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Abstract 

Background  Radiomics is a quantitative approach that allows the extraction of mineable data from medical images. 
Despite the growing clinical interest, radiomics studies are affected by variability stemming from analysis choices. 
We aimed to investigate the agreement between two open-source radiomics software for both contrast-enhanced 
computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) of lung cancers and to pre-
liminarily evaluate the existence of radiomic features stable for both techniques.

Methods  Contrast-enhanced CT and MRI images of 35 patients affected with non-small cell lung cancer (NSCLC) 
were manually segmented and preprocessed using three different methods. Sixty-six Image Biomarker Standardi-
sation Initiative-compliant features common to the considered platforms, PyRadiomics and LIFEx, were extracted. 
The correlation among features with the same mathematical definition was analyzed by comparing PyRadiomics 
and LIFEx (at fixed imaging technique), and MRI with CT results (for the same software).

Results  When assessing the agreement between LIFEx and PyRadiomics across the considered resampling, the maxi-
mum statistically significant correlations were observed to be 94% for CT features and 95% for MRI ones. When 
examining the correlation between features extracted from contrast-enhanced CT and MRI using the same software, 
higher significant correspondences were identified in 11% of features for both software.

Conclusions  Considering NSCLC, (i) for both imaging techniques, LIFEx and PyRadiomics agreed on average for 90% 
of features, with MRI being more affected by resampling and (ii) CT and MRI contained mostly non-redundant 
information, but there are shape features and, more importantly, texture features that can be singled out by both 
techniques.

Relevance statement  Identifying and selecting features that are stable cross-modalities may be one of the strategies 
to pave the way for radiomics clinical translation.

Key points 

• More than 90% of LIFEx and PyRadiomics features contain the same information.

• Ten percent of features (shape, texture) are stable among contrast-enhanced CT and MRI.
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• Software compliance and cross-modalities stability features are impacted by the resampling method.

Keywords  Biomarkers, Lung neoplasms, Magnetic resonance imaging, Radiomics, Tomography (x-ray computed)

Graphical Abstract

Background
Radiomics is a quantitative method that allows extract-
ing mineable high-dimensional data, named radiomic 
features, from digital medical images [1–3]. The core 
hypothesis is that radiomic features might integrate 
visual analysis by unveiling tissue details and het-
erogeneity linked to image intensity distribution at an 
almost microscopic scale [4–6], thus becoming novel 
biomarkers. In oncology, radiomic features could, in 
principle, describe both the microenvironment [7] and 
the histotype and genotype of the tumor mass, sup-
porting diagnosis determination, defining the progno-
sis, and predicting the therapeutic response [8]. The 
widespread interest in this method arises from several 
aspects. Radiomics, unlike biopsy, non-invasively cap-
tures information about the entire tumor [9]. Moreo-
ver, radiomics allows several evaluations of diagnostic 
images that are routinely acquired and permits to con-
duct analyses at different time points [10]. Radiomic 
features can be divided into four main categories: 
shape, histogram-based, texture, and wavelet [11]. In 

general, shape ones refer to the geometric properties 
of a region of interest; first-order features are related to 
the image intensity histograms; texture features define 
the mathematical relationship of a single voxel with one 
or more neighboring voxels reflecting, e.g., the intra-
tumoral heterogeneity; and wavelet features are filter-
based features able to enhance some characteristics of 
the image, analyzing its frequency domain information 
[12, 13].

Over the years, lung cancer has been the subject of 
several radiomic studies, being the second most fre-
quent cancer and the leading cause of cancer-related 
death worldwide [14]. Many studies have been con-
ducted by using computed tomography (CT) and posi-
tron emission tomography (PET) acquisitions, which 
are already widely used in the daily management of 
lung cancer [15–19]. Despite the great interest in inte-
grating lung magnetic resonance imaging (MRI) into 
clinical practice, the lung remains one of the few ana-
tomical sites in which MRI has not yet reached CT per-
formances [20, 21]. Even though MRI does not expose 
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patients to ionizing radiation and provides optimal soft 
tissue contrast and exclusive morpho-functional infor-
mation, it is still underused due to unfavorable occur-
rences [22].

The main obstacles to obtain good lung MRI images are 
related to the low signal-to-noise ratio (SNR) caused by 
lung parenchyma’s poor proton density, frequent tissue-
air interfaces, movement artifacts, and the lack of stand-
ard protocols [23]. In the literature, there are few studies 
concerning the extraction of radiomic features from MRI 
of lung tumors. For example, one study determined the 
optimal timing post-contrast injection to extract radi-
omic features on T1-weighted images for predicting 
2  years of progression-free survival [24]. Another pre-
liminary study suggested that MRI-derived radiomic fea-
tures may improve the accuracy of models that predict 
therapy response and survival at different time points, 
compared to that of models based on CT features only 
[10]. Similarly, few studies have investigated the correla-
tion between radiomic features extracted from different 
imaging techniques. Mahon et al. [10] have investigated 
the repeatability of texture features derived from CT and 
MRI of lung cancer. On the other hand, Vuong et al. [13] 
have analyzed the correlation between features extracted 
from PET/CT and PET/MRI images, finding a close cor-
relation between them.

In this scenario, we aimed to conduct a preliminary 
methodological investigation, exploring the correlation 
between CT and MRI lung cancer radiomic features, to 
assess whether specific lung cancer intrinsic aspects can 
be depicted by both imaging modalities. Since CT and 
MRI are based on different physical principles, radiomic 
features extracted with these techniques are generally 
not directly comparable, even considering the lower-level 
ones. CT scans employ x-rays to produce detailed images 
of the body, which describe tissue’s electronic density, 
while MRI uses magnetic fields and radiofrequency 
pulses to generate images that reflect tissue’s complex 
properties such as proton density, nuclear relaxation 
times, and many other, including parameters related to 
functional behavior. Consequently, we hypothesize that if 
some features are directly comparable between CT and 
MRI, we could assume that they are strongly related to 
tissue/organ biology and physiology.

To evaluate the correlation between CT and MRI fea-
tures, we employed two open-access software, LIFEx [25] 
and PyRadiomics [26], with a double purpose. The first 
objective was to evaluate the correlation between LIFEx 
and PyRadiomics features, chosen on a broad range, as 
reported also in literature [27, 28], for two different imag-
ing modalities evaluated separately on the same patient 
cohort. The second objective was to establish possi-
ble correlations among CT and MRI radiomic features, 

determining at the same time which software enables 
the extraction of such features. Lastly, we evaluated the 
impact of the voxel resampling algorithm on the two 
previous goals, as is known from the literature that the 
choice made at this stage can impact the analysis [29, 30].

Methods
Patients
This study was approved by the local Medical Research 
Ethics Committee of Fondazione IRCSS Policlinico San 
Matteo (Protocol code P_20130113422), and informed 
consent was obtained from all participants.

Thirty-five patients with non-small cell lung cancer 
(NSCLC), histologically confirmed from April 2021 
to June 2023, were prospectively included as the study 
participants. The cohort consists of 26 males (74%) and 
9 females (26%), with ages ranging from 49 to 84  years 
(median age 68 years). Concerning the NSCLC histotype 
distribution, 13 patients (37%) had an adenocarcinoma, 
12 patients (34%) a squamocellular carcinoma, and the 
remaining 10 (29%) a poorly differentiated NSCLC. 
Tumor size was between 2 cm and a maximum of 15 cm 
with a corresponding stage between the II and the IV 
stage (in particular, 4 of II, 20 of III, and 11 of IV).

The following patients were excluded: (i) patients who 
had no adequate compliance capabilities and/or char-
acteristics for undergoing MRI (e.g., claustrophobia, 
contraindications to MRI such as pacemakers, contrain-
dications to Gd-based contrast agents); (ii) those who 
had received treatment before imaging; (iii) patients with 
lung tumors not classified as NSCLC.

Image acquisition
CT protocol
All patients underwent a thoracic CT examination, in 
a supine position from the apex to the base of the lung. 
Conventional CT was performed with a 64-slice scan-
ner (SOMATOM Flash; Siemens Healthineers, Erlan-
gen, Germany) for 16 patients, with a 16-slice scanner 
(SOMATOM Sensation; Siemens Healthineers) for 8 
patients, with a 64-slice scanner (SOMATOM Sensa-
tion; Siemens Healthineers) for 6 patients, with a 160-
slice scanner (Aquilion PRIME; Canon Medical Systems, 
Otawara, Japan) for 2 patients, and with a 320-slice CT 
(Aquilion ONE; Canon Medical Systems) for 3 patients. 
The scanning parameters were tube voltage 120 kV, tube 
current automatically modulated, slice thickness 2  mm, 
slice spacing 1  mm, pitch 1, rotation time 0.5  s, matrix 
384 × 384, field of view set to 300 mm, and then adapted 
to patients. The scanning was completed under breath-
hold condition and directly after the intravenous iodi-
nated contrast medium injection (iomeprol 350 mgI/mL, 
2 mL/s, 120 mL, 40-mL saline flush), in the venous phase 
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(i.e., 60−90 s after injection). After scanning, the original 
images were set to be the mediastinal window (smooth-
medium kernel), automatically reconstructed.

MRI protocol
All patients underwent thoracic MRI in a supine position 
from the apex to the base of the lung. Conventional MRI 
was performed with a 1.5-T system (MAGNETOM Aera; 
Siemens Healthineers) using a 32-channel surface coil. 
During the examination, both free-breathing and breath-
hold sequences were used. Scan sequences included in 
the study were axial and coronal volumetric interpolated 
breath-hold examination − VIBE T1-weighted sequences 
after the intravenous injection of paramagnetic contrast 
medium (gadoterate meglumine, 0.2  mL/kg (0.1  mmol/
kg), 2 mL/s, 40-mL saline flush). For axial scanning, the 
matrix was 320 × 320, repetition time 2.1 ms, echo time 
0.72  ms, field of view 450 × 350  mm, slice thickness 
2.5 mm, layer spacing 0 mm, and number of layers 96.

Image selection
Chest axial CT images and axial MRI T1-weighted 
images after contrast medium injection were selected for 
feature extraction in this study. We opted to include only 
contrast-enhanced T1-weighted MRI images to facilitate 
a direct comparison with the portal-venous phase CT 
scans. This choice was driven by the need to select the 
MRI sequence that best resembles the CT phase from a 
visual radiological and pharmacokinetic point of view.

Tumor segmentation
Contrast-enhanced axial chest CT axial T1-weighted 
MRI in the Digital Imaging and Communications in 
Medicine − DICOM format were imported into the ITK-
SNAP software (http://​www.​itksn​ap.​org) and manually 
segmented.

The segmentation of CT images was made semiautomat-
ically, using a Hounsfield unit seed-based method, while 
the segmentation of MRI was performed completely man-
ually considering the lack of automatic or semiautomatic 
options. The segmentations were performed by three 
different radiologists (A.P., G.M., and C.B. with 2, 4, and 
7 years of experience in thoracic imaging); complex cases 
were reviewed collegially with the aid of a fourth expert 
thoracic radiologist (L.P.). Cases were randomly assigned 
to each operator, and CT and MRI were not presented 
simultaneously; the minimal interval period between CT 
and MRI segmentation was 21 days. The region of inter-
est of the tumor was segmented slice by slice to obtain 
the whole volume of interest by summing the segmented 
areas on each slice; the original images and the corre-
sponding volume of interest image were saved using the 

Neuroimaging Informatics Technology Initiative − NIfTI-
1format (https://​nifti.​nimh.​nih.​gov/​nifti-1).

Image preprocessing
As suggested by previous literature [31–35] to reduce 
variability between images, it is necessary to preprocess 
the images. Regarding radiomic features, some image 
characteristics are more influent than others. In particu-
lar, the gray-level distribution and voxel size are highly 
relevant. Regarding the voxel resampling, three different 
strategies have been considered:

1.	 Features have been computed without performing 
resampling (original voxel size).

2.	 Features have been computed after setting resam-
pling voxel dimensions directly on the software con-
sidered (software resampling).

3.	 All images have been resampled into the same voxel 
space using the Python package Nibabel (https://​
github.​com/​nipy/​nibab​el) before performing the 
radiomic features extraction (external resampling).

For the second and third resampling modalities, 
the voxel size has been set to 1 × 1 × 1 mm3 for CT and 
1.4 × 1.4 × 1.4 mm3 for MRI.

We have also normalized the signal intensity distri-
bution of MRI images through the histogram match-
ing technique, as proposed in previous works [36]. 
Specifically, by using the SimpleITK Python library [37], 
we transformed the intensity histogram of the images 
to align with the histogram of a reference image from a 
healthy subject. As the final preprocess step, we have dis-
cretized the image gray level distribution in 64 bins.

Feature selection and extraction
We used the freeware LIFEx [25] version 7.3.0 and the 
open-source Python package PyRadiomics [26] version 
3.0.1, Image Biomarker Standardisation Initiative  (IBSI) 
[31] compliant. Both platforms allow to customize sev-
eral parameters (spatial resampling, rescaling, and so 
on). The spatial resampling customization was performed 
just for the internal method resampling. The interpola-
tor chosen is the sitkBSpline [38] and the intensity range 
was discretized in 64 bins, extracting features fixing the 
bin number, as advised when intensity units are arbi-
trary, as is for MRI [31]. We selected 66 IBSI-compliant 
features common to both software reported in Table  1. 
The extracted features were from six different feature cat-
egories: first-order features, shape features, and features 
from four different textures subdomains: gray-level co-
occurrence matrix (GLCM), gray-level run length matrix 

http://www.itksnap.org
https://nifti.nimh.nih.gov/nifti-1
https://github.com/nipy/nibabel
https://github.com/nipy/nibabel
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(GLRLM); gray-level size zone matrix (GLZLM); and 
neighboring gray-tone difference matrix (NGTDM) [8].

Statistical analysis
All the statistical analysis has been conducted using 
Python (version 3.8.10, http://​www.​python.​org). To 
assess the features’ agreement between the two radiomic 
software (for the same imaging modality) and between 
the two different imaging modalities (for the same soft-
ware), the intraclass correlation coefficient (ICC) has 
been calculated (two-way mixed effects, absolute agree-
ment single measurement configuration [39]). The ICC 
value was calculated as follows:

where MSR = mean square for rows; MSE = mean square 
for error; MSC = mean square for columns; n = number 
of subjects; and k = number of raters/measurements. We 
divided the ICC values into four ranges: poor (ICC < 0.5), 

ICC =
MSR −MSE

MSR + (k − 1)MSE +
k

n
(MSC −MSE)

moderate (0.5 ≤ ICC < 0.75), good (0.75 ≤ ICC < 0.9), and 
excellent (ICC ≥ 0.9) reliability.

Results
Agreement between LIFEx and PyRadiomics software
The agreement between features computed from LIFEx 
and PyRadiomics was assessed for both CT and MRI and 
the three different voxel resampling strategies. The ICC 
values divided into four confidence levels for MRI (left) 
and CT (right) are shown in Fig. 1.

As regards MRI, excellent or good reliability was 
achieved by 95% of features without voxel resampling, 
83% of features with the internal resampling software, 
and 91% of features with the external resampling soft-
ware, as summarized in Table 2. Poor or moderate reli-
ability was observed for 5% of features without any voxel 
resampling, 17% of features with the internal resampling 
software, and 9% of features with the external resam-
pling software. For each of the resampling methods, 
moderate reliability was associated with MAX3DDiam-
eter (SHAPE) and Sum Entropy (GLCM). Moreover, the 

Table 1  List of all 66 IBSI-compliant features common to both software (LIFEx and PyRadiomics), divided into different classes

GLCM Gray-level co-occurrence matrix, GLRLM Gray-level run length matrix, GLZLM Gray-level size zone matrix, NGTDM Neighboring gray-tone difference matrix

Shape Histogram GLCM GLRLM GLZLM NGTDM

Voxel Volume
Surface Area
Sphericity
Maximum3DDi-
ameter

Skewness
Kurtosis
Entropy
Energy
Uniformity
Mean
Median
Minimum

10th Percentile
90th Percentile
Maximum
InterquantileRange
Range
MeanAbsolute Deviation 
(MAD)
RobustMean 
AbsoluteDeviation(rMAD)
Variance

Contrast
Correlation
Dissimilarity
Energy
Entropy
InverseDifference
Autocorrelation
JointAverage
ClusterPromi-
nance
ClusterTendency

ClusterShade
DifferenceVari-
ance
DifferenceEn-
tropy
InverseVariance
SumEntropy
JointVariance
JointMaximum
NormalizedIn-
verse Difference 
(NID)

Short Run 
Emphasis (SRE)
Long Run 
Emphasis (LRE)
Gray Level 
Non-Uniformity 
(GLNU)
Run Length 
Non-Uniformity 
(RLNU)
Run Percentage 
(RP)
Low Gray Level 
Run Emphasis 
(LGRE)
High Gray Level 
Run Emphasis 
(HGRE)
Short Run Low 
Gray Level 
Emphasis (SRLGE)
Short Run 
High Gray 
Level Emphasis 
(SRHGE)
Long Run Low 
Gray Level 
Emphasis (LRLGE)
Long Run High 
Gray Level 
Emphasis 
(LRHGE)

Small Zone 
Emphasis (SZE)
Large Zone 
Emphasis (LZE)
Gray Level Non 
Uniformity 
(GLNU)
Zone Size Non 
Uniformity 
(ZLNU)
Zone Percentage 
(ZP)
Gray Level Vari-
ance (GLV)
Low Gray Level 
Zone Emphasis 
(LGZE)
High Gray Level 
Zone Emphasis 
(HGZE)
Small Zone 
Low Gray Level 
Emphasis (SZLGE)
Small Zone 
High Gray 
Level Emphasis 
(SZHGE)
Large Zone 
Low Gray Level 
Emphasis (LZLGE)
Large Zone 
High Gray 
Level Emphasis 
(LZHGE)

Coarseness
Complexity
Busyness
Strength
Contrast

http://www.python.org
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feature Inverse Variance (GLCM) exhibited poor reliabil-
ity across all three resampling strategies.

Considering CT images, 92% of features demon-
strated excellent or good reliability without voxel resa-
mpling, 89% of features had excellent or good reliability 
with internal resampling, and 94% of features exhibited 
excellent or good reliability with external resampling, 
as summarized in Table  2. Poor or moderate reliability 
was observed for 8% of features without voxel resam-
pling, 11% of features with internal resampling, and 6% 
of features with external resampling. The three resa-
mpling strategies exhibited poor reliability for GLCM 
Inverse Variance, GLZLM LZE, GLZLM LZHGE, and 
GLZLM LZLGE. Figures 2 and 3 illustrate the variability 
of LIFEx-PyRadiomics features values for MRI and CT, 
respectively. These figures represent the distributions of a 
feature with excellent ICC and one with poor ICC.

Correlation between CT and MRI features
The comparison between features computed from CT 
and MRI was performed for the three voxel resampling 
strategies and the two radiomic software separately. Fig-
ure  4 summarizes the distribution of the ICC values in 
the four ranges of agreement. As regards PyRadiomics, 
only 3% of features had excellent or good reliability with-
out voxel resampling, 11% of features showed excellent or 
good reliability with internal resampling, and 9% of fea-
tures possessed excellent or good reliability with exter-
nal resampling (Table 3). A poor or moderate agreement 
was obtained for 97% of features without voxel resam-
pling, 89% of features with internal resampling, and 91% 
of features with external resampling. Table  4 provides a 
summary of the features with excellent and good reliabil-
ity. Excellent or good agreement was observed between 
features extracted from different imaging modalities for 

Fig. 1  Consistency between radiomic features extracted with LIFEx and PyRadiomics, expressed through ICC, from MRI (a) and CT (b) images. Ext.
res. External resampling, Or.vox-siz. Original voxel size, Soft.res. Software resampling

Table 2  LIFEx versus PyRadiomics. Agreement between LIFEx and PyRadiomics for both MRI and CT, divided by ICC ranges. The results 
are presented in terms of radiomic features percentage exhibiting specific ICC values across the considered resampling methods

Ext.res External resampling, Or.vox-siz. Original voxel size, Soft.res. Software resampling

Intraclass correlation coefficient

Imaging technique Resampling Excellent [%] Good [%] Moderate [%] Poor [%]

MRI Or.vox-siz 91.0 4.5 3.0 1.5

Soft.res 56.1 27.3 13.6 3.0

Ext.res 87.9 3.0 3.0 6.1

CT Or.vox-siz 86.0 6.1 1.5 6.1

Soft.res 80.3 9.1 4.5 6.1

Ext.res 89.4 4.5 0 6.1



Page 7 of 12Bortolotto et al. European Radiology Experimental            (2024) 8:71 	

SHAPE features Volume and Surface Area, as well as for 
a few texture-based features. When considering all the 
analyzed resampling methods, the features demonstrat-
ing good/excellent reliability across all methods are the 
SHAPE ones. However, focusing on both internal and 
external resampling reveals additional common features, 
NGTDM Busyness, NGTDM Strength, and GLZLM ZP.

Considering LIFEx, reliability between imaging modali-
ties was excellent or good for 5% of features without voxel 
resampling, 9% of features with internal resampling, and 
11% of features with external resampling (Table 3). Relia-
bility was poor and moderate for 95% of features without 
voxel resampling, 91% of features with internal resam-
pling, and 89% of features with external resampling. Fea-
tures with good agreement between imaging modalities 
belong to SHAPE features (Volume, Surface Area, and 
MAX3D Diameter) and texture features, as detailed in 
Table 4. Only the SHAPE feature Volume resulted in an 
excellent ICC for the external resampling. As found for 
PyRadiomics, texture features presented good ICC just 
for internal and external resampling. In this case, features 

common to both resampling methods, with good ICC, 
are NGTDM Busyness and Strength, and GLRLM RLNU.

Discussion
The first part of our study evaluated the correlation 
between features extracted by LIFEx and PyRadiom-
ics from contrast-enhanced CT and MRI of NSCLCs. 
Our purpose is to verify whether there is an agreement 
between the two radiomic software, considering two dif-
ferent imaging techniques.

For what concerns MRI, at least 83% of the features 
showed a good or excellent ICC for each of the consid-
ered resampling methods. The maximum agreement 
between LIFEx and PyRadiomics was obtained for images 
with original voxel dimensions (94.5% of the features), 
while the minimum agreement was gained by the inter-
nal resampling method (83% of the features). Possibly, the 
result found in this last case arises from the distinct resa-
mpling algorithms implemented in LIFEx and PyRadiom-
ics. This effect could have been emphasized also by the 
upsampling operation made on the original images. In 

Fig. 2  Comparison between features distributions computed by LIFEx and PyRadiomics platforms from MRI acquisitions. The top panel line 
represents a feature with excellent reliability (Skewness), while the bottom panel line a feature with poor reliability (GLCM Inverse Variance) 
for the three options considered: original voxel size (a); software (internal) resampling (b); external resampling (c). Ext.res. External resampling, Or.
vox-siz. Original voxel size, Soft.res. Software resampling
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Fig. 3  Comparison between feature distributions computed by LIFEx and PyRadiomics platforms from CT images. The top panel line shows 
a feature with excellent reliability (Entropy), while the bottom panel line displays a feature with poor reliability (GLZLM Large Zone Emphasis), 
for the three options considered: original voxel size (a); software (internal) resampling (b); external resampling (c). Ext.res. External resampling, Or.
vox-siz. Original voxel size, Soft.res. Software resampling

Fig. 4  Agreement between radiomic features extracted from CT and MRI images, expressed through ICC, for PyRadiomics (a) and LIFEx (b). Ext.res. 
External resampling, Or.vox-siz. Original voxel size, Soft.res. Software resampling
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particular, the in-plane dimension was conserved, while 
the z-axis has been modified to obtain an isotropic voxel.

Considering CT images, we have found that at least 
89% of features showed a good/excellent ICC for each of 
the considered resampling methods. The highest agree-
ment between LIFEx and PyRadiomics was obtained 
for external resampling. The percentage of CT features 
exhibiting good/excellent reliability showed less varia-
tion among the resampling methods, compared to MRI. 
This could be addressed by the fact that CT images 
exhibit lower noise levels when compared to MRI ones. 
Moreover, the original voxel dimensions of CT images 
were closer to the isotropic voxel size than those of MRI, 
potentially reducing the impact of resampling on the dis-
tribution of extracted features. CT features that revealed 
moderate/poor reliability are the same for each of the 
resampling methods: GLCM Inverse Variance, GLZLM 
LZE, GLZLM LZHGE, and GLZLM LZLGE.

Some considerations can be made for both CT and 
MRI. Firstly, the software agreement was higher when 
considering external resampling compared to inter-
nal resampling. This once again underlines the feature’s 
dependency on the choices made in each step of the 

radiomic workflow. Secondly, considering the high per-
centage of concordant features between LIFEx and PyRa-
diomics for both CT and MRI, it is possible to conclude 
that the two software agree with each other, regard-
less of the imaging technique used. These results were 
achieved following the IBSI guidelines and the conclu-
sions obtained from previous works [27, 31]. It is note-
worthy that LIFEx-PyRadiomics agreement was achieved 
considering two different imaging techniques. This is 
an important result, especially for lung MRI, given the 
challenges posed by artifacts, low signal, and other well-
known limits.

The second part of the study investigated which of the 
two software packages could extract the highest number 
of correlated features among CT and MRI. Our purpose 
was to verify whether there is some lung cancer intrinsic 
information that can be depicted by both CT and MRI. 
We were not expecting a high number of features to be 
correlated between the two imaging modalities, as they 
rely on different physical principles, even though the 
local effect of iodine and Gd-based agents is an increase 
in x-ray attenuation (CT scans) or signal (T1-weighted 
MRI), which always translates in an increase of the values 

Table 3  CT versus MRI. CT-MRI concordance expressed through the percentage of radiomic features exhibiting a specific ICC, for both 
LIFEx and PyRadiomics. The results are reported for each of the considered resampling methods

Ext.res. External resampling, Or.vox-siz. Original voxel size, Soft.res. Software resampling

Intraclass correlation coefficient

Radiomic software Resampling Excellent [%] Good [%] Moderate [%] Poor [%]

LIFEx Or.vox-siz 0 4.5 7.5 88

Soft.res 0 9.1 27.3 63.6

Ext.res 1.5 9.1 22.7 66.7

PyRadiomics Or.vox-siz 0 3.0 10.6 86.4

Soft.res 0 10.6 24.2 65.2

Ext.res 1.5 7.6 25.8 65.1

Table 4  Radiomic features showing excellent and good ICC coefficients in CT-MRI comparison, considering PyRadiomics and LIFEx. 
For both software, the sole feature with excellent ICC is Voxel Volume (SHAPE), only employing external resampling

GLCM Gray-level co-occurrence matrix, GLRLM Gray-level run length matrix, GLZLM Gray-level size zone matrix, NGTDM Neighboring gray-tone difference matrix, NID 
Normalized inverse difference, RLNU Run length non-uniformity

PyRadiomics software LIFEx software

Original voxel size Internal resampling External resampling Original voxel size Internal resampling External resampling

SHAPE_Voxel Volume
SHAPE_Surface Area

SHAPE_Voxel Volume
SHAPE_Surface Area
NGTDM_Busyness
NGTDM_Strength
GLZLM_ Zone_Percent-
age_(ZP)
GLCM_DifferenceEn-
tropy
GLCM_NID

SHAPE_Voxel Volume
SHAPE_Surface Area
NGTDM_Busyness
NGTDM_Strength
GLZLM_Zone_
Percentage(ZP)
GLRLM_RLNU

SHAPE_Voxel Volume
SHAPE_Surface Area
SHAPE_Maximum3D-
Diameter

SHAPE_Voxel Volume
SHAPE_Surface Area
SHAPE_Maximum3D-
Diameter
NGTDM_Busyness
NGTDM_Strength
GLRLM_RLNU

SHAPE_Voxel Volume
SHAPE_Surface Area
SHAPE_Maximum3D-
Diameter
NGTDM_Busyness
NGTDM_Strength
GLRLM_RLNU
GLZLM_ Zone_Per-
centage (ZP)
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of the gray scale in the images. We aimed to address the 
question regarding the possible existence of information 
strictly linked to NSCLC biology, beyond the considered 
imaging technique.

From the medical point of view, it should be noticed 
that the low percentage (10%) of correlated radiomic fea-
tures between MRI and CT can be considered informa-
tive about lung cancer. Features stable across modalities 
may carry relevant biological information, showing the 
ability to reflect histopathological phenomena, such as 
inflammation or vascularization, related to lung cancer’s 
characterization and options for treatment. Thus, with 
higher statistics of patients, selecting features that are 
cross-modality and stable (even few) may be one of the 
strategies to pave the way for the clinical translation of 
radiomic biomarkers.

Regardless of the three resampling methods, most of the 
features showed an ICC < 0.5, i.e., a very low number of 
features with excellent and good agreement was extracted 
by a single software from CT and MRI (see Table  3). In 
this case, the percentage of CT-MRI features highly cor-
related for both the analyzed software was higher con-
sidering resampled images rather than the original ones. 
The features with good ICC, regardless of the resampling 
method, are the SHAPE features Volume and Surface Area 
for both software, plus Maximum3DDiameter SHAPE for 
LIFEx. Moreover, for both PyRadiomics and LIFEx, the 
only feature exhibiting excellent ICC is Volume (SHAPE), 
extracted from external resampled images. This may stem 
from the use of the same algorithm for image resampling, 
emphasizing the relevance of harmonizing the preproc-
essing steps. Considering texture features, we found that 
NGTDM features Busyness and Strength showed good 
ICC for both software, with internal and external resam-
pling. In addition to the aforementioned features, texture 
features with good ICC for the internal and external resa-
mpling are RLNU (GLRLN) for LIFEx and ZP (GLZLM) 
for PyRadiomics. CT-MRI features with good or excellent 
ICC for PyRadiomics and LIFEx are shown in Table 4.

These results allow us to draw several considerations. 
As mentioned before, CT and MRI are two different 
techniques. Hence, our initial hypothesis was that most 
information embedded within the images would not be 
directly translatable from one image technique to the 
other. This hypothesis was corroborated by the analysis 
results. Vuong et al. had previously shown that SHAPE 
and texture features are highly correlated between 
PET/CT and PET/MRI [13]. Moving from nuclear 
medicine to diagnostic imaging, the same result was 
not yet known. Even though the correlation between 
certain CT and MRI SHAPE features could have been 
expected, as SHAPE features describe tumor morpho-
logical aspects, the correlation between CT and MRI 

texture features was not taken for granted. It is remark-
able especially that two NGTDM features (Busyness 
and Strength) presented good ICC for both internal 
and external resampling and this was consistent across 
both radiomic software.

This study has limitations. First, the correlation we 
found is limited to the pathological process consid-
ered and the kind of images we compared, i.e., NSCLC 
and contrast-enhanced CT and T1-weighted MRI. Sec-
ond, while a diversity of CT equipment was used, only 
one 1.5-T MRI unit with a specific pulse sequence was 
employed. Third, this is a single-center study with a rela-
tively small sample size. Nevertheless, it is a reliable proof 
of concept as first of all, currently, just a few centers have 
incorporated lung MRI into clinical practice, and sec-
ondly, it is relatively uncommon to have not only CT but 
also MRI acquisition for each patient.

In conclusion, we investigated the agreement between 
LIFEx and PyRadiomics software for two different imag-
ing techniques, explored the correlation between CT-MRI 
corresponding features calculated with such software, and 
assessed how these relationships are affected by the resam-
pling method. PyRadiomics and LIFEx are highly in agree-
ment with each other for both MRI and CT (on average 
90% of features showed ICC ≥ 0.75) and approximately 
10% of MRI-CT related features (shape and texture) 
obtained from resampled images exhibited ICC ≥ 0.75. The 
impact of the resampling method was clear in the previ-
ous points. For both imaging modalities, we observed a 
decrease in agreement between the two radiomic tools 
when using their internal resampling methods.

To validate our results, further investigations using a 
wider multi-center cohort are necessary. These additional 
studies are also needed to confirm the “identity” of sta-
ble features in cross-modality and their generalizability 
as useful biomarkers. Furthermore, it is essential to single 
out sequences that are most suitable for radiomics with 
the aim of establishing a standardized acquisition pro-
tocol, especially for MRI images. A wider exploration of 
the potential of MRI radiomics in lung cancer patients 
through the use of other sequences (e.g., unenhanced 
T1-weighted, T2-weighted, short-τ, diffusion metrics) 
could allow strengthening and/or expanding the identifi-
cation of the most relevant features. Lastly, it would be 
interesting to evaluate the stability of our results across 
different segmentation methods.

As a final remark, in both MRI and CT cases, the study 
of physical principles and biomedical mechanisms under-
lying the radiomic features definition (a very challeng-
ing issue) and the extension of the presented approach 
to more modalities, including PET technique [14, 40], 
will possibly provide more robust biomarkers within a 
broader multimodality approach.
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