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Abstract 

Introduction  Breast arterial calcifications (BAC) are common incidental findings on routine mammograms, which 
have been suggested as a sex-specific biomarker of cardiovascular disease (CVD) risk. Previous work showed the effi-
cacy of a pretrained convolutional network (CNN), VCG16, for automatic BAC detection. In this study, we further tested 
the method by a comparative analysis with other ten CNNs.

Material and methods  Four-view standard mammography exams from 1,493 women were included in this ret-
rospective study and labeled as BAC or non-BAC by experts. The comparative study was conducted using eleven 
pretrained convolutional networks (CNNs) with varying depths from five architectures including Xception, VGG, 
ResNetV2, MobileNet, and DenseNet, fine-tuned for the binary BAC classification task. Performance evaluation 
involved area under the receiver operating characteristics curve (AUC-ROC) analysis, F1-score (harmonic mean of pre-
cision and recall), and generalized gradient-weighted class activation mapping (Grad-CAM++) for visual explanations.

Results  The dataset exhibited a BAC prevalence of 194/1,493 women (13.0%) and 581/5,972 images (9.7%). Among 
the retrained models, VGG, MobileNet, and DenseNet demonstrated the most promising results, achieving AUC-
ROCs > 0.70 in both training and independent testing subsets. In terms of testing F1-score, VGG16 ranked first, higher 
than MobileNet (0.51) and VGG19 (0.46). Qualitative analysis showed that the Grad-CAM++ heatmaps generated 
by VGG16 consistently outperformed those produced by others, offering a finer-grained and discriminative localiza-
tion of calcified regions within images.

Conclusion  Deep transfer learning showed promise in automated BAC detection on mammograms, where relatively 
shallow networks demonstrated superior performances requiring shorter training times and reduced resources.

Relevance statement  Deep transfer learning is a promising approach to enhance reporting BAC on mammograms 
and facilitate developing efficient tools for cardiovascular risk stratification in women, leveraging large-scale mammo-
graphic screening programs.

Key points 

• We tested different pretrained convolutional networks (CNNs) for BAC detection on mammograms.

• VGG and MobileNet demonstrated promising performances, outperforming their deeper, more complex 
counterparts.

• Visual explanations using Grad-CAM++ highlighted VGG16’s superior performance in localizing BAC.
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Graphical Abstract

Introduction
Cardiovascular diseases (CVD) are the primary cause 
of mortality and morbidity in women worldwide [1, 2]. 
Traditional risk scores such as the Framingham score 
often underestimate the risk in women, leading to missed 
opportunities for early diagnosis and appropriate pri-
mary prevention [3–6]. Over the past decades, breast 
arterial calcifications (BAC) have been advocated as a 
promising sex-specific biomarker of CVD to improve 
women’s cardiovascular stratification [7–10]. BAC are 
medial calcium depositions detectable as parallel line 
opacities on about 13% of routine mammograms [11, 12] 
and have been shown to be associated with an elevated 
hazard of CVD, independent of most conventional risk 
factors such as smoking [13–15]. A retrospective study 
by Margolies et al. [16] found a strong quantitative asso-
ciation between BAC and coronary artery disease. BAC 
scores from 4 to 12, representing a marked BAC burden, 
had an adjusted odds ratio of 3.2 for the presence of coro-
nary artery calcium. Furthermore, a subset analysis in 
the context of a recent meta-analysis [17] conducted on 
studies utilizing either a 4-point scale (n = 4 studies) or a 

12-point scale system (n = 3 studies) reported that mild 
BAC demonstrated a pooled odds ratio (OR) for coro-
nary artery disease ranging from 1.08 (95% CI 0.42–2.75) 
to 2.04 (95% CI 0.82–5.05), while moderate to severe 
BAC showed a pooled OR ranging from 2.95 (95% CI 
1.49–5.84) to 4.83 (95% CI 1.50–15.53), for studies using 
a 12-point scale or a 4-point scale respectively. Nonethe-
less, the authors of the MINERVA study (a prospective 
study on a cohort of over 5,000 women with a follow-up 
of over 5 years) [3] did not observe a quantitative associa-
tion between BAC burden and hard atherosclerotic CVD 
events; however, they identified a threshold effect for 
global CVD in women over the 95th percentile of BAC. 
With the increasing use of mammography for breast can-
cer screening, BAC present an opportunity for CVD risk 
stratification in asymptomatic women [10, 18]. Neverthe-
less, their assessment is a time-consuming manual task, 
vulnerable to intra- and inter-observer variability [19, 
20]; also, the considerable diversity of BAC’s appearance 
and the lack of a standard reporting guideline limited 
their adoption as a robust imaging biomarker in clinical 
practice [21, 22].
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Automated methods using artificial intelligence (AI) 
have been recommended in the literature to overcome 
the intrinsic limitations of BAC detection [23–25]. 
The potential capability of deep learning (DL)-based 
approaches in extracting complex topologies of large 
datasets could improve the reproducibility of diagno-
sis while reducing radiologists’ post-processing work-
load. A twelve-layer deep convolutional neural network 
(CNN) was the first DL model developed for pixel-wise 
patch-based BAC detection and exhibited comparable 
overall performances to a human expert considering the 
free-response receiver operating characteristic (FROC) 
analysis [23]. In subsequent studies, modified versions 
of U-Net were explored for the similar purpose of seg-
menting calcified vessels and achieved higher levels of 
accuracy [24, 25]. However, training supervised learn-
ing models requires large-scale images with manual 
segmentation-level annotations, therefore still exposing 
the models to biases related to the inherent variability 
of human assessment. Nonetheless, techniques such as 
transfer learning from a pretrained CNN are well recog-
nized to mitigate this issue [26, 27].

In a recent study [28] addressing automatic BAC detec-
tion and quantification, we proposed a novel transfer 
learning-based weakly supervised framework that effec-
tively reduced operator dependency. By formulating the 
problem as a simple dichotomous classification task that 
only requires image-level annotations, i.e., BAC or non-
BAC labels instead of time-consuming pixel-by-pixel 
ground truth, the approach allowed estimation of calci-
fied regions through weak supervision. Further improve-
ments were achieved by fine-tuning a pre-trained VGG16 
classification model on challenging open-source datasets, 
allowing the transfer of previously acquired knowledge 
for solving the specific BAC classification problem, with-
out starting from scratch. Despite the study demonstrat-
ing promising results in BAC recognition, it primarily 
focused on optimizing VGG16 architecture, leaving the 
exploration of the optimal models among the state-of-
the-art deep CNN networks as an open challenge subject 
to further research.

In this article, we compare the performance of differ-
ent neural network architectures using a deep transfer 
learning strategy and aim to find the best models for 
the binary classification task of discriminating mammo-
grams with and without BAC. The findings would assist 
researchers in selecting exemplary networks for detect-
ing BAC and developing efficient tools for early CVD risk 
stratification, with the potential for widespread integra-
tion into clinical practices.

Material and methods
The local Ethics Committee approved this study (Eth-
ics Committee of IRCCS Ospedale San Raffaele; proto-
col code SenoRetro; approved in November 2017 and 
amended in May 2021) and written informed consent 
was waived.

Dataset description
This retrospective single-center study included 1,493 
screening mammography exams acquired using full-field 
digital IMS systems (Giotto IMAGE 3D or Giotto TOMO 
series), a dataset used in a previously published work 
[28]. Each examination consisted of bilateral craniocau-
dal and mediolateral oblique (MLO) view images of both 
breasts, which were reviewed by four expert readers and 
labeled as either BAC or non-BAC; disagreements among 
readers in cases of a tie were resolved by consensus. 
These annotated labels were encoded as the ground truth 
for model training, hyperparameter tuning, and perfor-
mance evaluation.

Seventy percent of the exams were allocated to the train-
ing subset, 15% to the validation subset, and the remain-
ing 15% to the testing subset. Since BAC incidence was 
found to be positively associated with women’s age [19], 
we conducted a specific data splitting strategy by defining 
four age classes using the BAC population’s age quartiles as 
thresholds, stratified splitting within each class separately 
to preserve BAC age distribution, and then consolidating 
the sub-splits into the overall corresponding subsets [28]. 
The training images were further randomly under-sampled 
reaching a BAC prevalence of 30%, to alleviate the classi-
fication bias toward the majority class of our imbalanced 
dataset [29, 30]. The validation and testing subsets were 
instead fully preserved to ensure an accurate representa-
tion of the real-world BAC prevalence.

The dataset consisted of images with various matrix 
sizes up to 3,584 × 2,816, depending on the compacting 
plates used during acquisition. Therefore, the preproc-
essing step involved extracting the breast regions from 
the dark background pixels by defining the smallest rec-
tangular area surrounding the breast and rescaling the 
cropped images to a common fixed-size dimension of 
1,536 × 768 pixels accepted by all the networks. Histo-
gram analysis and Otsu’s thresholding method were used 
to separate the image pixels into tissue and background 
[31, 32]. Next, overthreshold pixel values correspond-
ing to the breast region were normalized to reduce the 
intensity variation of mammographic images caused by 
technical or biological reasons, thus enhancing the con-
vergence of training.
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Training setting
Throughout the experiment, we used a total of eleven 
deep neural networks, namely Xception [33], VGG16, 
VGG19 [34], ResNet50V2, ResNet101V2, ResNet152V2 
[35], MobileNet [36], MobileNetV2 [37], DenseNet121, 
DenseNet169, and DenseNet201 [38]. The models were 
previously pretrained on the ImageNet dataset, compris-
ing more than 14 million annotated color images from 
1,000 categories [39], and were publicly available through 
Keras Applications. Then, we implemented a uniform 
transfer learning strategy and a harmonized set of hyper-
parameters across all the networks to directly compare 
the performance of the various architectures, regardless 
of specific optimization. Since the source and our target 
datasets were from disparate domains, the classification 
layer of each was replaced with two randomly initialized 
fully connected layers followed by a sigmoid activation 
function in the output layer, as appropriate for the binary 
BAC classification task. For transferring knowledge, 
all layers in the convolutional base except the last were 
kept frozen with initial pretrained weights, while the rest 
of the deeper layers and the new classification top were 
fine-tuned on the mammographic dataset specifically, as 
illustrated in Fig. 1.

The training and evaluations were implemented using 
Keras and TensorFlow2 framework of Python V3.8, on a 
system equipped with NVIDIA GeForce RTX 3080, 10GB 
VRAM. Each network was retrained over 100 epochs, 
with a batch size of eight images limited by the available 
GPU memory. The Adam optimizer with an initial learn-
ing rate of 10-3 decayed by a cosine annealing scheduler 
was exploited to minimize the binary cross-entropy loss 

[40, 41]. Furthermore, augmentation techniques includ-
ing random rotation, shifting, flipping, and zooming 
were applied online to the training data to avoid overfit-
ting and improve the robustness of the classifications [42, 
43]. Model checkpoint executed on the validation subset 
while tuning the hyperparameters and the best-perform-
ing configuration was saved at the end of each training.

Performance evaluation
The Kolmogorov–Smirnov test was used to evaluate the 
normality. The continuous variables were presented by 
mean ± standard deviation or median and interquartile 
range (IQR) according to their distribution. Further, the 
Mann–Whitney U test was adopted to evaluate the age 
distribution disparities between the BAC and non-BAC 
groups, where a p-value less than 0.05 was considered 
statistically significant [44].

The overall diagnostic performance of the models 
against the ground truth labels was evaluated using the 
receiver operating characteristic curve (ROC) and area 
under the curve (AUC), independent of classification 
thresholds. Then, the true-positive (TP), true-negative 
(TN), false-positive (FP), and false-negative (FN) values 
were calculated at an optimal cutoff point, corresponding 
to the maximum F1 score achieved by each network on 
the validation dataset. The F1 score is a harmonic mean 
of precision and recall metrics that sought to balance 
the concerns of both classes in our binary classification 
problem:

F1score =
2 precision × recall

precision+ recall
=

TP

TP+
1
2 (FP+ FN)

Fig. 1  The transfer learning strategy using fine-tuning. FC Fully connected
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Furthermore, we conducted a qualitative evaluation of 
the models’ detection and localization abilities using the 
generalized gradient-weighted class activation mapping 
(Grad-CAM++) method, which can provide a promising 
reader-interpretable visual explanation of the CNN mod-
els in the presence of multiple object instances within a 
single image, compared to the state-of-the-art [45, 46]. 
The technique exploited the last convolutional layer’s rich 
semantic and spatial information to generate a heatmap 
that highlighted the most informative pixels contribut-
ing to the decision-making process of the network [45, 
47]. To rank these visual explanations in a somewhat 
quantitative manner, we assessed the Spearman correla-
tion coefficient of the estimated calcified region deline-
ated through thresholding of the heatmaps [28], against 
the corresponding manual measurements of BAC lengths 
previously measured in a subgroup of BAC exams with 
MLO views [19].

Results
BAC detection
The ground truth annotation indicated the presence of 
BAC in 194/1,493 women (13.0%) and 581/5,972 images 
(9.7%). The participants’ median age was 59 years (inter-
quartile range [IQR] 52−68), where women with BAC 
had a significantly higher median age of 70.5 years (IQR 
60–73) compared to non-BAC women (median age 57, 
IQR 52–65, p < 0.001). Following data partitioning, 410 
women were assigned for training (1,640 views, includ-
ing 398 BAC), 222 for validating (888 views, including 89 
BAC), and 229 for testing (916 views, including 94 BAC). 
The training subset BAC prevalence was artificially 
increased by random under-sampling to address the class 
imbalance bias. Table  1 presents the final composition 
of the subsets. The patient-level data splitting prevented 
biases that could arise from allocating different views of 
an individual to different subsets.

The ROC curves and AUC values derived from fine-
tuning each network on the mammographic data-
set are presented in Fig.  2. The AUC values above 
0.8 in the training dataset achieved by MobileNet, 
VGG, and DenseNet architectures indicated their 

good discriminatory ability between BAC and non-
BAC images. The performances could be further con-
firmed by assessing the independent test subset, where 
VGG16, MobileNet, and DenseNet201 achieved the 
most accurate detections with AUC values of 0.79, 0.78, 
and 0.77, respectively. On the other hand, ResNet152V2 
(0.67) and Xception (0.63) exhibited a comparatively 
lower performance, while ResNet101V2 demonstrated 
the worst result yielding an AUC of 0.51, close to a ran-
dom chance classifier. Considering the convergence 
failure of ResNet101V2 also on the training and valida-
tion subsets, the network was eliminated from further 
analysis.

Table 2 reports the quantitative prediction results of 
the networks at their optimal operating point. Among 
the models tested, VGG16 (0.53), MobileNet (0.51), 
and VGG19 (0.46) achieved the highest F1 scores, while 
ResNet50V2 (0.33), Xception (0.31), and ResNet152V2 
(0.29) placed at the bottom. In terms of true-positive 
detections, VGG16 ranked first correctly identifying 
47/94 BAC images in the testing subset, higher than 
VGG19 and MobileNet each with 38/94 and 34/94 
correct BAC detections. The architecture character-
istics and the computational loads are summarized in 
Table 3. In general, fine-tuning each epoch of the pre-
trained models on our mammographic dataset took 
between 241 s for lightweight MobileNet to 271 s for 
ResNet152V2 with the highest total number of param-
eters (around 59.5 million).

BAC quantification
Several examples of the Grad-CAM++ heatmaps gen-
erated from image-level ground truth are presented in 
Fig.  3, for an intuitive comparison of the best perfor-
mances within various burdens of BAC. The localization 
maps mainly emphasized the regions of BAC, while de-
emphasizing the overall breast with varying extent of pre-
cision. Among them, the heatmaps created by the VGG 
architecture explicitly outperformed those by the others 
in the majority of examples and provided discriminative 
image regions of interest that could accurately localize 
the area related to BAC with finer-grained details. Addi-
tional examples of wrong predictions are presented in 
Fig.  4. A visual assessment of the false-negative detec-
tions revealed that variables such as dense tissue or faint 
BAC affected the models’ accuracy in predicting the pres-
ence of BAC, but no consistent patterns were observed 
across different CNNs in the false positives.

The superiority of the VGG16 architecture in esti-
mating the BAC region was further supported by 
Spearman’s rank correlation analysis (Spearman ρ = 
0.68, p < 0.001), performed in a subgroup of 56 exams 

Table 1  Breast arterial calcifications (BAC) and non-BAC 
distributions over the subsets

BAC Breast arterial calcifications

Number of mammographic images

BAC Non-BAC Total

Training 398 1,242 1,640

Validation 89 799 888

Testing 94 822 916
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comprising 94 BAC out of 112 total views (Fig.  5). 
Meanwhile, the MobileNet ability to accurately visual-
ize BAC areas within the images appeared inadequate 

and showed a poor correlation with the manually meas-
ured length, despite the good quantitative classification 
results.

Fig. 2  ROC curves and AUC values for each of the networks

Table 2  Classification performances of the fine-tuned models

TN True negative, TP True positive, FN False negative, FP False positive, F1 F1 score

Training Validation Testing

TN TP FN FP F1 TN TP FN FP F1 TN TP FN FP F1

Xception 1,192 146 252 50 0.77 772 22 67 27 0.32 767 27 67 55 0.31

VGG16 1,219 260 138 23 0.76 762 44 45 37 0.52 785 47 47 37 0.53

VGG19 1,216 237 161 26 0.51 761 40 49 38 0.48 787 38 56 35 0.46

ResNet50V2 1,209 125 273 33 0.61 784 22 67 15 0.35 801 23 71 21 0.33

ResNet152V2 1,225 83 315 17 0.33 791 22 67 8 0.37 809 18 76 13 0.29

MobileNet 1,242 247 151 0 0.62 793 36 53 6 0.55 817 34 60 5 0.51

MobileNetV2 1,232 280 118 10 0.45 778 34 55 21 0.47 781 27 67 41 0.33

DenseNet121 1,215 187 211 27 0.61 777 32 57 22 0.45 800 30 64 22 0.41

DenseNet169 1,196 199 199 46 0.49 763 37 52 36 0.46 784 34 60 38 0.41

DenseNet201 1,227 141 257 15 0.81 790 32 57 9 0.49 807 26 68 15 0.39
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Discussion
In this work, we implemented different pretrained convo-
lutional neural networks of varying depths and explored 
their performances for the automatic detection of BAC, 
a mammographic finding not related to breast can-
cer, which has been identified as a women-specific bio-
marker of cardiovascular risk. The performance ranking 
of the CNNs on the mammography dataset revealed that 
increasing depth and complexity may not necessarily 
improve the classification outcomes, as the best results 
were obtained by using relatively shallow models like 
VGG and MobileNet architectures in terms of higher 
AUC-ROC values. The highest F1  score and best visual 
explanation have been obtained by VGG16. When a bio-
marker like BAC is under consideration, these results 
play in favor of lightweight models being implemented 
quickly and efficiently even with limited hardware 
resources.

The use of AI networks, particularly DL-based 
approaches, has been explored in several studies as a solu-
tion to overcome the intrinsic limitations of manual BAC 
assessments [23–25]. Nonetheless, they predominantly 
relied on pixel-level segmentation, demanding meticu-
lous manual annotation and often subject to observer 
variability. Therefore, the current study addressed the 
BAC classification problem based on a recently devel-
oped transfer learning-based weakly supervised frame-
work that allows for the estimation of calcified regions 
using only image-level annotations, thus further reduc-
ing operator dependency and radiologists’ workload [28]. 
The shift toward transfer learning as a potential solu-
tion to the data scarcity problem, leveraged previously 
acquired knowledge of a well-established CNN network 
from large annotated open-source datasets and efficiently 
fine-tuned the relevant learned features for the specific 

BAC classification task at hand, rather than training from 
scratch [26–28].

According to our findings, VGG16, MobileNet, and 
DenseNet201 performed as the most promising CNNs 
for accurate BAC detections with superior performances 
among the others tested. In this setting, the depth and 
complexity of the neural networks do not necessarily 
guarantee superior performance in classifying mammog-
raphy images. Both VGG16 and MobileNet are relatively 
shallow networks. VGG16 is characterized by a straight-
forward sequential architecture with small 3 × 3 convolu-
tional filters, allowing more focused learning of relevant 
features, effective in various computer vision tasks [34]. 
MobileNet uses depth-wise separable convolutions that 
reduce the overall number of parameters, making it a 
lightweight and efficient model for mobile and embed-
ded vision applications [36]. The other tested architec-
tures, such as Xception and ResNetV2 [33, 35], are also 
recognized for their efficacy in attaining state-of-the-art 
results, though their performances may be influenced 
by the specific characteristics of the dataset and task at 
hand. The superiority of smaller networks to their deeper 
counterparts, when it comes to medical dataset often 
with a limited number of samples, has also been observed 
in some other studies exploring DL techniques for a wide 
variety of diagnostic medical imaging applications such 
as chest x-ray classification or breast cancer diagnosis 
[48, 49].

The qualitative assessment of performances through 
generalized Grad-CAM complemented the quantita-
tive analysis based on the AUC-ROC and F1 score met-
rics. Notably, the inherent simplicity and uniformity of 
the VGG16 architecture facilitated a more precise rep-
resentation of the distinctive patterns associated with 
BAC on mammograms. These heatmaps hold potential 

Table 3  Comparison of the deployed network characteristics

Network Depth Number of parameters (106) Model size (MB) Training time (s)/
epoch (s)

Testing 
time (ms)/
imageTotal Trainable

Xception 36 22.04 4.34 117 251.6 39.4

VGG16 16 15.11 2.75 78.7 255.2 31.2

VGG19 19 20.42 2.75 99 262.6 38.4

ResNet50V2 50 24.74 2.23 111 242.5 28.0

ResNet152V2 152 59.51 2.23 245 271.2 61.8

MobileNet 28 3.88 1.71 28.1 241.1 15.9

MobileNetV2 53 3.04 1.20 21.2 245.9 18.9

DenseNet121 121 7.69 0.69 35.8 246.1 30.7

DenseNet169 169 13.62 1.02 61.4 249.3 39.3

DenseNet201 201 19.43 1.16 84.8 261.4 47.8
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for application in weakly supervised segmentation, as we 
previously elaborated in [28], wherein BAC localization 
is achieved by a CNN trained only on image-level labels, 
without requiring pixel-by-pixel ground truth annota-
tions. Consequently, an estimation of the BAC burden, 
as a by-product of the automatic detection framework, 
could be obtained by using simple thresholding and 
segmenting out the most intense pixels of the Grad-
CAM++ heatmaps which encapsulated calcified areas 

of the original image. Furthermore, this visual approach 
introduces the prospect of integrating human expertise 
into the decision-making loop, as clinicians could con-
tribute their insights to further refine the segmentation 
or improve the CNN model based on the visual cues pro-
vided by the heatmaps.

The comparability of our method and the other cited 
research may be limited as detailed BAC segmentations 
were mostly used to evaluate the outcomes [23–25]. The 

Fig. 3  From left to right: original images (cropped to minimize the background), and examples of Grad-CAM++ heatmaps with the binary 
predicted labels (BAC:1 and non-BAC:0) generated from Xception, VGG16, VGG19, ResNet50V2, ResNet152V2, MobileNet, MobileNetV2, 
DenseNet121, DenseNet169, and DenseNet201. ResNet101V2 was excluded from the analysis due to its limited ability to effectively learn BAC 
features
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original study that proposed the novel weakly supervised 
BAC detection framework, achieved a promising perfor-
mance by fine-tuning VGG16 with an AUC-ROC of 0.94 
in the testing subset and a strong correlation with manual 
BAC measurements (Spearman ρ = 0.88, p < 0.001) [28], 
surpassing all models in our analysis. Indeed, in the cur-
rent experiment, a uniform transfer learning strategy fol-
lowed by a harmonized hyperparameter set was adopted 
across all networks, which were probably not selected 
as precisely as in [28], since our priority was comparing 
architectures rather than optimizing each model. Fur-
thermore, all models were evaluated on an independent 
testing subset reflecting real-world BAC prevalence of 
around 12%, as in the original research [28]. This real-
istic imbalanced subset ensures the CNNs’ stability and 
robustness for future studies with BAC as the minority 
class, in contrast to the previous research that predomi-
nantly included BAC exams, risking model overfitting.

The present study has some limitations. First, the data-
set included in this retrospective analysis was obtained 
from a single imaging center using two mammographic 
devices by the same manufacturer, which may introduce 
potential biases and constrain the generalizability of the 
findings. Second, while using a uniform training strat-
egy across all neural network architectures enabled a fair 
comparison, it may limit the full potential of each model. 

Further research is warranted to explore customized con-
figurations tailored to the unique characteristics of each 
architecture to exploit their maximum capabilities and 
optimize their performances. Third, the chosen met-
rics for performance evaluation provide robust insights, 
yet the clinical relevance of these metrics to real-world 
patient outcomes remains an area for future investiga-
tion. Lastly, we did not compare the diagnostic perfor-
mances of the different models to that of a radiologist; 
however, this kind of evaluation was beyond the aims of 
the current work and will be addressed in future research.

In conclusion, this study demonstrated the efficacy of 
employing deep transfer learning-based approaches for 
BAC on mammograms, where networks such as VGG16 
and MobileNet outperformed their deeper more complex 
counterparts. The competitive performance and notable 
computational efficiency of simpler networks highlighted 
the viability of adopting such models in clinical settings 
with substantial savings in both time and resources. Our 
extensive experiment and evaluations, both quantita-
tive and qualitative, could provide valuable insights for 
researchers in selecting exemplary network architectures 
for automatic BAC detection and developing efficient 
tools for early CVD risk stratification in asymptomatic 
women. Further research is required to address the limi-
tations and validate the models using a larger diverse 

Fig. 4  Examples of misclassifications. From top to bottom: a positive case with minor BAC concealed under the dense breast tissue (circle) 
misclassified as negative, and two negative cases with benign calcifications and skinfolds mistaken as BAC by some CNNs
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study population, ultimately paving the way for integrat-
ing the models into clinical practices without any time 
loss for radiologists and fostering awareness of women’s 
cardiovascular health in the context of widespread mam-
mographic screening programs. Conversely, the use of 
mammographic images for cardiovascular risk stratifica-
tion could be an added new motivation for participation 
in screening mammography programs, thus reinforcing 
its value also for secondary prevention of breast cancer 
in the female population [8]. As the field continues to 
evolve, a balance between diagnostic accuracy, compu-
tational efficiency, and real-world applicability will be 
crucial.
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