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NARRATIVE REVIEW

7 T and beyond: toward a synergy 
between fMRI-based presurgical mapping 
at ultrahigh magnetic fields, AI, and robotic 
neurosurgery
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Abstract 

Presurgical evaluation with functional magnetic resonance imaging (fMRI) can reduce postsurgical morbidity. Here, 
we discuss presurgical fMRI mapping at ultra-high magnetic fields (UHF), i.e., ≥ 7 T, in the light of the current growing 
interest in artificial intelligence (AI) and robot-assisted neurosurgery. The potential of submillimetre fMRI mapping 
can help better appreciate uncertainty on resection margins, though geometric distortions at UHF might lessen 
the accuracy of fMRI maps. A useful trade-off for UHF fMRI is to collect data with 1-mm isotropic resolution to ensure 
high sensitivity and subsequently a low risk of false negatives. Scanning at UHF might yield a revival interest in slow 
event-related fMRI, thereby offering a richer depiction of the dynamics of fMRI responses. The potential applica-
tions of AI concern denoising and artefact removal, generation of super-resolution fMRI maps, and accurate fusion 
or coregistration between anatomical and fMRI maps. The latter can benefit from the use of T1-weighted echo-planar 
imaging for better visualization of brain activations. Such AI-augmented fMRI maps would provide high-quality 
input data to robotic surgery systems, thereby improving the accuracy and reliability of robot-assisted neurosurgery. 
Ultimately, the advancement in fMRI at UHF would promote clinically useful synergies between fMRI, AI, and robotic 
neurosurgery.

Relevance statement This review highlights the potential synergies between fMRI at UHF, AI, and robotic neurosur-
gery in improving the accuracy and reliability of fMRI-based presurgical mapping.

Key points
• Presurgical fMRI mapping at UHF improves spatial resolution and sensitivity.

• Slow event-related designs offer a richer depiction of fMRI responses dynamics.

• AI can support denoising, artefact removal, and generation of super-resolution fMRI maps.

• AI-augmented fMRI maps can provide high-quality input data to robotic surgery systems.

Keywords Artificial intelligence, Brain mapping, Echo-planar imaging, Magnetic resonance imaging, Robotic surgical 
procedures
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Introduction
In clinical settings, presurgical mapping of eloquent 
cortex is usually achieved with invasive procedures. 
For example, intraoperative brain mapping on awake 
patients by cortico-cortical evoked potential involves 
direct cortical stimulation to observe elicitation of an 
impairment with high frequency stimulation (25 to 50 
Hz) or evoked responses in distant or nearby cortical 
regions with low-frequency stimulation (1 Hz). This 
invasive procedure can sometimes yield behavioral 
responses that are difficult to interpret [1, 2].

An alternative approach that is relatively noninva-
sive is functional magnetic resonance imaging (fMRI). 
This technique has been shown to provide robust and 
reliable assessment of brain function with typical clin-
ical MRI scanners at 1.5 or 3 T [3]. Indeed, presurgi-
cal mapping with fMRI remains the most widely used 
application of clinical fMRI [4, 5], enabling patient-spe-
cific mapping of eloquent brain regions close to pathol-
ogies [6], including brain tumors or epileptic foci, so 
that vital activated brain regions are spared to minimise 
the risk of postsurgical impairments. There is compel-
ling evidence that preoperative mapping with fMRI can 
reduce postsurgical morbidity [7, 8].

fMRI-based presurgical mapping is considered one of 
the key applications that will largely benefit from scan-
ning patients at ultrahigh magnetic fields (UHF) [9–12]. 
Although task-based and task-free fMRI is still widely 
performed at traditional field strengths (1.5 or 3 T), 
fMRI at UHF (7 T or above) is rapidly gaining in popu-
larity after 7-T MRI scanners were approved for clini-
cal use by the FDA and the European Union, and many 
studies have already shown that presurgical mapping 
at UHF is safe [13, 14]. Brain mapping at UHF boosts 
reliability at the individual patient level thanks to the 
increase in signal-to-noise ratio (SNR) [15, 16] and the 
subsequent enhancement in contrast-to-noise ratio [17, 
18]. This increase in SNR can translate into (i) higher 
spatial resolution, (ii) higher temporal resolution, (iii) 
shorter total acquisition times, (iv) better blood oxygena-
tion level dependent (BOLD) sensitivity to minimise false 
negatives, and (v) improved BOLD spatial specificity by 
reducing signals from draining veins. Here, we discuss 
how UHF can transform current presurgical mapping 
procedures in the clinical setting, in particular in the cur-
rent growing interest in AI and robotic surgery.

It is well documented that high spatiotemporal brain 
mapping at UHF [18] allows better specificity with sig-
nificantly less partial volume effects compared to fMRI 
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at traditional field strengths [19]. For instance, previous 
presurgical fMRI studies have demonstrated a significant 
increase in sensitivity with motor [20] and language tasks 
[21] as well as during rest [22] at UHF. The superiority 
of presurgical brain mapping at UHF compared to tra-
ditional field strengths is observed in terms of a higher 
number of suprathreshold voxels or clusters, a larger 
percent signal change or effect size, a higher statistical 
t-values or z-scores, and/or the activation of small or 
deep structures that are sometimes difficult to depict at 
traditional field strengths [23–26]. Such gains are a direct 
consequence of the monotonic increase of BOLD sen-
sitivity with magnetic field strength, yielding increased 
extent of activated areas at higher spatial definitions. This 
has significant practical implications for neurosurgery: 
(i) higher spatial resolution fMRI maps offer the possi-
bility for resections at an excellent precision, (ii) larger 
activated volumes might presumably translate into more 
conservative resections, and (iii) high BOLD sensitivity 
and low false negative rates would translate into reduced 
risk of postsurgical complications. However, despite such 
significant benefits at UHF, we argue here that the most 
beneficial aspect of conducting presurgical mapping at 
UHF should concern the increase in BOLD sensitivity 
rather than a push for higher sub-millimetric spatial res-
olutions, in particular in the light of the strong suscepti-
bility-related distortions at UHF.

Optimal fMRI paradigms at UHF
All types of fMRI paradigms are applicable at UHF. Task-
based fMRI with block, event-related, or mixed designs 
offer flexibility in mapping brain function according to 
the function of interest and the patient’s ability to per-
form the task [27]. The relevant features that define an 
optimal design are the same as those at traditional mag-
netic fields, including stimulus type, baseline condition, 
task, response type, and acquisition duration, given that 
many of these features can impact on the accuracy of 
presurgical fMRI, as shown in a systematic review [28]. 
Moreover, studies have tested and compared a variety of 
tasks to identify the most reliable tasks and paradigms 
for presurgical evaluation [29–31]. This has led to the 
publication of several recommendations and guidelines 
about the optimal tasks to use at traditional fields [32, 
33]. Many of these recommendations are still valid and 
useful at UHF. However, it is likely that some tasks previ-
ously described as less reliable at traditional fields might 
be useful at UHF due to the increase in BOLD sensitiv-
ity. This calls for an update to existing guidelines, which 
might help expand the repertoire of motor and cogni-
tive tasks that can be used in fMRI-based presurgical 
evaluation at UHF. For example, in the language domain, 
reading or semantic tasks are not typically considered as 

highly reliable tasks for presurgical identification of tem-
poral regions [34–36]. It is likely that such tasks, even 
when used with passive responses, could still be valuable 
at UHF for some patients who struggle with tasks that 
rely on word finding.

Regarding task-free fMRI, mapping at rest is particu-
larly useful for patients who are unable to cooperate 
or who are scanned under sedation [37, 38], with the 
advantage of localizing many brain regions and networks 
from one session/run [39, 40]. Presurgical mapping with 
resting-state fMRI has been shown to be reliable and 
concordant with task-based fMRI as well as with intra-
operative electrocortical stimulation [40–43]. Recent 
work reported high reliability (i.e., high between-session 
consistency and stability) of single-subject resting state 
networks at UHF [44, 45]. Likewise, resting-state fMRI 
demonstrated a superior seizure onset-zone lateralizing 
ability at 7 T compared to 3 T during an epilepsy presur-
gical evaluation [22]. Despite its potential in presurgical 
mapping, the application of resting-state fMRI is still fac-
ing many methodological challenges with respect to the 
complexity of data analysis, the lack of standardization 
of fMRI protocols at rest [46] and the difficulty to assign 
a specific function of a particular node of a resting-state 
network [47]. Likewise, there is a lack of awareness 
among clinicians about the potential of such protocols 
at rest and the availability of automated data processing 
methods at the single patient level [48]. Nevertheless, 
fMRI at rest will likely gain in popularity at UHF, making 
the mapping of different brain networks at the individual 
patient level from one session (5−10 min) easily manage-
able by patients and MRI technicians.

In the same way, naturalistic fMRI paradigms offer an 
attractive alternative for presurgical fMRI mapping. They 
can reliably depict eloquent cortex, including paradigms 
that involve passive viewing of movie clips [49, 50]. Such 
paradigms are very handy when patients cannot perform 
tasks or cooperate in the absence of any external instruc-
tions. They also help increase scanner tolerability when 
scanning with noisy sequences at UHF and can decrease 
boredom and anxiety in the scanner. As patients are not 
asked to actively respond to (repetitive) stimuli, watching 
video clips can minimise the occurrence of head motion 
artefacts. Video clips can be tailored to the specific func-
tion or the population of interest. For instance, different 
video clips can be used in presurgical mapping in elderly 
patients with tumors or young children with epilepsy. 
Another benefit of video clips is that they can be trans-
lated to any language and are easy to share across dif-
ferent MRI sites. It is expected that movie fMRI-based 
presurgical mapping will gain in popularity at UHF.

Now, we turn to an overlooked paradigm that con-
cerns mapping brain activations with slow event-related 
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designs. Although rapid event-related designs offer 
higher detection power than other paradigms [51], slow 
event-related design might transform how presurgical 
mapping is carried out. Thanks to the increase in SNR at 
UHF, slow event-related designs, defined as event related 
paradigms with an interstimulus interval larger than the 
typical duration of the hemodynamic responses function 
[52], can identify not only the activated regions but also 
their estimated hemodynamic delays [53]. With minimal 
overlap between BOLD responses of successive trials in 
slow event-related designs, different time parameters 

and latencies [54–57] that characterise the dynamics of 
the hemodynamic correlates of neuronal function in 
patients can be estimated (Fig. 1), which could be useful 
given the different biological and methodological factors 
that impact on the modelling of BOLD responses at high 
spatial resolution [58]. Such time parameters can offer an 
insight into tumor-induced alterations to the neurovascu-
lar coupling [59, 60]. For instance, multiple whole-brain 
maps can be generated for a given task at the individual 
patient level, including maps of time-to-onset, time-
to-peak, response width, and peak amplitude [61]. This 

Fig. 1 Slow (top) and fast (middle) event-related design. Events or trials are shown with black bars. Deconvolution methods can be used 
with fast event-related fMRI, assuming linear responses, low inter-trial variability, and uncorrelated noise. When these conditions are not met, slow 
event-related designs are preferable as any loss in paradigm design efficiency is compensated by the high signal-to-noise ratio at ultrahigh field. 
Bottom: an example of a typical hemodynamic response function with some useful parameters that can be derived from it: ttid (time to initial dip), 
tto (time to onset), ttp (time to peak), ttus (time to undershoot), fwhm (fullwidth at half maximum). These parameters can be estimated at each 
voxel, yielding multiple three-dimensional maps for each task/contrast. fMRI Functional magnetic resonance imaging, ITI Intertrial interval
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would help explain instances of aberrant fMRI responses 
in patients [62] and to better appreciate the risk of false 
negatives and false positives in presurgical fMRI. Perhaps 
most importantly, the multiple generated maps provide 
richer information at the voxel level that can be valu-
able for the development of risk prediction models about 
post-surgery outcome and recovery.

The challenge of submillimetre presurgical 
mapping
Submillimetre presurgical mapping of brain function is 
often portrayed as the most beneficial aspect of scanning 
patients at UHF. This gain in spatial resolution would 
enable resection of brain tumors or epileptic foci at high 
spatial precision, thus minimizing the extent of postsur-
gical damage to neighbouring healthy tissue. For that 
purpose, the localization of eloquent cortex needs to be 
highly accurate because a small shift of resection mar-
gins or suboptimal surgical access can yield postsurgical 
impairments (Fig. 2). For instance, it has been shown that 
resection margins in the millimetre range close to elo-
quent brain areas may determine whether postoperative 
deficits are reversible or permanent [63], which under-
scores the importance of high-resolution brain maps for 
image-guided surgeries.

However, the precision that would be gained for neu-
rosurgical procedures is inherently bounded by the accu-
racy of the fMRI-based mapping of the eloquent cortex at 
UHF. Despite the possibility to scan the brain at submil-
limetre scale, the presence of susceptibility artefacts can 
induce geometric distortions that yield tissue displace-
ments in the collected images [64]. This is because brain 
tissues with differing magnetic susceptibilities can cause 

gradients in the static magnetic field, which would lead to 
regional variations in the effective echo time, resulting in 
artefacts in image signal and BOLD sensitivity [65]. For 
instance, the widely used echo-planar imaging (EPI) in 
fMRI is prone to geometric distortions [64, 66], yielding 
clinically significant displacements of brain activations 
[67]. Such spatial distortions are notoriously difficult to 
correct at UHF as they do increase with magnetic field 
strength, so it is of paramount importance that these dis-
tortions are corrected at UHF. Furthermore, such spa-
tial distortions might be particularly problematic when 
scanning patients at UHF, even when other acquisition 
schemes such as spiral fMRI is used [68] or multiband 
EPI [69], as they get worse with large head motion arte-
facts in patients and they tend to be spatially heterog-
enous [70] as in the case of severe distortions in brain 
areas around air cavities or distant from the isocenter of 
the scanner [71].

Despite the existence of many sophisticated correc-
tion methods for geometric distortions [67, 72–74], still 
displacement errors after correction are above the mil-
limetre level in some brain regions, making any ultra-
high-resolution fMRI mapping (e.g., voxel size < 1  mm3) 
not very reliable for surgical applications. For instance, 
a recent comparative study showed possible displace-
ment of up to 4 mm in raw EPI images, in particular in 
ventromedial prefrontal regions, that were corrected to 
the voxel size using different corrections methods [74]. 
Another study reported spatial distortions up to 5.1 
mm in the primary motor cortex in raw EPI images, but 
these distortions were reduced to less than 1.7 mm after 
correction [67]. Likewise, correction for susceptibility 
artefacts based on T1-weighted anatomical images was 

Fig. 2 fMRI activations in a patient with a brain tumor (showing one slice dorsal to the main tumor in the right hemisphere). A zoomed view 
showing the contours of two activated clusters. The location and extent of the clusters are important indicators to be accounted for during the 
definition of the resection margins. However, location and extent of activations are intrinsically defined by many factors including the original 
spatial resolution, partial volume effects in particular near tissue borders as well as the heterogenous peri-tumoral zone, the effect of the statistical 
threshold, the risk of false negatives and positives that can be exacerbated by artefacts such as head motion artefacts, and susceptibility artefacts 
causing geometric distortions that can lead to a mismatch or misregistration between functional echo-planar imaging (EPI) and anatomical 
T1-weighted (T1w) images. fMRI Functional magnetic resonance imaging
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shown to be highly robust when tested on a submillime-
tre 7-T fMRI dataset [75]. In addition to susceptibility-
induced distortions, alterations to the vasculature of the 
brain in the presence of tumors could adversely affect the 
neurovascular coupling [60], especially in peritumoral 
areas, which might yield to spatially aberrant brain acti-
vations. Taken together, these effects would limit the 
reliability of submillimetre fMRI mapping at UHF, sug-
gesting that going below isotropic 1-mm spatial resolu-
tion in fMRI might not necessarily translate into accurate 
submillimetre resection margins. Advanced correction 
methods are needed in order to generate artefact-free 
fMRI maps at UHF, including new methods based on AI.

AI‑based fMRI enhancement and artefacts 
correction
In this context, one exciting emerging field concerns 
the application of machine learning techniques, includ-
ing deep learning, for the correction of artefacts in MRI 
[76, 77]. AI-based corrections for motion artefacts [78, 
79] and susceptibility artefacts in EPI images [80–83] 
have been shown to be robust and extremely useful. The 
appealing feature in these techniques is that they do 
not require prior knowledge on the exact true mapping 
between brain structures and MRI-based depiction of 
those structures, as this (nonlinear) mapping is learned 
in a data-driven way. This is very useful in the context of 
fMRI as artefacts are extremely complex to fully char-
acterise because they are spatially heterogenous, vari-
able across subjects, sessions, sequences, and scanners, 
and they also result from an intricate interplay between 
different interacting sources including geometric dis-
tortions, motion artefacts, and altered neurovascular 
coupling [84]. The ability of AI-based tools to generate 
artefact-free fMRI maps will improve with the size of 
data used in the training stages. This will benefit from 
existing large fMRI datasets and data sharing initiatives. 
Furthermore, such AI-based tools for artefacts correction 
in fMRI maps can be integrated with other AI tools that 
are powering robotic surgery systems, which can ulti-
mately offer an automated robust integrated platform for 
neurosurgical procedures in patients.

In addition to the utility of AI-based tools for artefact 
removal, recent work also demonstrated the usefulness 
of AI tools for fMRI maps enhancement, including the 
possibility to generate super-resolution images [85–87]. 
A recent work used a deep learning-based super-resolu-
tion technique to translate low-resolution fMRI images 
into high-resolution fMRI images [88, 89]. Specifi-
cally, fMRI activations in the motor cortex [88] and the 
visual system [89] were mapped at much higher resolu-
tion after AI transformation than the original images, 
offering an improved spatial accuracy for the detection 

of brain activations. This means that generating fMRI 
maps at submillimetre scale can be achieved from origi-
nal fMRI data collected at isotropic > 1-mm resolution, 
hence offering both high BOLD sensitivity at acquisition 
stage and high spatial resolution at the AI-based data 
processing stage. AI can also help optimise coregistra-
tion or fusion between the generated super-resolution 
fMRI maps and the collected high-resolution anatomi-
cal images for accurate visualization of eloquent cortex. 
An alternative approach is to display anatomy using a 
high-resolution EPI image with a strong T1-weighted 
contrast. For instance, the first collected EPI image of a 
typical fMRI session, before reaching tissue steady-state 
magnetization, can display a better contrast between 
different brain tissue classes. Recent work has also pro-
posed alternative T1-weighted EPI images with excellent 
contrast and spatial resolution at UHF [90, 91] that can 
reveal the anatomical location of activated regions with 
high fidelity. Such AI tools can be made compatible, at 
high interoperability, with other AI tools that power the 
robot-assisted surgery system [92] in a way that opti-
mises synergies between fMRI mapping and surgical 
procedures (Fig.  3). Overall, the implementation of AI 
to neurosurgery can further augment the capabilities of 
neurosurgeons and ultimately improve safety and patient 
outcomes; for review, see [92–94].

Implications for image‑guided robotic‑assisted 
neurosurgery
There is a rich literature about the role of robotic sys-
tems for safe and high-precision neurosurgery [95–98]. 
Robots, usually deployed as robotic arms, are increas-
ingly used in the operating room [99], with image-guided 
robotic surgeries offering clinically useful accuracy and 
surgery time [100] as well as high reliability and efficacy 
[101, 102]. They can eliminate errors [103] and reduce 
human hand tremors for a higher degree of precision 
[104]. Despite their limitations with respect to high cost 
and lack of haptic feedback [105, 106], robotic systems 
like ROSA, da Vinci, and NeuroArm are routinely used 
for diverse neurosurgical applications, including in func-
tional neurosurgery, epilepsy surgery, deep brain stimu-
lation, laser ablation of brain tumors, spinal surgery, and 
stereotactic biopsy [107–109].

In particular, in stereotactic brain tumors resec-
tion [110, 111], safety and outcomes for patients have 
improved thanks to the capability of robots to provide 
superior spatial resolution, geometric accuracy, and 
superior dexterity [104, 112]. These capabilities are fur-
ther enhanced with medical imaging and navigation 
technologies, thereby yielding robust and safe image-
guided robotic neurosurgical procedures [102]. Specifi-
cally, such critical imaging information, when offered at 
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high resolution, can help neurosurgeons enter the brain 
with the robotic arm along the safest angle that would 
minimise the risk of damage to critical tissue. When 
those decisions on how to enter and resect the brain are 
based on presurgical maps, one can envisage the signifi-
cant benefits that presurgical mapping at UHF might 
bring with its high resolution and sensitivity, in particular 
when it is further enhanced with AI [113]. Add to that 
the possibility to simulate virtual robotic surgeries based 
on high-resolution presurgical maps, which can then be 
subsequently executed as pre-planned procedures in the 
operating room.

Despite the lack of empirical studies on the usefulness 
of high-resolution presurgical maps at UHF for robotic-
assisted neurosurgeries, the gain in resolution and sensi-
tivity at UHF is expected to improve accuracy. We note 
however that the consistency of robots in achieving high 

accuracy can vary across robotic systems [114]. Moreo-
ver, other advancements are being introduced in robotic-
assisted neurosurgery to improve accuracy and safety, 
including advancements in medical imaging, machine 
learning, augmented and virtual reality, enhanced inter-
faces, improved ergonomics, and optimized visualization 
techniques [98, 99, 115]. Perhaps one important advance-
ment concerns the blending with AI, thereby opening 
new horizons toward AI-powered autonomous robots in 
the operating room [106]. For instance, in a recent ret-
rospective appraisal of 700 robot-assisted stereotactic 
surgeries, the margin errors were on average around 1 
mm [116] but were further reduced when robotic surgery 
was powered by AI [117]. The combination of presurgical 
mapping at UHF with AI-powered robotic neurosurgery 
will likely revolutionize neurosurgical procedures for 
patients with brain tumors or drug-resistant epilepsy. A 

Fig. 3 Schematic illustration of the synergy between three advanced technologies for presurgical mapping with fMRI: scanning at UHF, AI, 
and robotic neurosurgery (yellow boxes). AI can enhance the performance of both the presurgical mapping with fMRI during data acquisition 
and processing, and robotic surgery for better precision, modelling of brain tissue deformation, and real-time control of surgical tools. [green 
boxes] main benefits and challenges at UHF, with a trade-off to scan at ≥ 1-mm isotropic instead of aiming at much higher submillimetre spatial 
resolutions. AI Artificial intelligence, BOLD Blood oxygenation level dependent, fMRI Functional magnetic resonance imaging, SNR Signal-to-noise 
ratio, UHF Ultrahigh magnetic fields
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similar rationale about AI-powered robots was described 
for endovascular neurosurgery [118]. Such neurosurgical 
procedures can capitalise on the integration (or fusion) 
of presurgical fMRI maps with other imaging modalities 
within surgical navigation systems [119, 120].

Manageable fMRI data and shorter acquisition 
times
There are other practical aspects that makes a > 1-mm 
isotropic spatial resolution a good compromise for fMRI-
based presurgical mapping. Going to submillimetre scale 
at 0.5 mm isotropic for instance will generate massive 
data that are not always easy to handle in typical clini-
cal settings in terms of data storage and data transfer to 
surgical navigation systems: acquisition at 0.5-mm spa-
tial resolution generates eight times more data than at 
1-mm resolution. For example, a recent high-resolution 
anatomical image collected at UHF of one subject at 0.1 
mm resolution took almost 2 terabytes of raw k-space 
data [121], a storage size that needs to be multiplied by 
hundreds for raw and processed EPI images. Further-
more, at 1-mm spatial resolution, scanning at UHF can 
reduce the total acquisition time. This is very useful for 
task-based fMRI, particularly as many patients find it 
hard to perform tasks and remain still for prolonged peri-
ods [12]. Patients tend to move more than healthy sub-
jects, and many of the tasks used in presurgical planning, 
such as hand movement or overt speech, might induce 
head motion [84, 122]. Shorter acquisition times can be 
achieved by scanning at high temporal resolution (short 
repetition times), which is already showing improved 
BOLD sensitivity for presurgical mapping at UHF [123, 
124]. Last but not the least, shorter acquisition times 
will make the presurgical mapping safer for patients by 
minimizing some of the many side effects that have been 
frequently reported at UHF [13, 125], including ver-
tigo, dizziness, false feelings of motion, nausea, nystag-
mus, magnetophosphenes, electrogustatory effects, light 
flashes, metallic taste in the mouth, too much noise dur-
ing longer image acquisition, and/or discomfort.

Conclusions
Current technology at UHF is enabling data collection at 
high SNR and high spatial resolution [126, 127]. In the next 
decade, magnetic field strengths are expected to go even 
higher than 7 T to reach 10 T or even 20 T [128, 129]. This 
growing interest in UHF is already promoting the devel-
opment of novel analysis methods to detect atypical brain 
activations [130]), to generate reliable patient-specific fMRI 
maps in cases with altered hemodynamic responses [131] 
or with huge head motion artefacts [132]. Thanks to the 
increase in BOLD sensitivity at UHF, presurgical mapping 
with fMRI at 1-mm isotropic resolution offers high BOLD 

sensitivity, accurate spatial mapping, and manageable data 
size. Generating artefact-free brain maps is of paramount 
importance to minimise postsurgical complications [70]. 
In this context, there is a need for the creation of a task 
force to develop standardized safe fMRI protocols at UHF, 
including patient-tolerable fMRI paradigms, low-risk data 
acquisition protocols, and optimal data processing meth-
ods. Validation studies are also warranted [27], in particu-
lar for resting-state fMRI protocols. The current growing 
interest in MRI-compatible robotic systems [133], allowing 
for instance the deployment of robotic systems inside the 
bore for a closed-loop surgery architecture, might expand 
in the next decade to new MRI systems at UHF. Combi-
nation will other functional modalities warrants future 
research [134]. Future work needs to explore novel ways 
to optimise the synergies between fMRI-based presurgical 
mapping, robotic neurosurgery, and AI.
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