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Abstract 

Background Quantitative techniques such as T2 and T1ρ mapping allow evaluating the cartilage and meniscus. We 
evaluated multi-interleaved X-prepared turbo-spin echo with intuitive relaxometry (MIXTURE) sequences with turbo 
spin-echo (TSE) contrast and additional parameter maps versus reference TSE sequences in an in situ model of human 
cartilage defects.

Methods Standardized cartilage defects of 8, 5, and 3 mm in diameter were created in the lateral femora of ten 
human cadaveric knee specimens (81 ± 10 years old; nine males, one female). MIXTURE sequences providing proton 
density-weighted fat-saturated images and T2 maps or T1-weighted images and T1ρ maps as well as the correspond-
ing two- and three-dimensional TSE reference sequences were acquired before and after defect creation (3-T scanner; 
knee coil). Defect delineability, bone texture, and cartilage relaxation times were quantified. Appropriate parametric 
or non-parametric tests were used.

Results Overall, defect delineability and texture features were not significantly different between the MIXTURE 
and reference sequences (p ≤ 0.47). After defect creation, relaxation times significantly increased in the central femur 
 (T2pre = 51 ± 4 ms [mean ± standard deviation] versus  T2post = 56 ± 4 ms; p = 0.002) and all regions combined (T1ρpre 
= 40 ± 4 ms versus T1ρpost = 43 ± 4 ms; p = 0.004).

Conclusions MIXTURE permitted time-efficient simultaneous morphologic and quantitative joint assessment based 
on clinical image contrasts. While providing T2 or T1ρ maps in clinically feasible scan time, morphologic image fea-
tures, i.e., cartilage defects and bone texture, were comparable between MIXTURE and reference sequences.

Relevance statement Equally time-efficient and versatile, the MIXTURE sequence platform combines morpho-
logic imaging using familiar contrasts, excellent image correspondence versus corresponding reference sequences 
and quantitative mapping information, thereby increasing the diagnostic value beyond mere morphology.

Key points 

• Combined morphologic and quantitative MIXTURE sequences are based on three-dimensional TSE contrasts.
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• MIXTURE sequences were studied in an in situ human cartilage defect model.

• Morphologic image features, i.e., defect delineabilty and bone texture, were investigated.

• Morphologic image features were similar between MIXTURE and reference sequences.

• MIXTURE allowed time-efficient simultaneous morphologic and quantitative knee joint assessment.

Keywords Cartilage, In situ model, Knee joint, Magnetic resonance imaging, Osteoarthritis

Graphical Abstract

Background
Osteoarthritis is a chronic joint disease with increasing 
prevalence due to aging and obesity [1]. Magnetic reso-
nance imaging (MRI) is clinically well-suited for diag-
nosing cartilage degeneration as the hallmark change of 
osteoarthritis. Traditional MRI sequences such as pro-
ton density (PD)-weighted fat-saturated (FS) sequences 
focus on cartilage morphology, i.e., surface integrity and 
intratissue signal [2]. They are insensitive to early degen-
erative changes of tissue morphology, such as partial-
thickness defects and fibrillation [3, 4].

Quantitative MRI techniques such as T2 or T1ρ map-
ping may be beneficial in detecting such changes at a 
potentially reversible stage [5, 6]. Consensus prevails that 
adding T2 maps to the routine knee protocol improved 
sensitivity in detecting cartilage lesions significantly 
[3, 6]. The literature is less clear on T1ρ: even though 
the association between cartilage degeneration and 

prolongation of T1ρ relaxation is well established [7, 8], 
its potential diagnostic benefits remain to be ascertained. 
Both mapping techniques have in common that their 
more widespread adoption is hampered by prohibitively 
long scan times and other challenges [9, 10].

Combined morphologic and quantitative sequences, 
such as quantitative double-echo in steady-state, pro-
vide morphologic images and T2 maps in clinically fea-
sible scan times [11–13]. Quantitative double-echo in 
steady-state sequences is diagnostically equivalent to 
conventional clinical MRI protocols; therefore, they are 
theorized to (partially) substitute the routine knee pro-
tocol while providing additional T2 maps [14]. Neverthe-
less, the morphologic images lack the clinically familiar 
contrasts of state-of-the-art turbo spin-echo (TSE) 
sequences. The “multi-interleaved x-prepared turbo spin-
echo with intuitive relaxometry” (MIXTURE) sequence 
provides an alternative platform for combined imaging 
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[15]. These sequences are designed to acquire at least 
two morphologic images of different contrast weight-
ings using variable prepulses. Because prepulses, echo 
times, and spin-lock durations are freely adjustable, the 
sequences provide quantitative T2 or T1ρ maps as a “by-
product” of the morphologic images. In contrast to quan-
titative double-echo in steady-state, MIXTURE is based 
on a three-dimensional (3D) TSE acquisition. Preliminary 
studies have explored its principal clinical applicability, 
but systematic comparisons with reference sequences 
and standardized pathologies are lacking [16–20].

This study aimed to evaluate MIXTURE sequences in 
two principal configurations for their clinical usage and 
against corresponding two-dimensional (2D) and 3D TSE 
reference sequences in an in situ model of standardized 
cartilage defects. We hypothesized that the morphologic 
MIXTURE images are diagnostically on par with their 
reference sequence counterparts while additionally pro-
viding T2 and T1ρ maps in clinically feasible time frames.

Methods
Study design
The local Institutional Review Board approved this pro-
spective in situ imaging study on human cadaveric knee 
joint specimens (Ethical Committee, RWTH Aachen 
University, EK180/16) conducted in 2022 and 2023. 
Fresh-frozen and nonfixated knee joint specimens from 
body donors who had given written informed consent 
prior to study initiation were provided by the local Insti-
tute of Anatomy (RWTH Aachen University, Germany). 
Moderate-to-severe cartilage degeneration of the lat-
eral compartment, such as substantial tissue loss or 
focal lesions, was screened for during standard clinical 
scanning (using 2D TSE PD-weighted FS imaging) and 
defined as an exclusion criterion. Based on a preliminary 
analysis of the first three specimens, a minimum sample 

size of 8 was calculated using a statistical power of 80%, a 
significance level of 0.01, and an effect size (i.e., Cohen’s 
d [21]) of 1.24. Hence, ten knee joint specimens were 
included.

Workflow
Specimens were left to thaw at room temperature for 24 
h. MRI was performed before and after creating stand-
ardized cartilage defects. On day 1, predefect MRI was 
performed. The specimens were kept at 5 °C overnight. 
On day 2, cartilage defects were created, and postdefect 
MRI was performed immediately afterward.

Cartilage defects
We present in Fig.  1 the standardized step-wise crea-
tion of the cartilage defects. N.P. (pregraduation medical 
student, 2 years of experience) created the defects. First, 
the knee joint was accessed through a median longitu-
dinal skin incision and a medial peri-patellar approach. 
Once the joint was flexed, the patella was everted later-
ally to fully expose the joint. Second, the weight-bearing 
region of the lateral femoral condyle was identified. Three 
defects of 3, 5, and 8 mm in diameter were created in the 
lateral femoral condyle perpendicular to the condyle’s 
bone contour. The cartilage tissue was removed using 
skin biopsy punches of corresponding diameters and sur-
gical scalpels. Particular care was taken to maintain the 
integrity of the subchondral lamella. Third, the joint was 
thoroughly and continuously irrigated with 0.9% saline 
solution to remove surgical debris and excess air. Fourth, 
the joint was sutured layer-wise.

MRI acquisition
All scans were performed on a 3-T MRI scanner (Eli-
tion X, Philips, Best, The Netherlands) using an eight-
channel transmit-receive knee coil. Specimens were 

Fig. 1 Standardized cartilage defect model. a Intact knee joint. b Complete surgical exposure of the knee joint specimen through the longitudinal 
arthrotomy, medial peripatellar incision, and lateral eversion of the patella. c By use of biopsy punches, cartilage defects of variable diameters, i.e., 
3 mm (top), 5 mm (center), and 8 mm (bottom), were aligned anteroposteriorly. d The wound was closed by layer-wise suturing under continuous 
irrigation
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positioned feet-first, supine, and in approximately 
30° of flexion in line with clinical positioning. Two 
MIXTURE sequences were acquired: PD-weighted 
FS images with T2 maps (scan time 4:59 min:s) and 
T1-weighted images with T1ρ maps (scan time 6:30 
min:s), followed by the respective reference sequences 
(2D TSE and 3D TSE). The first MIXTURE sequence 
was a combination of PD-weighted FS (using a spec-
tral attenuated inversion-recovery [SPAIR] prepulse) 
and T2-weighted morphologic (using a T2-preparation 
module of 50 ms) acquisitions, in an interleaved man-
ner. Voxel-wise T2 relaxation times were determined 
based on the two images by monoexponential fitting, 
and T2 maps were subsequently reconstructed on the 
scanner workstation using prototype software. The 
second MIXTURE sequence was a combination of a 
T1-weighted (without preparation) and two spin lock-
prepared T1ρ-weighted FS morphologic acquisitions 

(using T1ρ-preparation modules of 25 ms and 50 ms, 
respectively, and SPAIR prepulses). Voxel-wise, T1ρ 
relaxation times were determined based on the three 
images by mono-exponential fitting, and T1ρ maps 
were reconstructed accordingly. Further details on 
the MIXTURE sequences can be found in the lit-
erature [15]. 2D TSE reference PD-weighted FS and 
T1-weighted sequences were included per our clinical 
knee protocol, while 3D TSE reference PD-weighted 
FS and T1-weighted sequences were obtained from the 
vendor and included. Table 1 summarizes the sequence 
parameters.

Notably, as 3D TSE acquisitions, the reference 3D 
TSE and MIXTURE sequences can, in principle, be 
acquired at isotropic resolution. In this study, however, 
we aimed to match the 3D TSE sequences to the 2D ref-
erence TSE sequences, i.e., the clinical reference stand-
ard, for voxel-to-voxel comparisons. Consequently, the 

Table 1 MRI sequence parameters

Two MIXTURE sequences were acquired, combining morphologic imaging with quantitative mapping, and 2D TSE and 3D TSE reference sequences of the same 
weighting. PD-weighted FS images were combined with quantitative T2 maps (“MIX 1”) and T1-weighted images with T1ρ maps (“MIX 2”). Note that for 3D TSE 
sequences,  TEeff and  TEequiv denote the effective and equivalent TE, respectively, as mediated by the choice of the refocusing pattern. In contrast, the 2D TSE sequence 
uses a constant refocusing flip angle that a single TE can describe. During the TSE readout, different refocusing patterns with variable order and magnitude of the 
flip angles are employed as designated by the manufacturer. T2-prep TE and SL-prep TSL refer to the duration of the preparation modules that MIXTURE employs to 
generate the respective contrast weightings

FOV Field of view, FS Fat-saturated, MIXTURE Multi-interleaved x-prepared turbo spin-echo with intuitive relaxometry, MSK Musculoskeletal, N/A Not applicable, 
NSA Number of signal averages, PD Proton density, Prep Preparation, TE Echo time, TEeff Effective TE, TEequiv Equivalent TE, TSE turbo spin-echo, TSL Spin lock time, TR 
Repetition time, SENSE Sensitivity encoding, SL Sin lock, SPAIR Spectral attenuated inversion-recovery, SPIR Spectral presaturation with inversion-recovery

Parameter MIX 1 2D TSE PD-FS 3D TSE PD-FS MIX 2 2D TSE T1-weighted 3D TSE T1-weighted

Sequence type 3D TSE 2D TSE 3D TSE 3D TSE 2D TSE 3D TSE

Orientation Sagittal

TR [ms] 1,200 3,000 1,100 600 582 400

TE [ms] N/A 40 N/A N/A 15 N/A

TEeff [ms] 125 N/A 125 22 N/A 36

TEequiv [ms] 46 N/A 46 13 N/A 21

Echo train length [n] 35 11 35 12 5 8

Refocusing pattern “MSK PD FS” “No” “MSK PD FS” “Spine view T1” “Constant” (110°) “MSK T1”

Compressed SENSE factor 4.5 2.5 3.5 6 2 6

NSA [n] 1 2 1 1 2 2

Fat saturation SPAIR—none SPIR SPAIR None—SPAIR None None

T2-prep TE [ms] 0, 50 N/A N/A N/A N/A N/A

SL-prep TSL [ms] N/A N/A N/A 0, 25, 50 N/A N/A

SL-prep frequency [Hz] N/A N/A N/A 500 N/A N/A

Scan time [min:s] 4:59 4:06 2:57 6:38 4:23 4:22

FOV  [mm2] 140 × 140

Acquisition matrix [px] 304 × 304

Reconstruction matrix [px] 512 × 512

Fat shift direction Anteroposterior

Phase oversampling [%] 12 + 12 30 + 30 12 + 12 12 + 12 33 + 33 12 + 12

Slices [n] 43

Slice thickness [mm] 3

Slice oversampling [%] 12 N/A 12 100 N/A 12
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3D TSE sequences were acquired analogously to the 2D 
TSE sequence, i.e., using thicker slices and higher in-
plane resolution than achievable with isotropic image 
acquisitions.

Image analysis
Quantitative analyses were performed in Python version 
3.9.9 [22].

Defect delineability
Cartilage defect delineability was assessed on the PD-
weighted FS sequences using line profiles manually 
annotated in ITK-SNAP version 3.8 [23, 24] by N.P. 
(pregraduation medical student, 2 years of experience 

in medical imaging) and visually verified by S.N. (board-
certified musculoskeletal radiologist, 10 years of experi-
ence). Line profiles were placed through the defect and 
adjacent cartilage on the sagittal postdefect PD-weighted 
FS image that centrally bisected the defects (Fig. 2a). As 
projections of the signal intensity (SI) along their course, 
SI line profiles were extracted from the 2D TSE, 3D TSE, 
and MIXTURE PD-weighted FS images and normalized 
to the maximum of 1 (Fig. 2b). For every SI line profile, 
full width at half maximum (FWHM, Fig.  2c) and edge 
width (EW, Fig. 2d) were evaluated as surrogates of defect 
delineability. More specifically, a parallel line was defined 
at half maximum between the background signal level 
of cartilage and the maximum SI along the line profile. 

Fig. 2 Inter-sequence comparison of cartilage defect delineability. a For this representative defect of 5 mm in diameter, a line was manually 
annotated to transect the defect and adjacent cartilage at mid-substance (red line, sagittal PD-weighted FS image). b For each sequence, i.e., 
2D TSE, 3D TSE, and MIXTURE, the line profiles (corresponding to the pixel-wise signal intensity along the red line) were extracted, normalized 
to the maximum signal intensity of 1 (blue circles), and used to calculate the FWHM (c) and the EW (d) as surrogate measures of defect delineability. 
c FWHM was determined by determining the half maximum (dashed green line) between the cartilage background signal intensity (dashed 
red line) and the maximum signal intensity and by measuring the horizontal distance between the intersecting points of the half maximum 
with the signal intensity profile (green dots). d Analogously, EW was determined by defining the horizontal distances between the 10 and 90% 
maximum intensity levels (green dots, dashed green lines) on both defect shoulders. EW Edge width, FS Fat-saturated, FWHM Full width at half 
maximum, MIXTURE Multi-interleaved x-prepared turbo spin-echo with intuitive relaxometry, PD Proton density, TSE Turbo spin-echo
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The horizontal distance between the intersections of this 
line with the SI line profile was determined as the defect’s 
FWHM. Similarly, two vertical lines per defect shoulder 
defined the 10% and 90% maximum SI. The horizontal 
distance between these two lines was determined as the 
respective defect shoulder width, and EW was calculated 
as the mean of both defect shoulder widths.

Bone texture features
The bone texture on the T1-weighted sequences was 
quantified using radiomic features (Fig. 3). In ITK-SNAP, 
circular regions of interest (ROI) with a diameter of 40 
pixels were defined directly adjacent to the 5-mm defect 
(Fig.  3a) on the same sagittal postdefect slice as above. 
Before computing texture features, the stacks of the 2D 
TSE, 3D TSE, and MIXTURE T1-weighted images were 
normalized between the SI values 0 and 1 (Fig.  3b). 
Guided by earlier studies [25], we focused on variance, 
(joint) energy, (joint) entropy, and inverse difference 
(synonymous with “homogeneity1” [PyRadiomics]) to 
quantify the spatial distribution of SI values, character-
ize the underlying bone structure, and capture what the 
radiologist assesses on the microstructural level (Fig. 3c). 
The texture features were determined using PyRadiom-
ics [26]. Variance is a first-order feature that measures SI 
value spread within the ROI; high variance indicates high 
heterogeneity and large differences from their mean SI. 
Entropy, energy, and inverse difference are gray-level co-
occurrence matrix features. The gray level co-occurrence 
matrix quantifies how often different neighboring voxel 
value pairs are present within the ROI. Entropy meas-
ures disorder or complexity; high entropy indicates bone 
tissue with a complex texture characterized by diversely 
varying neighboring SI values. Energy measures textural 
uniformity; high energy indicates many repetitions of the 
same neighboring SI values. Homogeneity measures local 

image uniformity; high homogeneity indicates more uni-
form gray levels. High entropy, energy, and inverse dif-
ference values indicate more randomness, homogeneous 
patterns, and local homogeneity [26, 27].

Quantitative parameter maps
N.P. segmented the femoral and tibial cartilage plates on 
the MIXTURE PD-weighted FS images using ITK-SNAP. 
The central bisecting slice through the defects (postde-
fect) and the corresponding original slice (predefect) 
were segmented. The femoral cartilage was divided into 
an anterior (“aF”), central (“cF”), and posterior region 
(“pF”) based on the outer contours of the lateral menis-
cus’ anterior and posterior horns. The tibial cartilage 
(“T”) was segmented as one region. All segmentation 
outlines were reviewed and adjusted by T.N. and S.N. 
T2 and T1ρ values were computed (predefect and post-
defect) and provided as mean ± standard deviation for 
each region and the entire lateral femorotibial compart-
ment. To investigate a potential interplay of cartilage 
morphology and relaxation times, the digital caliper of 
the in-house picture archiving and communication sys-
tem was used to determine cartilage thickness adjacent 
to the 8-mm defects (postdefect images; PD-weighted FS 
and T1-weighted images side by side) and at the corre-
sponding location (predefect images). The caliper’s step 
size was one pixel, and the caliper resolution was limited 
by the image resolution of 0.27 × 0.27 mm.

Statistical analysis
Data are given as mean ± standard deviation unless dif-
ferently specified. Statistical analysis was performed by 
N.P., T.N., and S.N. using Graph Pad Prism (v9.5.1, San 
Diego, CA, USA). Intersequence comparisons of FWHM, 
EW, and radiomic texture features were performed 
using repeated measures analysis of variance (ANOVA) 

Fig. 3 Inter-sequence comparison of bone texture. On the T1-weighted images, radiomic features were analyzed by defining a standardized 
circular region of interest adjacent to the subchondral lamella underneath the 5-mm defect (a). Image preprocessing included normalization 
of the signal intensity to the range of 0 to 1 (b). As texture features, variance as a first-order feature and joint energy, joint entropy, and homogeneity 
(i.e., ID) as gray-level co-occurrence matrix (GLCM) features were extracted (c). For the computation of the GLCM, the normalized images were 
quantized into 200 evenly spaced bins. GLCM Gray-level co-occurrence matrix, ID Inverse difference
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followed by the Tukey-Kramer post hoc test. Predefect 
and postdefect T2 and T1ρ relaxation times were com-
paratively evaluated per region and overall using Wil-
coxon matched-pairs signed-rank tests. Predefect and 
postdefect cartilage thickness was compared by means of 
a two-tailed paired t-test. To reduce the number of statis-
tically significant but clinically likely irrelevant findings, 
the family-wise significance level was set to ∝ = 0.01. 
Multiplicity-adjusted p-values are provided.

Results
Study cohort
Ten knee joint specimens (age 81.1 ± 10.4 years; 
range 68–96 years; 9 males, 1 female) were included. 

Standardized cartilage defects were successfully created 
in all specimens.

Qualitative evaluation
In PD-weighted FS images, the cartilage defects were 
clearly discernable, and the cartilage tissue had the char-
acteristic layer-wise configuration and intermediate SI in 
all sequences. Menisci and bone marrow appeared homo-
geneously dark, i.e., suppressed, while intraarticular fluid 
was homogenously bright (Fig.  4). In the T1-weighted 
images, the macro- and microstructural bone texture 
appeared slightly less blurry in the 2D TSE sequence, par-
ticularly compared to the MIXTURE image (Fig. 5). Con-
trast and noise levels appeared largely similar. Regarding 
artifacts, we noted artificial signal hyperintensities in the 

Fig. 4 Representative PD-weighted fat-saturated images and MIXTURE T2 maps. Sagittal images before (orange frame (a)) and after (blue frame 
(b)) the creation of standardized cartilage defects. The slice that centrally bisected the three defects and the corresponding slice of the intact 
joint was selected. Cartilage defects of 3 mm, 5 mm, and 8 mm diameter (from left [anterior] to right [posterior]) are displayed. Zoomed images 
(indicated by the inset boxes in the leftmost images) are from left to right: the 2D TSE sequence, the 3D TSE sequence, and the MIXTURE 
sequence. Corresponding MIXTURE-based T2 maps before (c) and after (d) defect creation. The scale bar on the right extends from 0 to 100 ms. 
MIXTURE Multi-interleaved x-prepared turbo spin-echo with intuitive relaxometry, PD Proton density, TSE Turbo spin-echo
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menisci of two specimens on MIXTURE and 3D TSE 
(both PD-weighted FS) images, which were much less 
visible on the 2D TSE PD-weighted FS images. Their 
absence on the corresponding MIXTURE T2-weighted 
images confirmed their artificial nature (Additional file 1: 
Fig. S1).

Quantitative evaluation of defect delineability
Table  2 presents the metrics of defect delineability, 
i.e., FWHM and EW values. FWHM values were sub-
stantially lower than the nominal defect diameters but 
overall largely similar between the sequences. For the 
5-mm defects, however, the 2D TSE sequence yielded 
significantly higher FWHM values than the MIXTURE 
sequence (p = 0.005). On average, EW values were lower 
for the 2D TSE than for the 3D TSE and MIXTURE 
sequences, even though statistically not significant. The 
latter two sequences exhibited largely similar EW values.

Quantitative evaluation of bone texture
Voxel SIs contained in the ROI were spread out along 43 
± 10 (2D TSE), 49 ± 9 (3D TSE), and 42 ± 9 (MIXTURE) 
bins, indicating a comparable spread of voxel SI distribu-
tions. The radiomic feature analysis indicated compara-
ble bone texture feature values between the sequences 
(Fig.  6). When comparatively evaluating the individual 
features, significant differences were only found between 
the 3D TSE and MIXTURE sequences with significantly 
higher energy and homogeneity values (and significantly 
lower entropy values) determined for MIXTURE versus 
3D TSE.

Quantitative parameter maps
We observed increased T2 and T1ρ relaxation times 
after defect creation for all studied regions (Table  3). 
These increases were mainly non-significant except for 
T2 in the central femur, where the defects were located 

Fig. 5 Representative T1-weighted images and MIXTURE T1ρ maps. Morphologic images (a, b) and corresponding MIXTURE-based T1ρ maps (c, d) 
are visualized before and after defect creation. Figure organization as in Fig. 4. MIXTURE Multi-interleaved x-prepared turbo spin-echo with intuitive 
relaxometry
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(predefect, 51 ± 4 ms; postdefect, 56 ± 4 ms; p = 0.002), 
and for T1ρ when considering all regions together (pre-
defect, 40 ± 4 ms; postdefect, 43 ± 4 ms; p = 0.004). The 
average cartilage thickness increased from 2.9 ± 0.5 mm 
(predefect) to 3.1 ± 0.5 mm (postdefect) (p = 0.06).

Discussion
Our study evaluated the image quality of MIXTURE 
PD-weighted FS and T1-weighted sequences relative 
to corresponding 2D and 3D TSE reference sequences. 
Focusing on the delineability of cartilage defects and 
quantitative bone texture features, we found that MIX-
TURE sequences were largely equivalent regarding image 
contrast, morphologic correspondence and coherence, 
and quantitative features. Simultaneously, MIXTURE 
sequences provided quantitative T2 or T1ρ maps with lit-
tle additional scan time. Thereby, MIXTURE sequences 
could increase the diagnostic information of routine 
scan protocols beyond mere morphology and may com-
plement (or in parts even replace) current knee MRI 
protocols.

The primary advantage of MIXTURE sequences is their 
TSE-derived image contrast. Since their introduction to 
the clinic in the early 1990s, TSE sequences have been 
considered the standard for knee MRI; thus, radiologists 
are used to these images, and the American College of 
Radiology even formally recommends their usage [28]. 
MIXTURE sequences obviate the need for radiologists 
to familiarize themselves with other contrasts. Addi-
tionally, the sequence architecture is flexible and may be 
adjusted to other TSE-based weightings with or without 
fat saturation. A broad spectrum of sequence combina-
tions can thus be efficiently acquired at each institution’s 
discretion.

Specifically, we evaluated a PD-weighted FS sequence 
with T2 maps and a T1-weighted sequence with T1ρ 
maps acquired with 43 slices across the joint in 5 and 
6.5 min, respectively. Previously, Kijowski et  al. [3] 

Table 2 Quantification of cartilage defect delineability

The full widths at half maximum (FWHM) and edge widths (EW) were extracted 
from the line profiles of the PD-w FS images and used as surrogate parameters 
of defect delineability. EW was averaged over both defect shoulders. Data are 
presented as mean ± standard deviation [mm]. The statistical analysis was 
performed using repeated measures ANOVA. p-values are given as a function 
of sequence, delineability parameter (i.e., FWHM and EW), and nominal defect 
diameter (i.e., 3 mm, 5 mm, and 8 mm). Significant differences are indicated in 
bold type

ANOVA Analysis of variance, EW Edge width, FS Fat-saturated, FWHM Full width 
at half maximum, MIXTURE Multi-interleaved x-prepared turbo spin-echo with 
intuitive relaxometry, PD Proton density, TSE Turbo spin-echo
* The post hoc details (Tukey’s test) regarding multiplicity-adjusted p-values for 
pairwise sequence comparisons were p = 0.030 for 2D TSE versus 3D TSE, p = 
0.005 for 2D TSE versus MIXTURE, and p = 0.910 for 3D TSE versus MIXTURE

Nominal 
defect 
diameter 
[mm]

2D TSE 
FWHM [mm]
EW [mm]

3D TSE 
FWHM [mm]
EW [mm]

MIXTURE 
FWHM [mm]
EW [mm]

p-value

3 2.6 ± 0.4 2.3 ± 0.7 2.6 ± 0.3 0.340

1.0 ± 0.4 1.3 ± 0.5 1.3 ± 0.6 0.020

5 4.4 ± 0.2 4.3 ± 0.2 4.3 ± 0.2 0.004*

1.1 ± 0.7 1.4 ± 0.4 1.4 ± 0.4 0.040

8 7.1 ± 0.5 7.0 ± 0.5 7.0 ± 0.5 0.470

1.5 ± 0.9 1.8 ± 1.1 1.8 ± 1.0 0.450

Fig. 6 Analysis of bone texture features. Based on the radiomic feature analysis, a representative region of interest of the subchondral bone 
was defined and compared between the T1-weighted sequences, i.e., the 2D TSE, 3D TSE, and MIXTURE sequences. Variance (a), energy (b), entropy 
(c), and homogeneity (d) were quantified and analyzed as measures of bone texture. Levels of statistical significance were stratified as “ns,” “*,” “**,” 
and “***” to indicate p > 0.05, 0.01 < p ≤ 0.05, 0.001 < p ≤ 0.01, and p ≤ 0.001, respectively. MIXTURE Multi-interleaved x-prepared turbo spin-echo 
with intuitive relaxometry, TSE Turbo spin-echo



Page 10 of 12Lemainque et al. European Radiology Experimental            (2024) 8:66 

highlighted the clinical potential of adding T2 maps to 
the routine protocol. Even though the diagnostic benefit 
of T1ρ maps remains unclear, adding more quantitative 
images to the morphologic standard images seems well-
justified. MIXTURE needs at least two morphologic 
images, which require more acquisition time than a sin-
gle image.

The MIXTURE PD-weighted FS sequence depicted 
the cartilage defects with a level of contrast and sharp-
ness similar to the reference sequences. By trend, EW 
and FWHM values of the 2D TSE sequences were lower 
and closer to the nominal defect diameters, respec-
tively, than those of the corresponding MIXTURE and 
3D TSE sequences. This finding indicates slightly less 
clear defect delineability of the latter sequences and 
may be due to the higher echo train lengths [29, 30] or 
the choice of the refocusing pattern that, besides affect-
ing image contrast and SNR, also influences image 
blurring [31].

Increased blurring, likely secondary to the choice of 
the refocusing pattern, was observed for the MIXTURE 
T1-weighted images and confirmed by the radiomic anal-
ysis of bone texture. Bone texture was significantly more 
homogeneous in the MIXTURE T1-weighted sequence, 
which may translate into a loss of microtextural detail 
with as yet unknown clinical relevance.

When designing the study, we aimed to compare car-
tilage and bone texture voxel-wise. To this end, we 
matched the image resolutions of all sequences, both in 
plane and through plane. Yet, this approach precluded 
the possibility of performing multiplanar reconstruc-
tions, an inherent feature of isotropic 3D sequences, 
which is a prerequisite for precise tissue segmentation (of 
cartilage and meniscus) for the analysis of morphometry 
and relaxivity [32, 33].

Quantitative analyses indicated increased postde-
fect relaxation times. Alongside increased T2 and T1 
ρ relaxation times, we observed cartilage thickness 

increases when comparing predefect and postdefect 
images. Even though the limited number of specimens 
and the caliper-related inaccuracies in thickness meas-
urements need to be acknowledged, the changes in car-
tilage morphology and relaxivity are likely due to tissue 
swelling secondary to surgical handling, extended 
exposure to unphysiological conditions, and potentially 
altered tonicity.

While the exact compositional and structural corre-
lates of prolonged T1ρ and T2 relaxation times remain 
unknown, literature evidence suggests that cartilage 
hydration is likely dominant [34, 35]. Surprisingly, we 
observed higher T2 than T1ρ relaxation times in the 
cartilage. In biological tissues, T1ρ relaxation times 
should be longer than T2 relaxation times because the 
spin-lock pulse forces the spins to precess about a direc-
tion different from the main magnetic field B0, thereby 
slowing T2 relaxation [36]. Shorter repetition times (as 
present in the MIXTURE sequence) may have led to 
T1ρ underestimation [37]: if the repetition time is too 
short, it may not allow for complete T1ρ relaxation and 
decrease T1ρ relaxation times. Other factors worth 
considering are the applied radiofrequency pulse for the 
T1ρ preparation, the B1 inhomogeneity, and the magic 
angle effect [38]. Future phantom studies are needed 
to assess the accuracy and validity of MIXTURE-based 
relaxivity measurements versus reference measure-
ments, e.g., multi-echo spin-echo sequences (for T2 
quantification) and gradient-echo sequences (for T1ρ 
quantification) [39].

Our study has limitations. First, the in situ defect 
model using human cadaveric knee joints only approxi-
mates the actual in vivo situation. However, the model 
effectively excludes intersequence motion (and other 
artifacts such as arterial pulsations) and helps realize 
reproducible and standardized experimental condi-
tions for voxel-wise comparisons. Regarding clinical 
translation, this model is inherently limited. Second, 

Table 3 Quantification of cartilage composition and ultrastructure

T2 and T1ρ relaxation times (mean ± standard deviation [ms]) of the segmented cartilage of the central lateral femorotibial compartment before and after defect 
creation in ten knee joint specimens. The regional assessment included three femoral and one tibial region. Predefect and postdefect relaxation times were compared 
using the Wilcoxon matched-pairs signed rank test, and multiplicity-adjusted p-values were determined

Post After defect creation, Pre Before defect creation
* Significant difference

Region T2pre [ms] T2post [ms] p-value T1ρpre [ms] T1ρpost [ms] p-value

Anterior femur 48 ± 3 49 ± 3 0.43 43 ± 5 46 ± 3 0.040

Central femur 51 ± 4 56 ± 4 0.002* 41 ± 5 43 ± 5 0.190

Posterior femur 64 ± 8 69 ± 9 0.04 34 ± 9 39 ± 8 0.020

Tibia 41 ± 4 45 ± 4 0.05 36 ± 4 40 ± 5 0.010

All regions 48 ± 2 51 ± 2 0.03 40 ± 4 43 ± 4 0.004*
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the number of specimens was small, and the study pro-
vided, by design, a focused proof of concept. Further 
diagnostic aspects relating to particular knee joint con-
ditions require larger sample sizes and, ideally, assess-
ment in the clinical routine.

In conclusion, combined morphologic and quantita-
tive MRI sequences, such as the versatile MIXTURE plat-
form, increase scanning efficiency and diagnostic utility 
by providing familiar contrasts and delivering additional 
quantitative information about joint cartilage defects in 
human cadaveric specimens. In a basic research context, 
MIXTURE sequences demonstrated excellent deline-
ability of cartilage defects and visualization of bone tex-
ture on par with the corresponding reference sequences. 
Once corroborated by larger clinical studies, MIXTURE 
may be a promising sequence platform for comprehen-
sive and time-efficient joint imaging.
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