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Abstract

Background Deuterium metabolic imaging (DMI) has emerged as a promising non-invasive technique for studying
metabolism in vivo. This review aims to summarize the current developments and discuss the futures in DMI tech-
nique in vivo.

Methods A systematic literature review was conducted based on the PRISMA 2020 statement by two authors. Spe-
cific technical details and potential applications of DMI in vivo were summarized, including strategies of deuterated
metabolites detection, deuterium-labeled tracers and corresponding metabolic pathways in vivo, potential clinical
applications, routes of tracer administration, quantitative evaluations of metabolisms, and spatial resolution.

Results Of the 2,248 articles initially retrieved, 34 were finally included, highlighting 2 strategies for detecting deu-
terated metabolites: direct and indirect DMI. Various deuterated tracers (e.g., [6,6'-*H2]glucose, [2,2,2'-*H3]acetate)
were utilized in DMI to detect and quantify different metabolic pathways such as glycolysis, tricarboxylic acid cycle,
and fatty acid oxidation. The quantifications (e.g., lactate level, lactate/glutamine and glutamate ratio) hold promise
for diagnosing malignancies and assessing early anti-tumor treatment responses. Tracers can be administered orally,
intravenously, or intraperitoneally, either through bolus administration or continuous infusion. For metabolic quantifi-
cation, both serial time point methods (including kinetic analysis and calculation of area under the curves) and single
time point quantifications are viable. However, insufficient spatial resolution remains a major challenge in DMI (e.g,,
3.3-mL spatial resolution with 10-min acquisition at 3 T).

Conclusions Enhancing spatial resolution can facilitate the clinical translation of DMI. Furthermore, optimizing tracer
synthesis, administration protocols, and quantification methodologies will further enhance their clinical applicability.

Relevance statement Deuterium metabolic imaging, a promising non-invasive technique, is systematically dis-
cussed in this review for its current progression, limitations, and future directions in studying in vivo energetic metabo-
lism, displaying a relevant clinical potential.

Key points
« Deuterium metabolic imaging (DMI) shows promise for studying in vivo energetic metabolism.
- This review explores DMI's current state, limits, and future research directions comprehensively.
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- The clinical translation of DMI is mainly impeded by limitations in spatial resolution.

Keywords Deuterium, Fatty acids, Glycolysis, Magnetic resonance imaging, Magnetic resonance spectroscopy
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Background
Metabolic imaging is a class of non-invasive techniques
that enable in vivo visualization and quantification of
metabolic processes such as glucose uptake, glycolysis,
and tricarboxylic acid (TCA) cycle [1, 12, 14, 15, 23, 25,
54, 59, 68, 75]. It can detect malignant tumors with high
sensitivity and specificity by imaging their increased meta-
bolic rates for glucose, amino acids, or lipids; additionally,
it offers valuable insights into risk stratification and treat-
ment response evaluation of malignant tumors [1, 12, 14,
15, 23, 25, 54, 59, 68, 75]. So far, many metabolic imaging
techniques have emerged, including fluorine-18-fluorode-
oxyglucose positron emission tomography, 'H-magnetic
resonance spectroscopic imaging (‘H-MRSI), chemical
shift saturation transfer, hyperpolarized-">C-magnetic
resonance imaging (hyperpolarized-">*C-MRI), and mag-
netic resonance (MR)-based deuterium metabolic imaging
(DMI) [9, 14, 16, 25, 30, 36, 54, 58, 75].
Fluorine-18-fluorodeoxyglucose positron emission tomog-
raphy is widely used in oncology for tumor staging, prognos-
tic prediction, and treatment response evaluation [1, 5, 9,
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33, 78]. However, it is limited by radiation exposure (about
25 mSv for each examination) and incapability in monitor-
ing downstream metabolism except for glucose intake [6, 33].
On the other hand, MRI and MRS, such as 'H-MRS/MRSI
and chemical shift saturation transfer, can monitor metabo-
lism in vivo without exposing patients to ionizing radiation
[30, 36, 54]. However, these techniques can only be applied to
observe the steady-state metabolism with complicated peak
overlaps between different molecules (e.g., water, lipids) [54,
70]. To address these issues, a hyperpolarized MRI technique
has been developed in the past decade [14, 23, 25, 59, 68, 75].
By utilizing the dynamic nuclear polarization technique, the
MR signal of certain nuclei, such as 13C, can be enhanced
for more than 10,000 folds [26, 51]. Hyperpolarized MRI
enables the visualization of metabolic pathways in real-time
following the administration of exogenous hyperpolarized-
3C-labeled tracers (e.g, hyperpolarized-">C-pyruvate,
hyperpolarized—BC—fumarate) [23, 26, 59, 75]. However, the
clinical translation of hyperpolarized MRI is slow due to the
short-term enhanced signal (1-2 min) and the high cost of
the equipment.
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DMI is a relatively new MR-based imaging technique
that utilizes exogenous non-radioactive and biocom-
patible deuterium-labeled metabolic tracers such as
(6,6'-*H,]glucose and [*Hj]acetate to visualize different
metabolic pathways in vivo [15, 16, 58]. Compared to
the aforementioned metabolic imaging techniques, DMI
offers several distinct advantages including non-ionizing
radiation, stable isotope labeling, biochemical safety,
and relatively simple techniques [15, 16, 44, 58]. Com-
pared with hyperpolarized-'*C-MRI, DMI can be applied
to observe a longer-term metabolic process (more than
hours) [16]. Although deuterium has a lower gyromag-
netic ratio than the 'H proton (6.536 MHz/T versus
42.577 MHz/T), it has a rapid longitudinal relaxation that
enhances its detection [16, 81]. Unlike 'H-MRSI, DMI
does not require additional water suppression due to the
low abundance of natural deuterated water (0.0115%,
10.12 mM), leading to a low specific absorption rate of
radiofrequency power [15, 16, 44]. Moreover, because of
the reduced coupling effects of deuterium, the spectrum
in DMI is much simpler to interpret than that of 'H that
has complex peak-splitting patterns [15, 16]. The com-
bination of the low natural abundance of deuterium and
the selective deuterium-labeling of metabolites by the
tracer contribute to the further simplification of the spec-
trum in DML So far, many outstanding reviews or com-
ments have been published on the applications of DMI
[12, 16, 53, 58, 67, 76, 79, 82]. To avoid repetition, this
systematic review aims to summarize the current devel-
opment of the DMI technique in vivo, outline present
limitations, and discuss the potential research and devel-
opment directions for the future.

Methods

Strategy of literature review

A systematic literature review was performed to sum-
marize the deuterium metabolic MRI or spectroscopy
in vivo based on the PRISMA 2020 statement [55]. The
PubMed database was used for the MeSH term search
for previously published studies on deuterium metabolic
MR imaging or spectroscopy from 1 January 2003 to 13
May 2023 (encompass earlier works that laid the founda-
tion for subsequent advancements). The search strategy
is described in Additional file 1: Table S1. A reference
check was also performed. The inclusion criteria include
the following: (1) original articles published with specific
technique descriptions of MR imaging or spectroscopy
involving deuterium detection to explore the metabolic
processes in vivo and (2) studies were performed in living
humans or animals, excluding studies performed on cell
lines or isolated samples from humans or animals. Stud-
ies were selected for inclusion by two authors, who have
15 years of experience in diagnostic radiology and 15
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years of experience in MR experiments. Decisions were
made by consensus among all authors.

Data extraction and summarization

After conducting the literature review, a comprehen-
sive extraction of specific technical details (including
study subjects, examined body parts, target diseases/
specific physiological conditions, deuterated tracers,
administration dose/route, and MR equipment/scanning
parameters) was performed from the relevant articles.
Additionally, potential applications, such as examina-
tion purposes and metabolic biomarkers, were collected.
Two authors (FP and PS) performed the data extraction
from all included studies. Subsequently, several key top-
ics were summarized, including strategies of deuterated
metabolites detection, deuterium-labeled tracers and
corresponding metabolic pathways in vivo, potential clin-
ical applications, routes of tracer administration, quanti-
tative evaluations of metabolisms, and spatial resolution.

Results

The initial literature search resulted in a total of 2,248
articles. Following the screening process, 2,217 articles
were excluded based on the inclusion criteria. Addition-
ally, 3 articles were identified through citation searching.
Finally, 34 published articles were involved (Table 1). The
details of the database retrieval are shown in Fig. 1.

Strategies of deuterated metabolites detection: direct

and indirect DMI

From the included articles (Table 1), detecting deute-
rium-labeled metabolites by DMI typically involves 2
strategies: direct (30 studies, including 25 animal stud-
ies and 6 human studies, with 1 study conducted in both
animals and humans) and indirect (4 studies, including 3
human studies and 1 animal study) DML In the former
strategy, ZH-MRS/MRSI sequences were applied to selec-
tively excite the deuterium nuclei and specifically cap-
ture the deuterium-labeled metabolite signals over time
(Figs. 2 and 3) [15, 62, 65, 73, 81]. In the latter strategy,
the deuterium-labeled metabolites were not excited but
detected indirectly through the corresponding 'H-MR
signal decrease, due to the chemical exchange between
hydrogen and deuterium atoms following the administra-
tion of deuterium-labeled tracers (Fig. 4) 3, 10, 52, 60].

Deuterium-labeled tracers and corresponding metabolic
pathways in vivo

Deuterated tracers used in DMI are always the metabo-
lites that are part of the cellular regular metabolism path-
ways [34]. They contain deuterium atoms and can be
metabolized like their non-labeled counterparts. When
administered, these tracers can be incorporated into the
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First author
[reference
number]

Year

Deuterated tracers

Target living subjects
in the study

Examined body parts
by DMI

Target diseases or
specific physiological
conditions

MR equipment

Buxbaum [8]

Lu [44]

De Feyter [15]

de Graaf [18]

Kreis [37]
Rich [60]

Riis-Vestergaard [61]

De Feyter [17]
Hartmann [27]

Hesse [28]

Liy [41]
Mahar [46]
Markovic [47]

Markovic [48]
Peters [56]

Ruhm [62]
Veltien [72]

von Morze [73]
Wang [74]

Batsios [2]

Cember [10]

Ge [24]
Hesse [29]

Kaggie [32]

Liu [43]
Meerwaldt [50]
Niess [52]
Serés Roig [65]

Simoes [66]

Taglang [69]

2017

2017

2018

2020

2020
2020

2020

2021
2021

2021

2021
2021
2021

2021
2021

2021

2021

2021
2021

2022

2022

2022
2022

2022

2022

2022

2022

2022

2022
2022

’H,0

[6,6'-’H2]glucose

[6,6'-’H2]glucose; [2,2,2'-
’H3]acetate

[6,6'-*H2]glucose

[6,6'-’H2]glucose

[6,6'-?H2]glucose; [2,2,2'-
2H3Jacetate

[6,6'-?H2]glucose
[6,6'-*H2]glucose
Deuterated 3-O-methyl-
glucose

[2,3-?H2]fumarate

[6,6'-?H2]glucose
[ZH7]g\ucose
[6,6'-?H2]glucose

[6,6'-*H2]glucose
[6,6'-’H2]glucose

[6,6'-?H2]glucose
[?H9]choline; [?H9]cho-
line + [6,6‘—2H2]glucose

[6,6'-?H2]glucose

[6,6’—2H2]g\ucose; [2,22'-
H3]Jacetate

[U-’H]pyruvate
[6,6'-*H2]glucose

[6,6'->H2]glucose
[2,3-’H2]fumarate

[6,6'-*H2]glucose
[6,6'-?H2]glucose
[6,6'-*H2]glucose
[6,6'-*H2]glucose
[6,6'->H2]glucose

[6,6'-’H2]glucose
[6,6'-*H2]glucose

Mice after hematopoi-
etic stem cell transplan-
tation

Healthy rats

Human patients; tumor-
bearing rats

Healthy human volun-
teers

Tumor-bearing rats
Tumor-bearing rats

Healthy rats

Healthy rats
Tumor-bearing rats

Tumor-bearing mice

Tumor-bearing rats
Healthy rats
Tumor-bearing mice

Pregnant mice
Tumor-bearing mice

Healthy human volun-
teers

Tumor-bearing mice

Healthy rats
Healthy rats

Tumor-bearing mice

Healthy human volun-
teers

Tumor-bearing mice
Tumor-bearing mice

Healthy human volun-
teers

Healthy human volun-
teers

Mice with ischemic
stroke

Healthy human volun-
teers

Healthy human volun-
teers

Tumor-bearing mice

Tumor-bearing mice

Liver

Brain

Brain; liver

Brain

Subcutaneous tissue
Brain

Interscapular brown adi-
pose tissue depot

Liver
Hind leg

Subcutaneous tissue
of flank

Brain
Brain
Pancreas

Fetus and placenta
Pancreas

Brain
Subcutaneous tissue
of flank

Brain
Heart

Brain; subcutaneous
tissue

Brain

Brain

Subcutaneous tissue
of flank

Brain

Brain

Brain

Brain

Brain

Brain

Brain

Chronic graft-versus-
host disease

Deep anesthesia; mor-
phine administration

Glioblastoma; gliosar-
coma

Lymphoma
Glioblastoma

Cold acclimation

Breast cancer

Lymphoma; breast can-
cer; colorectal cancer

Gliosarcoma

Pancreatic ductal
adenocarcinoma

Preeclampsia

Pancreatic ductal
adenocarcinoma

Renal carcinoma

Glioblastoma; oligoden-
droglioma; hepatocel-
lular carcinoma

Glioblastoma
Lymphoma

Stroke

Glioblastoma

Astrocytoma

94T°

164T°

11.7T (for
rats)% 4 T (for
humans)?
4T3 7T

94T
94TP

94T°

11.7T°
7T

7T

164T°
1T
152T¢

15.2T°
152T°

94T!
VAR

47T
164T°

141T%3T°

7T°

11.74T°
7T

3T
470
94T?
370
VAR

94T°
141718
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First author Year Deuterated tracers

Target living subjects

Examined body parts  Target diseases or MR equipment

[reference in the study by DMI specific physiological
number] conditions
Zhang [81] 2022 [6,6’72H2]g\ucose Tumor-bearing mice Subcutaneous tissue Melanoma 94T°
of scapula
Zou [83] 2022 [6,6’—2H2]g\ucose; Tumor-bearing rats Brain Glioma 94T°
[2,3,4,6,6'-’H5]glucose
Bednarik [3] 2023 [6,6’—2H2]g\ucose Healthy human volun- Brain - 7T
teers
Ip[31] 2023 [*H9]choline Tumor-bearing rats Brain Glioblastoma 11.74T°
DMI Deuterium metabolic imaging, MR Magnetic resonance
2 Direct DMI was performed in the study
b Indirect DMI was performed in the study
[ Identification of studies via datab and regi S [ Identification of studies via other methods }
5 Records removed before
£ screening:
ﬁ Records identified from*: - Duplicate records removed (n Records identified from:
£ Database (n = 2248) g =0) Citation searching (n = 7)
S Records removed for other
= reasons (n = 0)
= :
Records screened » | Records excluded™*
(n=51) (n=2197)
Reports sought for retrieval 5| Reports not retrieved Reports sought for retrieval | Reports not retrieved
2 (n=51) "l (n=0) (n=7) 7l (h=0)
=
®
o
: ] !
n
Reports assessed for eligibility | Reports excluded: Reports assessed for eligibility o] Reports excluded:
(n=31) > Reviews (n = 7) (n=3) g Review (n = 1)
Comments (n = 2) Book seri =1
Detection in vitro (n = 6) Coﬁ Iiﬁerlex(n rTm)nt (n=1)
Cell-line experiment (n=2) Ne - etebple_ T ted - t
Non-metabolic related reports (zn-me abolic related repol
(n=3) (=1
_—
v
]
] Studies included in review
S (n=34)
c

*PubMed database was searched.

**Records were separately excluded by two authors (FP and PS) and the final decisions were made in consensus if there was any disagreement.

Fig. 1 PRISMA 2020 flow diagram of the retrieved database

corresponding metabolic pathways (e.g., glycolysis, TCA
cycle, fatty acid oxidation) and metabolized into down-
stream deuterated compounds which can be detected
and quantified by MRS/MRSI (Fig. 5) [34]. Although a
high-dose deuterium intake is harmful, the tracer doses
widely employed in DMI, especially within the range of
0.6-0.8 g/kg [6,6'->H2]glucose, have been extensively
demonstrated to be non-toxic in vivo through previous
studies [3, 10, 15, 18, 32, 43, 52, 62, 65].

Most tracers were produced from the deuteration of
protonated metabolites that are associated with energy
metabolism or cellular proliferation, including glucose,
pyruvate, acetate, fumarate, and choline [2, 3, 10, 15, 17,
18, 24, 28, 29, 31, 32, 37, 41, 43, 44, 46-48, 50, 52, 56,
60-62, 65, 66, 69, 7274, 81, 83]. For instance, [6,6'-*H2]
glucose, as a mostly used metabolic tracer, can be used to
detect downstream deuterated products, including gluta-
mate, glutamine, lactate, and semiheavy water (Fig. 5) [2,
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Fig. 2 Arepresentative ’H-MRS obtained from the liquid cultured medium for a tumor cell line (MC38 murine colon adenocarcinoma) after being
exposed to [6,6'-’H2]glucose at different time points (a). Over time, the H-labeled glucose level gradually decreased but the 2H-labeled lactate
gradually increased indicating a typical Warburg effect of the malignant cell line (b). Figures were provided by author QB. All experiment

was performed in Bruker 500-MHz MR scanner
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Fig. 3 A representative deuterium metabolic imaging visualizing the Warburg effect in an MC38 tumor inoculated C57BL/6 male mouse
after a bolus intravenous injection of [6-6'-2H2]glucose (1.0 g/kg mouse weight). Over time, the 2H-labeled glucose level gradually decreased,
but the “H-labeled lactate gradually increased in the tumor region, indicating a typical Warburg effect of the malignancy. Figures were provided

by author QB. All experiment was performed in Bruker 9.4-T MR scanner

3, 10, 15, 17, 18, 24, 28, 29, 31, 32, 37, 41, 43, 44, 46-48,
50, 52, 56, 60-62, 65, 66, 69, 72-74, 81, 83]. Among these
downstream metabolites, glutamate and glutamine (Glx)
can be regarded as products from TCA cycle and lactate
from glycolysis [2, 3, 10, 15, 17, 18, 24, 28, 29, 31, 32, 37,
41, 43, 44, 46-48, 50, 52, 56, 60-62, 65, 66, 69, 72-74, 81,
83]. By measuring the incorporation of deuterium into

these products, the rates of glycolysis and TCA cycle can
be estimated [2, 3, 10, 15, 17, 18, 24, 28, 29, 31, 32, 37,
41, 43, 44, 46-48, 50, 52, 56, 60-62, 65, 66, 69, 72-74,
81, 83]. However, the low deuterium enrichment of [6,6'-
H2]glucose restricts its signal intensity [15]. Therefore,
scientists are interested in developing novel glucose trac-
ers with more deuterium atoms within the molecules,
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Fig. 4 An exemplary 'H-MR difference spectrum from a voxel (3 mm x 3 mm x 3 mm) of MC38 tumor in the C57BL/6 male mouse thigh
with an illustration of the dynamic change of lactate signals after an intravenous infusion of [6,6'-H2]glucose (1.0 g/kg mouse weight) (a). Over
time, the signal difference of lactate gradually increased with a gradual decrease of the lactate signal intensity () ratio after/before tracer injection
(b). Figures were provided by author QB. All experiment was performed in 9.4-T MR scanner

2H- 3-O-methylglucose

H-Glucose -
’H-DNA N
2H-3-O-methylglucose . “H-Choline
z l
Hho H-Glucose-6-phosphate

2] -Ri -
*H-Glucose H-Ribulose 5-phosphate

" *H-Glucose-6-phosphate zH-Pyruvate < X H-Choline

ctate
ﬁ ﬁ . H- Phosphorylchohne
H-Fatty acid f_\ 7. Sphmgomyehn
%H-Ace’mte —F & = : *H-Glutamine |
I ton

2H-Malate - *H-Glutamate )~ /
?H-Keto V\_) 4

?H-Fumarate

=3

mitochondrion

2H-Acetate

Fig.5 An overview of cellular metabolic key pathways detected by deuterium metabolic imaging: glycolysis, TCA cycle, fatty acid oxidation,
deoxyribonucleic acid synthesis, and Kennedy pathway. ATP Adenosine triphosphate, CO, Carbon dioxide, GLUT Glucose transporter, Glx Glutamine
and glutamate, HDO Semiheavy water, TCA Tricarboxylic acid
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such as [2,3,4,6,6'->H5]-p-glucose and [*H7]glucose [15,
45, 46, 83]. These tracers may have some advantages over
(6,6'-*H2]glucose, such as higher signal intensities and
enhanced tolerability to label loss [15, 45, 46, 83].

As examples for other tracers, fatty acid oxidation
involves the breakdown of fatty acids to generate acetyl-
coenzyme A, which can enter the TCA cycle for further
metabolism; so, by administering a deuterium-labeled
fatty acid [2,2,2'-?H3]acetate, the fatty acid oxidation
can be traced by the products of Glx (Fig. 5) [15, 60, 74].
Similarly, [2,3-2H2]fumarate, a precursor of malate, and
[U-*H]pyruvate, a precursor of lactate, can be specifically
used to measure the rates of TCA cycle and glycolysis,
respectively (Fig. 5) [2, 28, 29].

In addition, some essential materials for cell prolifera-
tion can also be deuterated as tracers in DMI, such as
[*H9]choline and heavy water (Fig. 5) [8, 31, 72]. Choline
is a precursor for phosphatidylcholine, a major compo-
nent of cell membranes produced in the Kennedy path-
way. By using [*H9]choline as a tracer, DMI can image
and quantify the total pool of choline in vivo, which can
reflect the cellular proliferation activity [31, 72]. Exoge-
nous heavy water administrated into the body water pool
can also be used as a tracer, which can be incorporated
into various macromolecules such as lipids, proteins, and
deoxyribonucleic acid [7, 8, 20, 42]. However, most syn-
thesized molecules such as lipids and proteins will gradu-
ally lose deuterium labels over time owing to the energy
metabolism except de novo deoxyribonucleic acid; thus,
measuring long-term deuterium enrichments can help
to quantify the de novo deoxyribonucleic acid which can
serve as a proxy indicator for cell proliferation [7, 8, 20].

Moreover, another tracer type is the non-metabolizable
analog of metabolic precursors. For example, deuterated
3-O-methylglucose is a glucose analog that is taken up by
cells but not metabolized further, thus specifically reflect-
ing the glucose uptake [27].

Potential clinical applications

As a novel and still evolving technique, most in vivo DMI
studies have been performed in animal brains and glio-
mas because of relatively static organs, and the results
from these studies have shown great potential for a range
of clinical applications (Table 2) [2, 15, 27, 31, 37, 41, 47,
56, 60, 66, 69, 72, 81, 83]. The most common application
of DMI is to diagnose malignant tumors by detecting
abnormal metabolic changes in the material requirement,
glycolysis, and TCA cycle [2, 15, 27, 37, 41, 47, 56, 60, 66,
69, 72, 81, 83]. Because most malignancies have increased
demands for proliferation, an elevated consumption
or uptake of different materials (including glucose and
choline) can be detected by DMI following administrat-
ing tracers [71]. Moreover, compared to normal tissue,
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malignant tumors present a so-called Warburg effect,
presenting significantly increased glycolysis (elevated
lactate) and reduced TCA cycle activity (decreased
Glx) [35, 71]. This metabolism alteration can be specifi-
cally detected after applying various deuterated tracers
(including [6,6'-*H2]glucose, [U-*H]pyruvate, and [2,3-
H2]fumarate) in DMI, which demonstrates higher lac-
tate levels, lower Glx synthesis/flux rates, higher lactate/
Glx ratios, or lower fumarate/malate conversion rate [2,
15, 41, 60, 66, 69, 83]. Specifically, the biomarker “lactate/
Glx ratio,” as a rational indicator of the Warburg effect, is
considered sensitive to detect solid malignancies located
in organs with high-glucose intakes and consumptions,
such as the brains and kidneys [11, 15, 37, 41, 57, 83].
In these organs, where positron emission tomography is
limited due to the possible similarity in glucose uptake
between tumors and background tissues, the lactate/Glx
ratio serves as a valuable alternative for assessing meta-
bolic abnormalities associated with malignancies.

DMI has also presented great potential in estimating
residual tumors and early response after various anti-
cancer treatments (e.g., chemotherapy, targeted therapy,
radiotherapy) (Table 2) [2, 15, 24, 28, 37, 69]. From previ-
ous studies, DMI presented a higher sensitivity in iden-
tifying tumoral necrosis and residue than conventional
imaging techniques that mainly rely on morphological
changes [2, 15, 24, 28, 37, 69]. A necrotized tumor after
treatments first demonstrated a significantly declined
Warburg effect, accompanied by a recovered TCA cycle
activity and suppressed glycolysis, before the reduction
of glucose intake and following morphological necro-
sis [15, 24, 37, 69]. Thus, DMI can also be applied in the
early treatment-response evaluation with a potentially
higher sensitivity than conventional methods; for exam-
ple, previous studies revealed that early tumoral necrosis
presented a significantly increased fumarate/malate con-
version rate (recovered TCA cycle activity) after adminis-
trating [2,3-*H2]fumarate in DMI [28, 75].

Moreover, some animal studies found that DMI can
also reflect various metabolic abnormalities under other
diseases or physiological conditions, such as chronic
graft-versus-host disease after hematopoietic stem cell
transplantation, preeclampsia, ischemic stroke, cold
acclimation, deep anesthesia, and analgesia condition
(Table 2) [8, 44, 48, 50, 61]. Although these experiments
were performed on animals, they can also be extended to
human beings [8, 44, 48, 50, 61].

Routes of tracer administration: oral, intravenous bolus/
infusion, and intraperitoneal

In DMI, deuterated tracers can be administered in several
ways (Table 3): oral intake, intravenous (IV) bolus injec-
tion, IV infusion, intraperitoneal (IP) bolus injection, IP
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Table 3 Different administration routes of deuterated tracers in vivo
Administration routes Study subjects Tracers Tracer dose Periods (approx.)
Oral intake Human [3, 10,15, 18,32,43,52, [6,6'-*H2]lglucose 0.60-0.80 g/kg (max, 55-60g) NA
62, 65]
Mice [29] [2,3-?H2]fumarate 2.0g/kg NA
IV bolus injection Mice [47, 48, 56, 66, 69]; rats [37, [6,6’—2H2]g\ucose; [234,6,6'- 1.0-4.0 g/kg 1-2min
41,44, 46,61,73,83] 2H5]glucose; [2H7]glucose
Rats [27] Deuterated 3-O-methylglucose 0.89 g/kg 1 min
Mice [2] [U—zH]pyruvate 045 g/kg NA
Mice [72] [’H9]choline 0.05 g/kg 20s
IV infusion Mice [24, 48, 50]; rats [15, 17, 74] [6,6’—2H2]g\ucose 1.5-2.3 g/kg 1-2 h?
Mice [28] [2,3-?H2]fumarate 1.0 g/kg 20 min
Rats [15, 74] [2,2,2'-’H3]acetate 1.0-2.0 g/kg; 0.5 or 1.0 g/rat 03-2h
IP bolus injection Mice [81] [6,6'-’H2]glucose 200r6.0g/kg NA
IP infusion Rats [15, 17] [6,6'-?H2]glucose 1.50-1.95 g/kg 2h
Rats [15, 74] [2,2,2'-’H3]acetate 2.0 g/kg 2h
A bolus variable infusion Rats [60] [6,6'-?H2]glucose 1.95 g/kg Th
protocol® Rats [60] [2,2,2'-’H3]acetate 2.0g/kg Th
Rats [31] [*H9]choline 0376 g/kg Th
IV bolus injection followed Mice [8] 2HzO 35 ml/kg, 8% (v/v) [20] 1 week

by oral intake®

NA Not applicable, IP Intraperitoneal, IV Intravenous

@There is an exception in that one study reported an 8-min IV infusion [74]

b Briefly, it is a three-step bolus-continuous infusion protocol, in which animals received an IV bolus injection of the deuterated tracer (about one-sixth of the total
dose) over 15 s, followed by a gradual reduction of infusion until a constant infusion rate was reached for the remainder of the experiment [31, 60]

¢ Briefly, an initial IP bolus injection of 35 mL/kg ?H,0 was performed, followed by continuous administration of 8% (volume/volume) 2H,0 in drinking water during

specified labeling periods [8, 20]

infusion, applying a bolus variable infusion protocol, and
IV bolus injection followed by oral intake.

Oral administration is the only attempted administra-
tion route in humans so far, but it may result in delayed
or variable tracer absorption, depending on a range of
varying factors (e.g., food intake, gastric pH), leading
to unstable kinetics [63]. In contrast, IV administration
allows for more precise control of the dose and timing
of the tracer than oral intake, ensuring uniform distribu-
tions of the tracer throughout the body and benefiting
a more precise kinetic quantification [63]. Neverthe-
less, a rapid IV bolus administration might affect the
physiology of the body (e.g., changes in blood pressure,
heart rate) and alter the intracellular metabolic states in
some cases by competing receptors, transporters, and
enzymes [31, 72, 77]. Instead, an IV infusion protocol
reduces these adverse effects and is particularly useful
when studying steady-state metabolism [15, 17]. Still,
this infusion protocol has some issues that need to be
considered, one of which is the relatively longer time
required to reach a real steady-state concentration of
the tracer [31, 49, 60]. To achieve a steady state faster,
a bolus variable infusion protocol was developed involv-
ing a bolus injection of the tracer, followed by a slow but
constant infusion [31, 49, 60]. This method may improve

the stability and linearity of metabolic quantification
during a more than 1-h imaging period [31, 49, 60]. Yet,
the bolus variable infusion protocol has challenges that
should be considered, such as optimizing variable infu-
sion parameters (e.g., dose, duration, infusion rate). IP
administration is another convenient way when per-
forming animal studies [15, 17, 74, 81]. The technique
of IP injection is easier than that of IV administration.
It allows for the direct delivery of the tracer to the blood
circulation through peritoneal absorption. However,
this route is probably useless in humans because of the
potential risk of bowel injury. Like IV administration,
IP administration can also be implemented via a bolus
injection or continuous infusion [15, 17, 74, 81].

Quantitative evaluations of metabolic processes

Before the metabolic quantification, various corrections
and normalization procedures should be implemented to
obtain accurate molar concentrations of the tracer and
metabolites in DMI:

1) Correction for signal variations due to incomplete
longitudinal relaxation and RF transmit B;+ mag-
netic field inhomogeneities (the actual RF flip angles)
based on measured T1 relaxation times for various
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metabolites in vivo (e.g., water 320 ms, glucose 64 ms,
lactate 297 ms, Glx 146 ms, at 11.7 T) and quantita-
tive B1+ maps [15, 29, 37, 50]

2) Normalization of metabolite signals by referring to
the naturally abundant semiheavy water signal in the
body (about 10.12 mM, acquired before administer-
ing tracer as an internal reference), which can auto-
matically correct the inhomogeneity of the receive
sensitivity (B1—) of the deuterium RF coil [2, 24, 50,
61, 62, 65]

3) Corrections for deuterium-label loss for each metab-
olite (e.g., 8.1% label loss for ?H-lactate) [15, 50]

In metabolic quantification using DMI, kinetic analy-
sis is most commonly applied. It involves monitoring the
blood concentrations of the tracer, the MR signals of the
tracers, and the downstream metabolites in each voxel
over time, to calculate the flux rate of each target meta-
bolic process in response to different diseases or inter-
ventions [37, 44, 47, 48, 66, 83]. So far, IV bolus injection
is mostly used in kinetic analysis because it offers a fixed
initial concentration of the tracer benefiting the assess-
ment of the flux rate for each metabolite [37, 44, 66].
On the other hand, as discussed above, a bolus injection
might introduce neuroendocrine activation and hemody-
namic changes, leading to inevitable changes in an indi-
vidual’s physiological state and metabolic rates [31, 72,
77]. As an alteration, the infusion kinetic analysis reduces
the adverse effects caused by tracer administration. It
hypothesizes the input rate equals the elimination rate
[3, 8, 27, 60, 74]. This method allows for the calculation
of stable metabolic rates (e.g., the slope or rate constant)
using a relatively simple linear or exponential curve fit-
ting [3, 8, 27, 60, 74].

Besides, there are two other accessible quantification
methods: (1) Calculation of the area under the curves
of target metabolites over time [24, 28, 29, 61, 69, 73].
A previous study for hyperpolarized-MRI demonstrated
the significantly improved reliability of area under the
curves-based analysis compared to multiple kinetic
analysis, which may shed light as well on the data analy-
sis for DMI [13]. (2) Single time point quantifications
[15, 18, 31, 32, 41, 43, 50, 65, 72, 81]. Instead of focus-
ing on dynamic metabolic processes, this method only
measured the relative abundance of deuterium-labeled
metabolites at a particular time point (commonly after 1
h) [15, 18, 31, 32, 41, 43, 50, 65, 72, 81]. Although it does
not provide dynamic information about specific metab-
olisms, it has been proven as a feasible way to diagnose
malignant tumors and evaluate early anti-tumor treat-
ment responses in humans [15]. Compared to kinetic
analysis, these two quantification methods have three
advantages: simplicity, robustness, and practicability.
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Spatial resolution

The clinical transformation of DMI faces one major
challenge: an insufficient spatial resolution with a low
signal-to-noise ratio (SNR) [18] (Table 4). Despite the
administration of exogenous deuterium-labeled tracers,
the concentration of deuterium is still low leading to weak
signals. This contrasts with hyperpolarized-'*C-MRI
which provides a higher spatial resolution (0.05 mL ver-
sus 0.21 mL) with a shorter acquisition time (6 s versus 60
s) at 4.7 T than DMI [73]. In a study exploring DMI at 3 T,
the spatial resolution reached 3.3 mL with an acquisition
time of 10 min [32]. If fixing the acquisition time, spatial
resolution and SNR can be improved directly by increas-
ing the B intensity [18]. A previous study has shown the
SNR increased from 169.2 + 13.3 at 4 T to 423.1 + 25.7
at 7 T [18]. In animal MR scanners above 9 T, the spatial
resolution can reach 0.1 mL with an acquisition time of
5-10 min (Table 4). However, high-field magnet cost and
safety issues (e.g., higher radiofrequency energy deposi-
tion, dizziness, nausea) limit the clinical translation of
DMI [39]. Presently, only 7-T MRI equipment is validated
for DMI in clinics, offering a spatial resolution of approx-
imately 1 mL; conversely, this comes with the trade-off
of an acquisition time of approximately 30 min (Table 4
and Additional file 1: Table S2) [18]. Although increas-
ing acquisition time is the easiest way to increase spatial
resolution by accumulating sufficient signals (Table 4), it
introduces the risk of motion artifacts and patient dis-
comfort during the examination. Interpolation and zero-
filling are commonly used to enhance spatial resolution,
but these enhancements are fake [44, 47].

Another way to address the spatial resolution or SNR
issue in DMI is to improve imaging sequences and
coils. The implementation of an Ernst-angle approach,
considering an assumed or measured in vivo T1, has
been shown to enhance signals effectively; for instance,
employing a flip angle of 68° for breast cancer in rats
with an in vivo measured T1 of 250 ms has demonstrated
promising results (Table 4) [3, 8, 27, 62]. Another study
proposed a multi-echo balanced steady-state free preces-
sion approach to enhance SNR (Table 4) [56]. Compared
to conventional chemical shift imaging (repetition time/
flip-angle = 95ms/90°), the multi-echo balanced steady-
state free precession imaging (echo time 2.2 ms, repeti-
tion time 12 ms, flip angle 60°) demonstrated a predicted
SNR increase of three to five times with matched spatial
resolution and scan time, while maintaining good agree-
ment in the time courses of all metabolites [56]. In a
previous study, a dual-tuned array coil was introduced,
featuring ten transmitting/receiving channels for 'H and
eight transmitting/two receiving channels for *H, paired
with an Ernst-angle three-dimensional chemical shift
imaging sequence [62]. This configuration provided a
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Table 4 A summary of spatial resolution among different studies

Articles Objects B, field intensity Spatial resolution Repetition time/echo time Matrix Acquisition

(T) (mL) (ms/ms) time (min)

Direct DMI
[74] Animals 16.4 0.44 45/NA 9*9%5 1
[41] Animals 164 0.01 NA/NA 17*17%5 14°
[47] Animals 15.2 0.15° 95/NA 8*8*1 8
[48] Animals 15.2 0.15° 95/NA 8*8*1 8
[56] Animals 15.2 0.15° 95/NA 8*8*1 10
[2] Animals 14.1 0.11 250/1.35 8%8*1 4
[69] Animals 14.1 NA NA/NA NA NA
[31] Animals 11.74 0.016 400/NA 11*11*11 36
[72] Animals 1.7 0.051 400/0.4 9*9%9 25
71 Animals 1.7 0.064 400/NA 11*11*11 18
[15] Animals 1.7 0.064° 400/NA NA 25
[15] Animals 1.7 0.008¢ 400/NA NA 35
[72] Animals 1.7 0.008 400/0.4 15*%15*15 37
[46] Animals 1.1 0.034 100/1.416 32%32%1 13
[37] Animals 94 0.08 140/NA 9*9*3 10
[61] Animals 94 0.25 300/1.25 8*8*1 20
[50] Animals 94 0.016 400/NA 11*11*11 36
[81¢ Animals 94 NA NA/NA NA NA
[28] Animals 7 0.08 140/NA 9%9*3 5
[29] Animals 7 0.081 140/NA 9*9*3 5
[27] Animals 7 04 250/2.3 4*5%1 208
[73] Animals 4.7 0.21 180/NA 8*8*1 6
[62] Humans 94 0.003 155/NA 12*¥13*14 10
[3] Humans 7 2 290/1.5 36%36*26 6.5
[65] Humans 7 2.7 350/NA 14*18*14 28
[18] Humans 7 1 400/NA 11%11%11 295
[43] Humans 4 8 314/NA 13*9*11 79
sl Hurnans 4 g 333/NA 11%9%9 29
[15] Humans 4 15.6° 333/NA 11*9*10 29
[18] Humans 4 8 333/NA T1*11*11 295
[32] Humans 3 33 120/NA 10*10*10 10

Indirect DMI
[60] Animals 94 003 1500/16 12%12%1 20
[10] Humans 1 2050/40" 16*16*1 10
[3] Humans 0.12 320/1.3 36*36%26 3
[52] Humans 3 0.24 950/NA 32%32*21 4

DMI deuterium metabolic imaging, NA on-applicable
2 Average value between 0.9 and 1.8 min

b Average value between 0.1 and 0.2 mL

“Value was obtained from the liver DMI examinations
dValue obtained from the brain DMI examinations

€2 H-MRI was implemented instead of 2H-chemical shift imaging

fThe Point RESolved Spectroscopy sequence was applied instead of the free induction decay sequence

9 Interleaved DMI was implemented within the fluid-attenuated inversion recovery acquisition period
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nominal spatial resolution of 0.003 mL with an acquisi-
tion time of 10 min and achieved a successful DMI imple-
mentation in humans at 7 T (Table 4) [62].

Discussion

In this work, we provide an extensive overview of the
current development of the DMI technique. By analyz-
ing 34 published articles, we introduced and summarized
specific technical details and potential applications of
DML in vivo. In the following part, we will discuss present
limitations, potential research, and development direc-
tions of DMI for the future.

So far, direct DMI is still the mainstream technique.
While the SNR is constrained by the low gyromagnetic
ratio of the deuterium isotope, this limitation is offset by
the relatively short T1 of the deuterium-labeled tracer
[16, 81]. This characteristic facilitates rapid signal acqui-
sition and allows for a large number of excitations with-
out a significant signal saturation [16, 81]. Compared
with direct DMI, indirect DMI has a reported five times
higher SNR and can even be performed at commer-
cial 3-T MRI scanners [52, 60]. This eliminates the need
for extra spectrometers, specialized deuterium coils,
and dedicated MRI sequences. However, from a previ-
ous study, the correlation between indirect and direct
metabolite quantification was not high (r = 0.62) [60]. It
indicates the 'H-MR signal reduction might be affected
by several factors, such as tracer administration methods,
stress reaction after tracer administration, participant
movement (e.g., participants moved in and out of the
scanner to drink the tracer), and so on [31, 72, 77]. After

Table 5 A summary of deuterated tracers used in vivo
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all, the basic hypothesis of indirect DMI is the difference
in the absolute metabolite concentrations over time at
each pixel. If the absolute metabolite concentrations were
affected by tracer administration, the signal reduction
would not indicate the real deuterium-labeled metabolite
concentrations. Thus, we propose exploring methods to
maintain intra-environmental stability of metabolism to
address these concerns.

In some cases, the deuteration of certain molecules
may affect their metabolism, such as cytochrome
P450-mediated oxidative metabolism [4, 64]. Especially,
it is essential to address safety considerations in the
development of analog tracers [27]. After all, intracellular
accumulation of the analog might inhibit glycolysis and
bring potential toxicity [38, 80]. However, the deuterated
tracers reported in Table 5 rarely interrupt the natural
metabolism at the indicated doses and can be safely used
invivo 2, 3,10, 15, 17, 18, 24, 28, 29, 31, 32, 37, 41, 43, 44,
46-48, 50, 52, 56, 60-62, 65, 66, 69, 72-74, 81, 83]. With
the help of these different tracers, we can understand the
metabolic status of various tissues and organs in living
bodies and find the metabolic alterations in various dis-
eases, such as cancer, preeclampsia, and neurological dis-
orders [15, 34, 48, 50]. New development of tracers is still
on the way; it is worthwhile to develop tracers on more
specific metabolic pathways while prioritizing safety and
minimizing label loss.

Overall, DMI holds potential for various medical appli-
cations in the future, including cancer diagnosis, early
response evaluation after anti-tumor treatment, nutri-
tional studies, and metabolic disease research. As another

Deuterated tracers

Targeted metabolic pathways

Detected deuterium-labeled metabolites and
corresponding chemical shift in vivo (ppm)

Deuterated glucose [6,6’—2H2]glucose [2,3,10,
15,17,18,24,28,29,31,32,37,41,43, 44, 46-48,
50,52, 56,60-62, 65, 66,69, 72-74, 81, 83],
[2,3,4,6,6’—2H5]-D-gIucose [83], [ZH7}qucose [46]
[2,2,2'-?H3]acetate [15, 60, 74]

[2,3-2H2]fumarate [28, 29]

Fatty acid oxidation

[’H9]choline [31, 72]
metabolism

[U-*H]pyruvate [2]
Deuterated 3-O-methylglucose [27]
’H,0 [8]

Glycolysis
Glucose uptake

Glycolysis; TCA cycle; oxidative phosphorylation

TCA cycle; oxidative phosphorylation

Choline uptake and following intracellular

Deoxyribonucleic acid synthesis

Water (4.8 ppm), glucose (3.8 ppm), GIx (2.4 ppm),
Glu4 (2.4 ppm)?, lactate (1.4 ppm)

Water (4.8 ppm), Glx (2.4 ppm), acetate (1.9 ppm)

Fumarate (6.5 ppm), water (4.8 ppm), malate (2.4
ppm)
tCho (3.2 ppm)°

Pyruvate (2.4 ppm), lactate (1.4 ppm)
Deuterated 3-O-methylglucose (3.5 ppm)
Deuterium signal®

Glu4 [4,4'-*H2]glutamate and [4'-?H]glutamate, Glx Glutamine and glutamate, TCA Tricarboxylic acid, tCho Total choline pool

2 Instead of a single GIx peak in direct DMI, individual distinction of Glu4 from glutamine can be achieved by indirect DMI as mentioned above [60]

® Deuterated choline cannot be identified from its downstream metabolites such as phosphocholine and glycerophosphocholine under magnetic resonance
spectroscopy because of the spectral overlap; thus, the deuterium-labeled pool of choline plus metabolites was quantified

€ No chemical shift imaging or spectroscopy was performed in this study; instead, non-selective deuterium-nuclear MRI was applied with the dual transmit/receive

coil tuned to 61.45 MHz [8]
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deduction that merits further exploration, DMI might
also help identify the “pseudoprogression” after immune
checkpoint inhibitor therapies, characterized by an initial
increase followed by a subsequent decrease in the size of
existing tumors after treatment [22, 40]. In addition, due
to the non-radioactive feature, DMI presents a poten-
tial utilization in human fetuses and pregnant women,
although definitive evidence is yet to be established; how-
ever, the feasibility of DMI has been demonstrated in
pregnant mice [48].

There are different administration routes in DMI, but
the comparisons between varied routes in vivo are still
limited. After all, the different routes of administration
may affect the plasma glucose level and the deuterium
enrichment of downstream metabolites, which can influ-
ence the sensitivity and accuracy of DMI. One previous
study explored the discrepancies between IV and IP infu-
sions of [6,6'-?H2]glucose and found that IV infusions
caused the glucose signal to rapidly reach a plateau in
the liver, while IP infusions showed a continuous rise in
the glucose signal, far surpassing the water signal [17].
Another study comparing IV bolus injection and infu-
sion in mice found that while infusion led to a smoother
glucose response without an initial spike, minimal differ-
ences were observed in downstream lactate metabolite
quantification compared to bolus injection [48]. So far,
while the emphasis on oral administration for humans
has stemmed from its perceived safety, simplicity, and
well-tolerance, alternative administration routes have
not been extensively explored rather than being deemed
inherently infeasible. Therefore, for clinical translation, it
is essential to comprehensively compare different tracer
administration routes in further investigations.

Although kinetic analysis is the most commonly applied
quantification in DM], it still has several challenges. First,
it requires multiple time point measurements, which
can be time-consuming and resource-intensive. Second,
it requires complex mathematical modeling to calculate
kinetic parameters, requiring a sufficiently short acquisi-
tion time of DMI. Third, even the infusion kinetic analy-
sis may lead to inaccurate estimation of metabolic rates
because the tracer is always compartmentalized within
specific tissues or metabolic pathways resulting in a very
complex kinetic system [3, 8, 27, 60, 74]. To tackle these
issues, quantification methods, including calculation of
the area under the curves of target metabolites over time
and single time-point quantifications, can be considered
[15, 18, 24, 28, 29, 31, 32, 41, 43, 50, 61, 65, 69, 72, 73, 81].
However, these two methods are limited because they
may not capture the dynamic information as effectively
as kinetic modeling. Overall, future research is likely
to focus on addressing the challenges associated with
kinetic analysis while exploring alternative quantification
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methods to enable more accurate and efficient assess-
ment of metabolic processes in clinical scenarios.

To date, the clinical transformation of DMI heav-
ily hinges on addressing the limitation of spatial reso-
lution and SNR. Enhancing deuterium enrichment
of tracers (e.g., [2,3,4,6,6'-*H5]glucose and [*H7]glu-
cose) and applying the indirect DMI strategy are both
potentially applicable to enhance SNR for DMI, as
introduced in previous sections (Table 4 and Addi-
tional file 1: Table S2), but these advancements have
yet to fully overcome existing challenges [3, 46, 52, 60,
83]. Recently, deep learning techniques have offered
a promising avenue for DMI denoising, resulting in
improved SNR. In a pioneering study, researchers pro-
posed a novel machine learning-based approach that
synergistically integrates physics-based subspace mod-
eling and data-driven deep learning to achieve effective
denoising, enabling high-resolution DMI [41]. In addi-
tion, a less explored technique in DMI is compressed
sensing, which may hold the potential to reduce the
acquisition time while preserving data quality by lev-
eraging the inherent sparsity of metabolic signals in a
relatively wide spectrum, meriting further investiga-
tions [19, 21].

In conclusion, DMI holds promise for improving clini-
cal diagnostics and treatment protocols by offering new
insights into metabolic disorders and diseases. Despite
significant advancements, limitations in spatial resolution
still hinder the clinical translation of DMI techniques.
Additionally, to unlock the full clinical potential of DMI,
it is essential to optimize tracer synthesis, administration
protocols, and quantitative analysis methodologies.
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TCA  Tricarboxylic acid
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