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Abstract 

Background  We compared magnetic resonance imaging (MRI) turbo spin-echo images reconstructed using a deep 
learning technique (TSE-DL) with standard turbo spin-echo (TSE-SD) images of the lumbar spine regarding image 
quality and detection performance of common degenerative pathologies.

Methods  This prospective, single-center study included 31 patients (15 males and 16 females; aged 51 ± 16 years 
(mean ± standard deviation)) who underwent lumbar spine exams with both TSE-SD and TSE-DL acquisitions 
for degenerative spine diseases. Images were analyzed by two radiologists and assessed for qualitative image quality 
using a 4-point Likert scale, quantitative signal-to-noise ratio (SNR) of anatomic landmarks, and detection of com-
mon pathologies. Paired-sample t, Wilcoxon, and McNemar tests, unweighted/linearly weighted Cohen κ statistics, 
and intraclass correlation coefficients were used.

Results  Scan time for TSE-DL and TSE-SD protocols was 2:55 and 5:17 min:s, respectively. The overall image quality 
was either significantly higher for TSE-DL or not significantly different between TSE-SD and TSE-DL. TSE-DL dem-
onstrated higher SNR and subject noise scores than TSE-SD. For pathology detection, the interreader agreement 
was substantial to almost perfect for TSE-DL, with κ values ranging from 0.61 to 1.00; the interprotocol agreement 
was almost perfect for both readers, with κ values ranging from 0.84 to 1.00. There was no significant difference 
in the diagnostic confidence or detection rate of common pathologies between the two sequences (p ≥ 0.081).

Conclusions  TSE-DL allowed for a 45% reduction in scan time over TSE-SD in lumbar spine MRI without compromis-
ing the overall image quality and showed comparable detection performance of common pathologies in the evalua-
tion of degenerative lumbar spine changes.

Relevance statement  Deep learning-reconstructed lumbar spine MRI protocol enabled a 45% reduction in scan 
time compared with conventional reconstruction, with comparable image quality and detection performance 
of common degenerative pathologies.

Key points 

• Lumbar spine MRI with deep learning reconstruction has broad application prospects.

• Deep learning reconstruction of lumbar spine MRI saved 45% scan time without compromising overall image quality.

• When compared with standard sequences, deep learning reconstruction showed similar detection performance 
of common degenerative lumbar spine pathologies.
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Graphical Abstract

Background
Lumbar pain is a common chronic pain in clinical prac-
tice. Various factors contribute to the onset of the dis-
ease, and current research indicates that lumbar spine 
disease is the primary cause of low back pain [1]. Lum-
bar spine x-ray and computed tomography can show the 
bony structure of the lumbar spine, but the former does 
not show the lumbar intervertebral discs and the sur-
rounding soft tissues while the latter shows them with 
relatively limited contrast resolution, and both of them 
imply ionizing radiation exposure for the patients. Mag-
netic resonance imaging (MRI) is widely used for routine 
examination of lumbar spine diseases due to the absence 
of ionizing radiation and high soft tissue contrast [2]. 
However, as lumbar MRI examination takes a relatively 
long time, patients with severe lumbar spine diseases 
may experience significant pain during the examination, 
resulting in body displacement and motion artifacts, 
which would impede diagnostic accuracy [3]. Research 
has focused on finding ways to shorten the examination 
time for the lumbar spine MRI while still meeting the 
image quality requirements for clinical diagnosis [4–6].

In recent years, with the rapid development of arti-
ficial intelligence, deep learning (DL)-based image 
enhancement techniques have been applied for MRI 
fast imaging [7–9]. This approach uses neural networks 
with many layers of processing units to learn com-
plex patterns in large amounts of data [10, 11]. Unlike 
conventional fast acquisition methods which modify 
imaging parameters at the cost of reduced clarity and 
signal-to-noise ratio (SNR), DL-based techniques ena-
ble higher-quality reconstruction from undersampled 
k-space data by learning complex mappings between 
undersampled and fully-sampled data [12]. However, 
despite its advantages, we are concerned about whether 
the quality of the images obtained with DL reconstruc-
tion is consistent with that of standard scanning pro-
tocols and whether the post-processed images truly 
reflect the nature of abnormities.

In this prospective study, we aimed to compare the 
image quality and detection performance of common 
degenerative pathologies in lumbar spine MRI recon-
structed using a DL technique with those obtained with 
standard protocols.
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Methods
Participants
The study was approved by the Ethics Committee of 
Shanghai Renji Hospital, China (Ethics No. LY2023-
121-B). All subjects signed an informed consent form 
before the MRI examination. Patients suspected of hav-
ing degenerative lumbar spine diseases who were sched-
uled for lumbar spine MRI from October to November 
2023 were prospectively enrolled. The exclusion criteria 
were (1) a history of lumbar spine surgery or implanta-
tion of metallic foreign bodies, (2) those who suffered 
from claustrophobia, (3) those who had contraindica-
tions to MRI examination, and (4) those who had intoler-
able pain in the lumbar region and could not lie down for 
a long time.

Imaging protocol
Standard and accelerated lumbar spine MRI examina-
tions were performed on all patients using a Siemens 
3-T MRI unit (MAGNETOM Prisma, Siemens Health-
care, Erlangen, Germany). Standard turbo spin-echo 
(TSE-SD) protocol included sagittal T1-weighted and 
T2-weighted imaging with no acceleration, transverse 
T2-weighted imaging with no acceleration, and sagittal 
fat-suppressed T2-weighted imaging with an acceleration 
factor of 2 and a number of excitations of 2. Accelerated 
turbo spin-echo protocol with DL reconstruction (TSE-
DL) included the same sequences with an acceleration 
factor of 2 for non-fat-suppressed imaging and a number 
of excitations of only 1 for fat-suppressed T2-weighted 
imaging. The undersampled scans were reconstructed 
by a dedicated software (SubtleMR V2, Subtle Medical, 
Menlo Park, USA) using DL algorithms to obtain the 
processed TSE-DL images. SubtleMR is a US Food and 
Drug Administration–FDA-cleared and European Con-
formity–CE-marked software utilizing a deep back-pro-
jection network for DL reconstruction of MRI. SubtleMR 

has been trained and validated on a multicenter dataset 
of over a million MRI image pairs from various vendors 
and modalities [13]. It can be utilized for different con-
trast images including T1-weighted and T2-weighted 
imaging. Details on the dedicated software and the DL 
algorithm are summarized in Supplementary Material 1: 
Appendix 1. The specific parameters of TSE-SD and TSE-
DL protocols are detailed in Table 1.

Image analysis
All images were randomly sorted, and image quality and 
diagnosis evaluation of TSE-SD images and TSE-DL 
images were performed independently by two radiolo-
gists with more than 10  years of experience in lumbar 
spine imaging. Before performing the actual image 
analysis, both readers underwent a training session that 
encompassed datasets not part of the current study. This 
training was designed to acquaint the readers with the 
Likert scale classification system detailed in the follow-
ing paragraph. The readers were blinded to MRI proto-
col type, clinical information, and radiologic reports. 
All markers that could potentially identify patients or 
sequences were removed. To minimize recall bias, inter-
pretations of the TSE-SD and TSE-DL images for each 
patient were conducted in two sessions separated by 
4 weeks. Each reconstruction type and patient order were 
randomized in the sessions. Randomization was achieved 
by sorting the datasets using random numbers.

Qualitative image analysis was performed on each 
series with the use of a 4-point Likert scale for the 
following items: sharpness of anatomic structures 
(intervertebral discs, vertebrae, cerebrospinal fluid, 
intervertebral foramina, spinous processes, small 
joints, and nerve roots), artifacts, noise, overall image 
quality, and diagnostic confidence. For sharpness, over-
all image quality, and diagnostic confidence, the scor-
ing system was as follows: 1, poor; 2, fair; 3, good; and 

Table 1  Technical parameters of standard turbo spin-echo and turbo spin-echo with deep learning reconstruction

FOV Field of view, FS Fat-suppressed, Sag Sagittal, TE Echo time, TR Repetition time, Tra Transverse, T1 T1-weighted, T2 T2-weighted

Standard turbo spin-echo Turbo spin-echo with deep learning reconstruction

Sequence Sag-T2 Sag-T2 FS Sag-T1 Tra-T2 Sag-T2 Sag-T2 FS Sag-T1 Tra-T2

Thickness (mm) 4 4 4 4 4 4 4 4

TR (ms) 2,400 2,800 621 3,290 2,400 2,800 621 3,290

TE (ms) 92 80 9.2 92 92 80 9.2 92

FOV (mm2) 280 × 280 280 × 280 280 × 280 180 × 180 280 × 280 280 × 280 280 × 280 180 × 180

Average 1 2 1 1 1 1 1 1

Matrix 384 × 268 320 × 224 384 × 268 320 × 256 384 × 268 320 × 224 384 × 268 320 × 256

Acceleration factor None 2 None None 2 2 2 2

Bandwidth (Hz/Px) 250 252 250 252 250 252 250 252

Scan time (s) 77 70 101 69 41 42 53 39
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4, excellent. Artifacts and noise were rated as follows: 
1, severe; 2, moderate; 3, mild; and 4, none. Examples 
of the application of the 4-point Likert scale are shown 
in Supplemental Fig. S1.

For quantitative image analysis, we placed round or 
oval regions of interest and measured the SNR on sagit-
tal images for the L1–L5 vertebrae, L1–L5 interverte-
bral discs, psoas major muscles, cerebrospinal fluid, and 
fat and on transverse images for the right and left nerve 
roots, right and left psoas major muscles, L3/4 interver-
tebral discs, cerebrospinal fluid, and fat. All regions of 
interest were aligned with the center of the anatomy, 
while excluding the boundary region. The average size 
was 204.9 mm2 (range 202–206.3 mm2) for the vertebrae, 
24.7 mm2 (21.4–27.6 mm2) for the intervertebral discs, 
184.8 mm2 (182.4–187.2 mm2) for the psoas major mus-
cles, 25 mm2 (23.4–26.1 mm2) for the cerebrospinal fluid, 
and 29.8 mm2 (27.6–30.8 mm2) for the fat on sagittal 
images and 1.1 mm2 (1.0–1.3 mm2) for the nerve roots, 
70.2 mm2 (68.4–71.8 mm2) for the psoas major muscles, 
325.3 mm2 (324.1–326.7 mm2) for the L3/4 interverte-
bral discs, 9.2 mm2 (6.2–10.8 mm2) for the cerebrospi-
nal fluid, and 25.2 mm2 (23.4–26.8 mm2) for the fat on 
transverse images. The illustration of the region of inter-
est placement is presented in Supplemental Fig. S2. The 
following formula was used to calculate the SNR:

Furthermore, the readers recorded the presence or 
absence of the following pathologies on a vertebral level: 
spinal stenosis, foraminal stenosis, intervertebral disc 
degeneration, disc bulge, disc herniation, facet synovial 
cyst, Modic changes, and Schmorl nodes.

Statistical methods
Continuous variables were tested for normality using the 
Shapiro-Wilk test and reported as means ± standard devi-
ations or medians and interquartile ranges. Categorical 
variables were reported as numbers and percentages. The 
paired-sample t test or Wilcoxon test were used to deter-
mine the differences between the groups. Interreader 
agreement was assessed by using the unweighted Cohen 
κ statistics for binary variables, linearly weighted Cohen 
κ statistics for ordinal variables, and intraclass correlation 
coefficients (two-way model, absolute agreement, and 
single measures) for continuous variables, as well as for 
the interprotocol agreement. The agreements were inter-
preted as follows: 0–0.20, poor agreement; 0.21–0.40, fair 
agreement; 0.41–0.60, moderate agreement; 0.61–0.80, 
substantial agreement; and 0.81–1.00, almost perfect 

SNR =

Mean signal intensity

Standard deviation of background noise

agreement [14]. The McNemar test was used to compare 
the differences in detecting major pathologies by TSE-SD 
and TSE-DL. A two-sided p < 0.05 was considered sta-
tistically significant. For image quality comparison, the 
significance level was reduced to an α-adjusted p-level of 
0.05/2 according to Bonferroni correction, where 2 is the 
number of tests conducted for each aspect of image qual-
ity [15]. Statistical analyses were performed using SPSS 
version 21 (IBM Corp, Armonk, NY, USA).

Results
Study participants
Two patients who were unable to adhere to the examina-
tion due to back pain were excluded, and finally, a total 
of 31 patients were enrolled (15 males and 16 females; 
mean age 51 ± 16 years). All enrolled patients completed 
the examination with complete TSE-SD and TSE-DL 
sequences.

Scan time
The total scan time for TSE-SD and TSE-DL protocols 
were 317  s (5:17  min:s) and 175  s (2:55  min:s), respec-
tively, with a scan time saving of 45%.

Image quality
Qualitative analysis
Results of the qualitative analysis are shown in Table  2 
and Supplemental Tables S1, S2 and S3. Reader 1 reported 
better image sharpness for TSE-DL compared with TSD-
SD in non-fat-suppressed sequences (p ≤ 0.022) (Fig.  1), 
whereas reader 2 found no evidence of a significant dif-
ference in sharpness (p ≥ 0.087). Both readers reported 
more artifacts on TSE-DL fat-suppressed T2-weighted 
images than TSD-SD images (p < 0.001 for reader 1 and 
p = 0.001 for reader 2) (Fig. 2). No evidence of a signifi-
cant difference in artifacts was found between TSE-DL 
and TSE-SD in other non-fat-suppressed sequences 
(p ≥ 0.084). Noise was reduced in TSE-DL compared with 
TSD-SD in all sequences (Fig.  1), although no signifi-
cant difference was observed in transverse T2-weighted 
images for reader 2 after Bonferroni correction 
(p = 0.044). The overall image quality was higher for TSE-
DL in non-fat-suppressed sequences, although significant 
differences were only observed in sagittal T1-weighted 
images (p = 0.003 for reader 1 and p = 0.008 for reader 2) 
and transverse T2-weighted images (p = 0.022 for reader 
1). In terms of diagnostic confidence, no significant dif-
ference was observed between TSE-DL and TSE-SD 
(p ≥ 0.081 for both readers). Interreader agreement for 
the qualitative image quality analysis was fair to substan-
tial (weighted κ = 0.26–0.73), except for the evaluation 
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of artifacts on sagittal T2-weighted images (weighted 
κ = 0.13, poor agreement) (Table  2 and Supplemental 
Tables S1, S2 and S3).

Quantitative analysis
For each anatomy evaluated, TSE-DL images showed 
better SNR compared with TSE-SD images on each 
sequence, although reader 2 reported no significant 
differences in the L1/2 intervertebral disc and fat on 
sagittal fat-suppressed T2-weighted images after Bon-
ferroni correction (p = 0.039 and p = 0.048, respec-
tively) (Table 3 and Supplemental Tables S4, S5 and S6). 
Interreader agreement for SNR measurement of each 
anatomy was moderate to almost perfect (intraclass 
correlation coefficient range 0.54–0.94) (Table  3 and 
Supplemental Tables S4, S5 and S6).

Detection performance of common degenerative 
pathologies
For detecting common pathologies, the κ values of the 
interprotocol intrareader agreement ranged from 0.84 
to 1 for reader 1 and from 0.87 to 1.00 for reader 2, 
both indicating almost perfect agreement (Table  4). 
For each protocol, the intraprotocol interreader agree-
ment was moderate to almost perfect for TSE-SD with 
κ values ranging from 0.58 to 1.00 and substantial to 
almost perfect for TSE-DL with κ values ranging from 
0.61 to 1.00 (Table 4).

Detection rates of major pathologies by TSE-SD and 
TSE-DL are shown in Table  5, with no evidence of 

significantly higher detection rates by TSE-SD com-
pared with TSE-DL (p ≥ 0.219). Figures  3 and 4 show 
cases with lumbar disc herniation and Schmorl nodes, 
respectively, both of which were well represented and 
could be diagnosed on TSE-SD and TSE-DL images.

Discussion
We prospectively investigated the application of DL 
reconstruction in lumbar spine MRI scanning and eval-
uated the difference between TSE-SD and TSE-DL in 
terms of image quality and detection performance of 
common degenerative pathologies. Our results showed 
that the application of TSE-DL with an approximate 45% 
reduction in scan time could improve or at least main-
tain the overall image quality and was clinically feasible 
for the detection of common degenerative pathologies 
in lumbar spine MRI. Compared with TSE-SD, TSE-DL 
had higher SNR and was not significantly different in 
diagnostic confidence. With regard to the detection of 
common degenerative pathologies, TSE-DL showed sub-
stantial to almost perfect interreader and interprotocol 
reproducibility and exhibited detection rates comparable 
to TSE-SD.

DL reconstruction for MRI has recently gained 
increasing attention and shown promising results in 
providing a balance between scan efficiency and image 
quality. Sebastain et  al. [16] decreased about 60% 
scan time by reducing the number of acquisitions in 
three-plane T2-weighted TSE imaging in the prostate 
and reported improved image quality for DL recon-
struction. Lee et  al. [17] found that fourfold parallel 

Table 2  Subjective evaluation of sagittal T1-weighted images by two readers

Data in parentheses are 95% confidence intervals. Image quality was evaluated with the use of a 4-point Likert scale. For sharpness, overall image quality, and 
diagnostic confidence, the scoring system was as follows: 1, poor; 2, fair; 3, good; and 4, excellent. For artifacts and noise, the scoring system was as follows: 1, severe; 
2, moderate; 3, mild; and 4, none

TSE-SD Standard turbo spin-echo, TSE-DL Turbo spin-echo with deep learning reconstruction

Reader TSE-SD TSE-DL p-value Cohen κ

Sharpness 1 3.61 ± 0.49 4.00 0.011 0.45 (0.28, 0.62)

2 3.81 ± 0.40 3.90 ± 0.30 0.087

Artifacts 1 3.90 ± 0.30 4.00 0.084 0.26 (0.05, 0.47)

2 3.87 ± 0.34 3.84 ± 0.37 0.665

Noise 1 3.61 ± 0.49 4.00 0.001 0.73 (0.62, 0.84)

2 3.58 ± 0.50 4.00 < 0.001

Overall image quality 1 3.71 ± 0.46 4.00 0.003 0.67 (0.54, 0.80)

2 3.74 ± 0.45 3.97 ± 0.18 0.008

Diagnostic confidence 1 3.90 ± 0.30 4.00 0.081 0.57 (0.41, 0.74)

2 3.87 ± 0.34 3.94 ± 0.25 0.161
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accelerated fat-suppressed T2-weighted TSE MRI with 
DL reconstruction had comparable subject image qual-
ity compared with twofold parallel accelerated MRI 
without DL reconstruction in the knee, with a scan 
time reduction of 47%. However, previous studies have 
been conducted on a limited number of sequences, 
whereas in clinical settings, the MRI protocol usu-
ally consists of multiple sequences. In this study, the 
TSE-DL protocol used for lumbar spine MRI included 

sagittal T1-weighted and T2-weighted imaging and 
transverse T2-weighted imaging with an acceleration 
factor of 2, and sagittal fat-suppressed T2-weighted 
imaging with a number of excitations of only 1, while 
other parameters remained consistent with the TSE-
SD protocol.

The total scan time with TSE-DL was 2:55 min:s, ena-
bling a 45% reduction compared to TSE-SD. Reducing 
scan time not only alleviates patient discomfort during 

Fig. 1  A 38-year-old male with low back pain. Images (a, b, and c) are the sagittal T2-weighted, T1-weighted, and fat-suppressed T2-weighted 
images obtained with TSE-SD, respectively, while images (d, e, and f) are the sagittal T2-weighted, T1-weighted, and fat-suppressed T2-weighted 
images obtained with TSE-DL, respectively. TSE-DL images exhibit sharper anatomic structures and decreased noise levels compared with TSE-SD 
images. TSE-SD, Standard turbo spin-echo; TSE-DL, Turbo spin-echo with deep learning reconstruction
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prolonged examinations but also enables more efficient 
resource allocation, ultimately leading to improved 
patient throughput.

According to the subjective evaluation of two read-
ers, the noise of TSE-DL was lower than that of TSE-
SD. Measurement of image SNR by two readers also 
indicated that TSE-DL had improved SNR compared 
with TSE-SD. These results are consistent with previ-
ous studies [13, 18, 19]. For instance, Bash et  al. [13] 
enrolled 61 patients undergoing lumbar spine MRI and 
found that the SNR of fast DL imaging sequences was 
better than that of standard sequences. We also found 
that TSE-DL was comparable to TSE-SD in sharpness 
of anatomic structures. Similar results were reported 
by Yasaka et  al. [20], who showed better results for 
DL-reconstructed cervical spine sagittal T2-weighted 
MRI compared with standard MRI for the depiction 
of anatomic structures except for disc and foramina 
by one reader. In terms of artifacts, there was no evi-
dence of a significant difference in non-fat-suppressed 
sequences between the two protocols, while TSE-
DL obtained a lower score than TSE-SD in sagittal 
fat-suppressed T2-weighted images. The common 
artifacts seen on TSE-DL images were residual alias-
ing artifacts, appearing as ghosts inside or outside 
the object of interest [21]. Almansour et  al. [5] found 
that the residual aliasing artifact was one of the main 
sources of artifacts for spine MRI due to undersam-
pling associated with accelerated acquisition, similar 

to our observations. As a result, the subjective artifact 
score of TSE-DL was lower than that of TSE-SD for 
sagittal fat-suppressed T2-weighted images. Neverthe-
less, diagnostic confidence of TSE-DL did not appear 
to be much influenced by the low artifact score, with 
no evidence of a significant difference with TSE-SD. 
Last, TSE-DL yielded a comparable overall image qual-
ity to TSE-SD, consistent with previous studies [22, 
23]. Our results indicated that DL reconstruction for 
the whole lumbar spine MRI protocol at a scan time 
reduction of 45% would not reduce the overall image 
quality. Regarding the detection performance of com-
mon degenerative pathologies, we observed for TSE-
DL a similar detection rate to TSE-SD. Interprotocol 
and interreader agreement were substantial to almost 
perfect. These results are in line with previous studies 
on spine MRI [5, 6] and hand and wrist MRI [24].

There are several limitations in our study. First, this 
experiment was done on a single MRI scanner in a 
single center with a small sample size. Although some 
statistical significance was achieved, it is necessary to 
expand the sample size and try it on other scanners 
and field strengths to observe whether the same results 
can be obtained. Second, no preliminary calculation 
of the sample size was done, so that no distinction 
among primary, secondary, and exploratory endpoints 
was defined, and the correction of the p-value thresh-
old for statistical significance was done a posteriori. 
Third, only two radiologists participated in the reading 

Fig. 2  A 40-year-old male presented with left sciatica. Images (a and b) are sagittal T2-weighted and fat-suppressed T2-weighted images 
obtained with TSE-SD, respectively, while images (c and d) are sagittal T2-weighted and fat-suppressed T2-weighted images obtained with TSE-DL, 
respectively. Residual aliasing artifacts due to undersampling appear on TSE-DL images (arrows). TSE-SD, Standard turbo spin-echo; TSE-DL, Turbo 
spin-echo with deep learning reconstruction
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Table 3  Signal-to-noise ratio measurement of sagittal T1-weighted images by two readers

Data in parentheses are 95% confidence intervals

ICC Intraclass correlation coefficient, TSE-SD Standard turbo spin-echo, TSE-DL Turbo spin-echo with deep learning reconstruction

Reader TSE-SD TSE-DL p-value ICC

Vertebra

  L1 1 157.6 ± 39.1 282.5 ± 62.6 < 0.001 0.83 (0.72, 0.90)

2 149 ± 45 257.4 ± 70.2 < 0.001

  L2 1 154.0 ± 39.9 275.0 ± 66.7 < 0.001 0.85 (0.73, 0.91)

2 144.5 ± 44.9 248.7 ± 71.6 < 0.001

  L3 1 144.5 ± 35.1 257.8 ± 61.8 < 0.001 0.86 (0.73, 0.92)

2 135.5 ± 39.4 233.2 ± 67.1 < 0.001

  L4 1 138.3 ± 33.6 247.5 ± 62.0 < 0.001 0.84 (0.68, 0.91)

2 127.7 ± 35.1 220 ± 62.4 < 0.001

  L5 1 143.3 ± 35.7 254.4 ± 68.7 < 0.001 0.83 (0.71, 0.90)

2 134.1 ± 38.7 230.3 ± 68.8 < 0.001

Intervertebral disc

  L1/L2 1 92.9 ± 24.3 169.0 ± 38.8 < 0.001 0.83 (0.73, 0.90)

2 89.5 ± 26 155.4 ± 42.4 < 0.001

  L2/L3 1 91.5 ± 33.6 164.6 ± 52.5 < 0.001 0.82 (0.72, 0.89)

2 87.8 ± 27.4 153.5 ± 45.3 < 0.001

  L3/L4 1 82.2 ± 19.2 149.5 ± 34.6 < 0.001 0.85 (0.76, 0.91)

2 79.2 ± 22.2 137.3 ± 38.8 < 0.001

  L4/L5 1 79.2 ± 22.7 141.8 ± 39.0 < 0.001 0.87 (0.78, 0.92)

2 75.5 ± 22.8 131 ± 41.4 < 0.001

  L5/S1 1 89.0 ± 24.4 159.8 ± 40.2 < 0.001 0.82 (0.71, 0.89)

2 84.2 ± 21.6 147.4 ± 41.7 < 0.001

  Muscle 1 128.8 ± 24.7 232.2 ± 38.1 < 0.001 0.75 (0.61, 0.85)

2 123.1 ± 29.3 213.6 ± 48.2 < 0.001

  Cerebrospinal fluid 1 67.9 ± 17.7 123.2 ± 28.6 < 0.001 0.83 (0.72, 0.89)

2 64.9 ± 19.1 114 ± 34.2 < 0.001

  Fat 1 366.6 ± 119.9 651.8 ± 196.1 < 0.001 0.74 (0.54, 0.85)

2 328.1 ± 103.4 561.8 ± 153.8 < 0.001

Table 4  Intraprotocol interreader and interprotocol intrareader agreement for detecting common abnormalities

Data in parentheses are 95% confidence intervals

TSE-SD Standard turbo spin-echo, TSE-DL Turbo spin-echo with deep learning reconstruction

Intraprotocol interreader 
(TSE-SD)

Intraprotocol interreader 
(TSE-DL)

Interprotocol intrareader 
(Reader 1)

Interprotocol 
intrareader 
(Reader 2)

Spinal stenosis 0.82 (0.68, 0.96) 0.83 (0.69, 0.96) 0.92 (0.83, 1.00) 0.97 (0.91, 1.00)

Foraminal stenosis 0.58 (0.39, 0.76) 0.64 (0.47, 0.81) 0.86 (0.75, 0.97) 0.94 (0.86, 1.00)

Intervertebral disc degenera-
tion

0.83 (0.74, 0.92) 0.81 (0.71, 0.90) 0.91 (0.84, 0.97) 0.88 (0.81, 0.96)

Disc bulge 0.64 (0.50, 0.77) 0.67 (0.54, 0.81) 0.92 (0.84, 0.99) 0.93 (0.86, 1.00)

Disc herniation 0.86 (0.76, 0.95) 0.81 (0.70, 0.92) 0.95 (0.89, 1.00) 0.93 (0.86, 1.00)

Facet synovial cyst 1.00 1.00 1.00 1.00

Modic changes 0.61 (0.37, 0.84) 0.61 (0.37, 0.84) 0.84 (0.69, 0.99) 0.87 (0.72, 1.00)

Schmorl nodes 0.69 (0.43, 0.95) 0.74 (0.49, 0.98) 1.00 0.94 (0.83, 1.00)
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sessions. More radiologists with different experience 
levels are also needed to generalize our results. Fourth, 
only a limited number of degenerative disorders were 
included, and patients with a history of lumbar spine 
surgery or metal implants were excluded. Some other 
lumbar spine disorders such as vertebral hemangio-
mas, vertebral tumors, masses inside or compressing 
the spinal cord, and other complex conditions, as well 
as post-surgery and post-implant conditions, should 
be studied to evaluate the utility of DL reconstruction 
in the real clinical setting. Fifth, the data analysis con-
ducted in this study was limited to the evaluation of 
image quality, interreader or interprotocol agreement, 
and detection rate of common pathologies. However, 

no noninferiority or equivalence statistical testing was 
performed between TSE-DL and TSE-SD in terms of 
diagnostic test comparison. Therefore, our findings 
should be interpreted with caution. Finally, this experi-
ment was conducted on non-contrast-enhanced lum-
bar spine MRI sequences. Whether the contrast agent 
would affect the measurement results still remains 
unclear and warrants further studies.

In conclusion, the TSE-DL protocol with a 45% reduc-
tion in scan time showed similar overall image quality in 
lumbar spine MRI when compared to TSE-SD for degen-
erative lumbar spine diseases. Application of TSE-DL is 
clinically feasible for detecting common degenerative 
abnormalities, with comparable diagnostic confidence 

Table 5  Detection of common abnormities by TSE-SD and TSE-DL

Data in parentheses are percentages

TSE-SD Standard turbo spin-echo, TSE-DL Turbo spin-echo with deep learning reconstruction

Abnormalities reported p-value

Total With both TSE-SD and 
TSE-DL

With TSE-SD only With TSE-DL only

Spinal stenosis 24 21 (87.5) 1 (4.2) 2 (8.3) 1.000

Foraminal stenosis 33 27 (81.8) 3 (9.1) 3 (9.1) 1.000

Intervertebral disc degenera-
tion

83 76 (91.6) 4 (4.8) 3 (3.6) 1.000

Disc bulge 53 47 (88.7) 5 (9.4) 1 (1.9) 0.219

Disc herniation 45 39 (86.7) 1 (2.2) 5 (11.1) 0.219

Facet synovial cyst 2 2 (100) 0 (0) 0 (0) 1.000

Modic changes 20 16 (80.0) 1 (5.0) 3 (15.0) 0.625

Schmorl nodes 11 10 (90.9) 1 (9.1) 0 (0) 1.000

Fig. 3  A 38-year-old male with left leg pain. Both TSE-SD (a) and TSE-DL (b) acquisitions of transverse T2-weighted imaging show the lumbar disc 
protruding posteriorly to the left (arrows). TSE-SD, Standard turbo spin-echo; TSE-DL, Turbo spin-echo with deep learning reconstruction
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and detection rate to TSE-SD. Future studies are war-
ranted to determine the diagnostic equivalence between 
TSE-DL and TSE-SD with a large number of participants 
and readers. Moreover, the utility of DL reconstruc-
tion of lumbar spine MRI in a real clinical situation with 
other types of abnormities, various patient conditions, 
and potential application of contrast medium should be 
studied.
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