 18]. Briefly, reader responses to
lesion absence or presence were used to calculate the true
positive fraction and the false positive fraction for each
reader at different decision thresholds. True-positive
reader responses occurred when readers correctly iden-
tified images of lesion phantoms as lesion images, whereas
false-positive responses occurred when readers incor-
rectly identified images of the non-lesion phantom as
lesion images. These results were subsequently used to
create ROC curves from which area under the curve
(AUC) values were derived. For the analysis of lesion
localization, the Dice similarity coefficient (DSC) was
calculated for each image in which readers outlined a
lesion [19, 20]. The DSC was used to calculate the overlap
between ROIs placed by readers and the ground truth
ROI. Ground truth ROIs were determined during the
study setup in Human Observer Net [16] by the position,
size, and shape of lesion insertions used for phantom
production, defining the phantom ground truth. A
DSC ≥ 0.5 (corresponding to ≥ 50% overlap) was used as
the threshold to classify reader responses as correct lesion
identification. The DSC results and confidence scores
were analyzed following the localization ROC (LROC)
paradigm as described in [17, 18]. Briefly, the true positive
fraction and false positive fraction were calculated based
on the combination of the DSC and confidence scores at
different decision thresholds, which means that reader
responses were only counted as true positives if the DSC

was ≥ 0.5. True positive fraction and false positive fraction
results were used to create LROC curves and calculate
associated AUC values for each reader. Statistical analysis
of the AUC values derived from the ROC and LROC
datasets was performed according to the Dorfman-
Berbaum-Metz method [17, 18]. Readers were treated as
a random factor while cases were considered fixed. AUC
values resulting from the ROC and LROC analysis were
compared among image reconstruction methods. In
addition, a subanalysis was performed to evaluate dose
effects for each image reconstruction method. Bonferroni
correction was applied to adjust p-values for multiple
comparisons. In another subanalysis, lesion detection, and
localization were analyzed according to reader experience.
To this end, readers were divided into two groups: (i) 7
radiologists in training with 3 to 4 years of experience; and
(ii) 6 board-certified radiologists with 6 to 14 years’
experience. For each reader, ROC and LROC curves and
associated AUC values were calculated using all con-
fidence ratings and lesion localizations. An unpaired
Student t-test was applied to compare the AUC values of
the two reader groups. Differences were interpreted as
significant for p < 0.05. Data was processed using R
(v4.3.2). The tidyverse (v2.0.0) collection of R packages
was used for data preprocessing and plotting. For statis-
tical analysis, the R packages RJafroc (v2.1.2) and ggpubr
(v0.6.0) were utilized.

Results
Effects of image reconstruction method
Images reconstructed with DLR, IR, and FBP across all six
doses investigated in this study are shown in Fig. 2. Fig-
ure 3 presents a set of CT images demonstrating lesion
labels placed by participants. AUC results by recon-
struction method are presented in Fig. 4. DLR improved
reader performance and confidence in detecting lesion
images compared with IR (p= 0.037) and FBP (p < 0.001).
The mean ± standard error of the mean (SEM) AUC
obtained by the ROC analysis was 0.724 ± 0.023 for DLR
versus 0.696 ± 0.021 for IR and 0.671 ± 0.023 for FBP. IR
did not yield significantly better results than FBP
(p= 0.057). The superiority of DLR was further confirmed
by the LROC analysis, showing that greater reader con-
fidence was associated with improved lesion delineation.
The mean ± SEM AUC resulting from the LROC analysis
was 0.407 ± 0.039 for DLR, compared with 0.338 ± 0.041
for IR (p= 0.002) and 0.313 ± 0.044 for FBP (p < 0.001).
There was no statistically significant difference between
IR and FBP in the LROC analysis (p ≥ 0.423).

Effects of dose
Figure 5 shows AUC results per dose and image recon-
struction method. Numerical results are provided in
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Tables 1 and 2. Tables 3 and 4 present p-values resulting
from dose comparisons. Dose reduction to 0.5 mGy sig-
nificantly compromised readers’ ability to correctly identify
FBP-reconstructed lesion images compared to 1.6, 2.1, 3.1,
and 5.2mGy. Likewise, dose reduction to 0.5 mGy com-
promised lesion localization in FBP-reconstructed images
compared to 2.1, 3.1, and 5.2mGy. In contrast, no

significant dose effects were observed when DLR or IR was
used for image reconstruction, except for ROC results at
1.6mGy with IR, which were superior to those at 1mGy
and also showed an increase compared to 0.5mGy, though
without reaching statistical significance. However, unlike
FBP, these observations were incidental, as no other dose
comparisons using IR or DLR yielded consistent effects.

Fig. 2 Set of computed tomography images across doses and image reconstruction methods. All images are displayed with 40/350 HU window level/
window width. DLR, Deep learning reconstruction (AiCE); IR, Iterative reconstruction (AIDR 3D); FBP, Filtered back projection

Fig. 3 Set of computed tomography images demonstrating lesion labeling by study participants. The lesion ground truth in the left parapharyngeal
space is indicated by a black region of interest (ROI). ROIs placed by readers for lesion labeling are indicated in green. Left: the Dice similarity coefficient
(DSC) indicating the overlap between the ROI placed by the reader and the ground truth ROI was ≥ 0.5. Consequently, the reader response was classified
as correct lesion identification. Middle and right: The DSC was < 0.5, and reader responses were thus classified as incorrect
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Moreover, these observations were not confirmed by the
LROC analysis, which showed no significant dose effects in
images reconstructed with IR or DLR at any dose. There
was a trend toward higher detection as the dose increased
in FBP-reconstructed images, whereas no consistent trend
was observed with DLR or IR.

Reader experience
Figure 6 shows AUC results from the subanalysis of
reader experience. The mean ± SEM AUC obtained from
the ROC analysis was 0.73 ± 0.024 for the more experi-
enced reader group (6 to 14 years of experience) versus
0.672 ± 0.029 for the less experienced group (3 to 4 years
of experience). The difference between these groups was
not statistically significant (p= 0.173). Likewise, the
LROC analysis yielded slightly superior AUC results in
the more experienced group without reaching statistical
significance. The mean ± SEM AUC resulting from the
LROC analysis was 0.394 ± 0.053 for the more experi-
enced group versus 0.318 ± 0.059 for the less experienced
group (p= 0.364).

Discussion
This multi-reader study, conducted with nine anthro-
pomorphic phantoms, revealed that DLR improves the
detectability of low-contrast lesions in CT imaging of the
neck compared with IR and FBP across doses from 0.5 to

5.2 mGy (p ≤ 0.037). Dose reduction to 0.5 mGy impaired
lesion detection in FBP-reconstructed images compared
with doses ≥ 2.1 mGy (p ≤ 0.024), but had no significant
impact when DLR or IR was used.
Lower image noise aids radiologists in distinguishing

signals from noise and explains why IR yielded better
detection results than FBP in previous work [21, 22].
However, other studies reported only minor or no sig-
nificant advantages of using IR [23–25]. Our findings
align with these observations, demonstrating only slightly
improved detection compared to FBP, which did not
reach statistical significance. This constraint on
improvement from IR can be explained by texture shifts
that result in low-frequency noise, which can adversely
impact the detectability of lesions [3]. Newer DLR
methods have been reported to no longer exhibit such
changes in noise frequency, suggesting their potential for
a more favorable noise texture. Our results confirm that
DLR further improves lesion detectability, thus support-
ing prior reports of improved denoising performance
compared with IR [5].
We found moderate dose effects in FBP-reconstructed

images and no consistent effects when IR or DLR was
used. In FBP, dose is inversely correlated with image
noise, and excessive noise at low doses could be
expected to obscure signals and impair lesion detection.
This assumption was to some extent confirmed by the

Fig. 4 Lesion detection and localization with the three image reconstruction methods investigated. Results of the receiver operating characteristic (ROC)
and the localization ROC (LROC) analysis for lesion detection and localization. DLR, Deep learning reconstruction (AiCE); IR, Iterative reconstruction (AIDR
3D); FBP, Filtered back projection
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marked decrease in lesion detection we observed at the
lowest dose of 0.5 mGy. Overall, however, dose effects
were less pronounced than expected. Moreover, the
application of denoising image reconstruction showed
no consistent impact from dose modifications, as
improved ROC results at 1.6 mGy with IR were neither
confirmed at higher doses nor by the LROC analysis, and

no significant dose effects were observed with DLR. In
contrast, prior studies of IR and DLR in uniform
phantoms reported dose-dependent results [11, 25–27].
This discrepancy can be explained by the different
experimental setups we chose to more realistically
reflect the diagnostic assessment of patients.

Fig. 5 Lesion detection and localization by dose and image reconstruction method. Averaged results of the receiver operating characteristic (ROC) and
the localization ROC (LROC) analysis for lesion detection and localization. Error bars indicate standard deviations. DLR, Deep learning reconstruction
(AiCE); IR, Iterative reconstruction (AIDR 3D); FBP, Filtered back projection; CTDIvol, Volume computed tomography dose index

Table 1 Results of the receiver operating characteristic (ROC)
analysis by dose and image reconstruction method

CTDIvol (mGy) DLR IR FBP

0.5 0.725 ± 0.019 0.675 ± 0.024 0.621 ± 0.027

1.0 0.711 ± 0.028 0.665 ± 0.025 0.655 ± 0.025

1.6 0.711 ± 0.029 0.729 ± 0.025 0.675 ± 0.027

2.1 0.755 ± 0.017 0.683 ± 0.024 0.678 ± 0.026

3.1 0.690 ± 0.035 0.695 ± 0.022 0.697 ± 0.026

5.2 0.720 ± 0.027 0.701 ± 0.022 0.702 ± 0.020

Data are presented as mean ± standard error of the mean area under the curve
DLR Deep learning reconstruction (AiCE), IR Iterative reconstruction (AIDR 3D),
FBP Filtered back projection, CTDIvol Volume computed tomography dose index

Table 2 Results of the localization receiver operating
characteristic (LROC) analysis by dose and image reconstruction
method

CTDIvol (mGy) DLR IR FBP

0.5 0.387 ± 0.042 0.327 ± 0.047 0.242 ± 0.045

1.0 0.379 ± 0.034 0.301 ± 0.042 0.306 ± 0.041

1.6 0.412 ± 0.038 0.346 ± 0.041 0.304 ± 0.044

2.1 0.413 ± 0.039 0.326 ± 0.040 0.341 ± 0.044

3.1 0.386 ± 0.044 0.314 ± 0.040 0.342 ± 0.053

5.2 0.399 ± 0.046 0.356 ± 0.044 0.339 ± 0.048

Data are presented as mean ± standard error of the mean area under the curve
DLR Deep learning reconstruction (AiCE), IR Iterative reconstruction (AIDR 3D),
FBP Filtered back projection, CTDIvol Volume computed tomography dose index
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Anatomical background structure influences detection
tasks conducted by radiologists and can outweigh the
impact of quantum noise, ultimately limiting lesion
perception [28]. Complex phantom structures were
previously found to mitigate dose effects compared with
simple uniform structures and to affect conclusions
drawn regarding dose and image reconstruction [8, 9].
Our study aimed to investigate whether the advantages
of DLR observed in uniform phantoms could be repro-
duced in a setting that better reflects clinical imaging.
While our results confirm the superior performance of
DLR, they show only moderate dose effects, which is
due to the greater background complexity of the phan-
toms used in our study. These observations align with
studies conducted on patients, which report minimal
effects on the detection of similar-sized liver lesions
within patient anatomy despite drastic dose reduction
[10, 11].
We conducted separate ROC and LROC analyses to

assess the effectiveness of DLR in enabling readers to
determine lesion presence or absence (ROC) and to exe-
cute precise lesion delineation (LROC). Each analysis thus
provided distinct insights into the image analysis per-
formed by the readers and the utility of DLR for clinically
relevant tasks. Our results demonstrated improvements in
both aspects of image interpretation with DLR. The var-
iations we observed in reader responses were caused by
reader variability, a well-known factor in human observer
studies [29]. This variability was more pronounced in
the LROC analysis due to the inherently more complex

task of precise lesion labeling compared to the ROC
analysis.
Moreover, the level of experience also contributed to

reader variability. We included a range of readers with
different levels of experience to broaden our database for
evaluating DLR. Training, knowledge, and experience play
significant roles in influencing reader responses in clinical
cancer trials [30–32]. In such trials, however, readers were
tasked with accurately interpreting a variety of malignant
image features, whereas our experiments focused solely on
a specific detection task. Participants received precise
instructions regarding the task and underwent a training
session to become acquainted with the experimental setup.
This explains why, despite slightly lower detection among
less experienced readers, we found no significant difference
in detection performance between reader groups.
DLR has been reported to improve image texture,

accelerate reconstruction, and enable dose reduction in
abdominal imaging [5, 10, 33]. Our study adds to these
reports and confirms that DLR offers advantages when
used in neck imaging. Nonetheless, it should be noted that
DLR is a cover term for a family of algorithms that are
based on different training data, intended for different
applications, and may exhibit protocol-dependent per-
formance [34]. Furthermore, despite the absence of sig-
nificant dose effects in our experiments, DLR-induced
dose reduction may compromise the conspicuity of very
small low-contrast features and their characterization
[10, 11]. We propose the use of realistic reference phan-
toms for diagnostic tasks to expand the evaluation of DLR,

Table 3 Comparison of the receiver operating characteristic
(ROC) results by dose

CTDIvol (mGy) DLR IR FBP

0.5 versus 1.0 1 1 0.806

0.5 versus 1.6 1 0.058 0.035

0.5 versus 2.1 1 1 0.024

0.5 versus 3.1 1 1 < 0.001

0.5 versus 5.2 1 1 < 0.001

1.0 versus 1.6 1 0.009 1

1.0 versus 2.1 0.789 1 1

1.0 versus 3.1 1 1 0.245

1.0 versus 5.2 1 0.667 0.119

1.6 versus 2.1 0.846 0.178 1

1.6 versus 3.1 1 1 1

1.6 versus 5.2 1 1 1

2.1 versus 3.1 0.078 1 1

2.1 versus 5.2 1 1 1

3.1 versus 5.2 1 1 1

p-values are presented
DLR Deep learning reconstruction (AiCE), IR Iterative reconstruction (AIDR 3D),
FBP Filtered back projection, CTDIvol Volume computed tomography dose index

Table 4 Comparison of the localization receiver operating
characteristic (LROC) results by dose

CTDIvol (mGy) DLR IR FBP

0.5 versus 1.0 1 1 0.257

0.5 versus 1.6 1 1 0.329

0.5 versus 2.1 1 1 0.006

0.5 versus 3.1 1 1 0.005

0.5 versus 5.2 1 1 0.008

1.0 versus 1.6 1 0.658 1

1.0 versus 2.1 1 1 1

1.0 versus 3.1 1 1 1

1.0 versus 5.2 1 0.222 1

1.6 versus 2.1 1 1 1

1.6 versus 3.1 1 1 1

1.6 versus 5.2 1 1 1

2.1 versus 3.1 1 1 1

2.1 versus 5.2 1 1 1

3.1 versus 5.2 1 1 1

p-values are presented
DLR Deep learning reconstruction (AiCE), IR Iterative reconstruction (AIDR 3D),
FBP Filtered back projection, CTDIvol Volume computed tomography dose index
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aiming for standardized assessment and ensuring the
translatability of results to clinical imaging.
Our study has limitations. First, while we conducted our

study using realistic anthropomorphic phantoms to
simulate patients, we did not assess lesion detectability in
real patients. Second, our results apply to the detection of
low-contrast lesions that were selected to represent
challenging and clinically relevant tasks. However, we
cannot conclude on the detection of smaller or larger
lesions or lesion classification. Third, we selected the
same anatomical background for all experiments to
ensure comparability, but detection results of the same
lesion type may differ in different anatomical back-
grounds. Fourth, we used phantom images acquired in a
single CT scanner and we cannot provide evidence for
DLR implementations of other vendors.
In conclusion, deep-learning reconstruction improves

the detection of 1-cm low-contrast lesions in neck ima-
ging compared with IR and filtered back projection,
offering improved diagnostic performance and potential
for dose reduction. Doses as low as 0.5 mGy may be used,
if uncertainties related to the detectability of smaller
features and their characterization are accepted.

Abbreviations
AiCE Advanced intelligent Clear-IQ Engine
AIDR 3D Adaptive iterative dose reduction three-dimensional

AUC Area under the curve
CT Computed tomography
DLR Deep learning reconstruction
DSC Dice similarity coefficient
FBP Filtered back projection
IR Iterative reconstruction
LROC Localization receiver operating characteristic
ROC Receiver operating characteristic
ROI Region of interest
SEM Standard error of the mean
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