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Abstract 

Background To investigate the potential of combining compressed sensing (CS) and artificial intelligence (AI), in par-
ticular deep learning (DL), for accelerating three-dimensional (3D) magnetic resonance imaging (MRI) sequences 
of the knee.

Methods Twenty healthy volunteers were examined using a 3-T scanner with a fat-saturated 3D proton den-
sity sequence with four different acceleration levels (10, 13, 15, and 17). All sequences were accelerated with CS 
and reconstructed using the conventional and a new DL-based algorithm (CS-AI). Subjective image quality was evalu-
ated by two blinded readers using seven criteria on a 5-point-Likert-scale (overall impression, artifacts, delineation 
of the anterior cruciate ligament, posterior cruciate ligament, menisci, cartilage, and bone). Using mixed models, all 
CS-AI sequences were compared to the clinical standard (sense sequence with an acceleration factor of 2) and CS 
sequences with the same acceleration factor.

Results 3D sequences reconstructed with CS-AI achieved significantly better values for subjective image quality 
compared to sequences reconstructed with CS with the same acceleration factor (p ≤ 0.001). The images recon-
structed with CS-AI showed that tenfold acceleration may be feasible without significant loss of quality when com-
pared to the reference sequence (p ≥ 0.999).

Conclusions For 3-T 3D-MRI of the knee, a DL-based algorithm allowed for additional acceleration of acquisition 
times compared to the conventional approach. This study, however, is limited by its small sample size and inclusion 
of only healthy volunteers, indicating the need for further research with a more diverse and larger sample.

Trial registration DRKS00024156.

Relevance statement Using a DL-based algorithm, 54% faster image acquisition (178 s versus 384 s) 
for 3D-sequences may be possible for 3-T MRI of the knee.
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Key points 

• Combination of compressed sensing and DL improved image quality and allows for significant acceleration of 3D 
knee MRI.

• DL-based algorithm achieved better subjective image quality than conventional compressed sensing.

• For 3D knee MRI at 3 T, 54% faster image acquisition may be possible.

Keywords Artifacts, Artificial intelligence, Deep learning, Knee joint, Magnetic resonance imaging

Graphical Abstract

Background
The knee is the second most common site of musculo-
skeletal pain [1]. Common knee injuries, such as anterior 
cruciate ligament (ACL) injuries, are highly prevalent in 
the general population [2, 3], leading to decreased pro-
ductivity and diminished quality of life [4], while also 
imposing a substantial socioeconomic burden [5]. In this 
context, magnetic resonance imaging (MRI), with its abil-
ity to provide detailed tissue contrast, plays a critical role 
in the accurate diagnosis and evaluation of knee injuries 
[6]. However, the growing demand for MRI [7] has led 
to a bottleneck in terms of patient throughput, limiting 
the number of patients who can undergo timely exami-
nations. To expedite image acquisition without compro-
mising image quality, several innovative techniques have 

emerged. These include reduced scanning protocols [8], 
parallel imaging (e.g., GRAPPA) [9], and compressed 
sensing (CS) [10]. Numerous studies have demonstrated 
the efficacy of CS in reducing scan times across various 
anatomical regions [11–14] while maintaining diagnostic 
image quality. However, conventional CS approaches face 
limitations in achieving higher acceleration factors due 
to the introduction of artifacts such as aliasing and blur-
ring. Recent advancements in artificial intelligence (AI), 
especially deep learning (DL) have opened avenues for 
addressing these limitations by integrating it with con-
ventional CS [15].

In the context of knee MRI, Pezotti et  al. [15] intro-
duced Adaptive-CS-Net as part of the 2019 fastMRI 
challenge which enabled an 8 × reduction in acquisition 
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times. Adaptive-CS-Net is an AI-driven convolutional 
neural network that enhances MRI image reconstruc-
tion by integrating parallel imaging, CS, and DL, 
using iterative learning-based techniques to process 
undersampled k-space data, thereby improving image 
authenticity. Adaptive-CS-Net has since been further 
developed to accommodate a broader range of accel-
eration factors and anatomical regions, including the 
knee. In an initial study, Iuga et al. demonstrated a 64% 
reduction in scan time for two-dimensional knee MRI 
[16]. However, so far, there have been no studies test-
ing the clinical feasibility and limitations of Adaptive-
CS-Net to reconstruct three-dimensional (3D) MRI 
images of the knee. The implementation of this algo-
rithm could help facilitate the routine clinical applica-
tion of 3D-sequences, enabling enhanced visualization 
of anatomical structures not parallel to standard imag-
ing planes, thereby improving diagnostic accuracy and 
efficiency. Thus, the aim of the current study was to 
compare the subjective image quality of MRI recon-
structions using conventional CS and reconstructions 
using CS together with artificial intelligence (CS-AI) at 
different acceleration factors for 3D diagnostic MRI of 
the knee. The purpose was to determine whether CS-AI 
is a feasible approach to further decrease acquisition 
times of knee MRI while maintaining diagnostic image 
quality.

Methods
Study population
This prospective single center study was carried out 
in accordance with the ethical standards in the 1964 

Declaration of Helsinki and its later amendments and 
was approved by our institutional review board. The 
study was registered in the national Clinical Trials Reg-
ister (DRKS00024156). Recruitment of volunteers and 
acquisition of imaging data were carried out in March 
2021. Written informed consent was obtained from 
all participants included in the study. Exclusion crite-
ria were pregnancy, age below 18, implanted MRI con-
ditional or unsafe devices, previous surgery or known 
pathologies of the knee, and knee related pain in the 
last 6 months.

MRI acquisition and reconstruction
A whole-body 3.0-T MRI system (Philips Ingenia 3.0  T, 
Philips, Hamburg, Germany) with a dedicated knee coil 
(transmit/receive, 16 channels) was used for image acqui-
sition. All volunteers were placed supine, feet-first on 
the table. For all sequences, the field-of-view covered the 
entire knee joint. The protocol included a fat saturated 
3D proton density sequence with four different accelera-
tion levels (10, 13, 15, and 17) as well as a sense sequence 
with an acceleration factor of 2. These specific levels were 
chosen to represent a broad spectrum of acceleration, 
from moderate to extremely high, allowing us to assess 
the efficacy of the CS-AI algorithm in maintaining image 
quality under varying degrees of data undersampling, 
corresponding to scan time reductions of 54%, 64%, 68%, 
and 73%, respectively. The selected acceleration levels 
were compared with the conventional sense sequence 
at an acceleration factor of 2, which is the standard 3D 
sequence used in our institution’s daily routine. Except 
for the acceleration factors, all other parameters were 
kept identical between the acquired sequences. Table  1 

Table 1 Acquisition parameters for the different three-dimensional sequences and results for changes in the scan time

Please note that only the acceleration factors were changed between the different sequences to keep them as comparable as possible. Also note that the acquisition 
times are the same for the CS and CS-AI sequences with the same acceleration factor. CS Acceleration using compressed sensing, CS-AI Acceleration using compressed 
sensing followed by AI image reconstruction using a deep learning-based algorithm

Sequence Standard
SENSE

CS 10
CS-AI 10

CS 13
CS-AI 13

CS 15
CS-AI 15

CS 17
CS-AI 17

Echo time [ms] 170 170 170 170 170

Repetition time [ms] 1,300 1,300 1,300 1,300 1,300

Flip angle [degrees] 90 90 90 90 90

Field of view [mm] 140 × 159 × 160 140 × 159 × 160 140 × 159 × 160 140 × 159 × 160 140 × 159 × 160

Slice thickness [mm] 3D sequence, therefore voxel size as volume

Acquisition voxel size [mm] 0.63 × 0.62 × 0.63 0.63 × 0.62 × 0.63 0.63 × 0.62 × 0.63 0.63 × 0.62 × 0.63 0.63 × 0.62 × 0.63

Reconstruction voxel size [mm] 0.30 × 0.30 × 0.63 0.30 × 0.30 × 0.63 0.30 × 0.30 × 0.63 0.30 × 0.30 × 0.63 0.30 × 0.30 × 0.63

Turbo factor/echo train length 63 63 63 63 63

Sense/CS factor 2/ −  − /10  − /13  − /15  − /17

Scan time [s] 384 178 137 121 105

Saved scan time [s] 206 247 263 279

Scan time reduction [%] 54 64 68 73
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summarizes the sequence parameters used in this study, 
showing the scan time for each sequence and the poten-
tial reduction of scan time.

The sets of undersampled k-space data from the differ-
ent acceleration levels were reconstructed into visually 
perceivable images using two methods: (1) a conventional 
approach with CS; and (2) a novel AI-driven prototype 
(CS-AI). The CS-AI-prototype is based on the “Adaptive-
CS-Net” convolutional neural network, which employs 
an iterative, learning-based reconstruction scheme to 
process undersampled k-space data by exploiting addi-
tional information such as coil sensitivity and location of 
the image background, resulting in a combined algorithm 
of parallel imaging, CS and DL. Unlike the traditional 
wavelet transformation, the neural network performs 
sparsifying and consistency checks on the raw k-space 
data within each block, resulting in maximized image 
authenticity [17]. The algorithm presented by Pezzotti 
et  al. [15] was extended by using training data of about 
740,000 images with various anatomies, contrasts and 
field strengths (1.5 and 3  T). Both the acquisition and 
reconstruction algorithms of CS and CS-AI were pro-
vided by the manufacturer.

Subjective image analysis
All scans were exported as Digital Imaging and Com-
munications in Medicine − DICOM files to the clinical 
Picture Archiving and Communication System − PACS. 
Two board certified radiologists reviewed all images (R1, 
8 years of experience; R2, 6 years of experience). For the 
subjective reading, the images were presented in random 
order and both readers were blinded to the scan sequence 
and reconstruction. All blinded images of a subject were 
available at once for both readers. Readers were free to 
choose window width and level settings and the review 
was performed over a period of 6 weeks.

Using a 5-point Likert scale, each reader independently 
evaluated delineation of the following anatomical struc-
tures for all sequences and reconstructions: anterior 
cruciate ligament, posterior cruciate ligament, menisci, 
cartilage and bone. Overall image impression and visible 
artifacts were rated additionally on a 5-point Likert scale, 

resulting in a total of seven subjective ratings for each of 
the nine images (CS 10/CS-AI 10, CS 13/CS-AI 13, CS 
15/CS-AI 15, CS 17/CS-AI 17, and standard CS) recon-
structed for every patient. Table 2 shows an overview of 
the used scale.

Statistical analysis
GraphPad Prism version 9.0.1 for Mac OS X (Graph-
Pad Software, Boston, United States) was used for all 
statistical analyses. For the subjective image analysis, 
the values from both readers for each sequence were 
averaged. To assess the interrater agreement between 
both readers, Krippendorff ’s α was calculated, with a 
Krippendorff ’s α ≥ 0.80 indicating high agreement, 
0.67–0.79 indicating moderate agreement, and < 0.67 
indicating poor agreement [18]. After assessing the 
normal distribution of the data using both graphical 
(e.g., Q-Q plots and histograms) and statistical meth-
ods (D’Agostino and Pearson test [19]), robust mixed 
models fitted with the restricted maximum likelihood 
method − REML were employed to analyze the effect 
of acceleration level (10, 13, 15, and 17) and recon-
struction method (CS versus CS-AI) on indicators of 
subjective image quality (overall impression, artifacts, 
and delineation of the anterior cruciate ligament, pos-
terior cruciate ligament, menisci, cartilage and bone). 
As post hoc tests, Sidak’s multiple comparisons test 
was used to compare the different reconstruction 
methods (CS versus CS-AI) at the different accelera-
tion levels. Additionally, Dunnett’s multiple compari-
sons test was used to compare all sequences to the 
reference sequence (standard sense with an accel-
eration level of 2). All post hoc tests were corrected 
for multiple comparisons. Data are reported as the 
mean ± standard deviation. A p-value below 0.05 was 
considered statistically significant. A priori sample 
size calculation was performed using G*power 3.1.9.7 
based on previous results for acceleration techniques 
in knee imaging [12]. A minimum number of 19 volun-
teers were needed to detect a difference of 0.2 points 
on the Likert scale with 0.3 standard deviation, with an 
alpha error of 0.05 and a power of 0.80.

Table 2 Ratings for the anatomical structures, diagnostic certainty/overall image impression and artifacts used by the two readers for 
the evaluation of all sequences

Level Anatomical structures Overall image impression Artifacts

1 Not visible/distinguishable Not acceptable/no diagnostic value Massive artifacts

2 Barely visible Very limited diagnostic value Significant artifacts

3 Adequately visible Acceptable for most diagnoses Acceptable artifacts

4 Good visibility Good for majority of diagnoses Minimal artifacts

5 Excellent visibility Optimal No artifacts
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Results
Study population
Twenty young, healthy volunteers (12 males and 8 
females; mean age 30.5 ± 2.1  years, range 24−43  years; 
mean weight 74 ± 12 kg, range: 55−100 kg; mean height 
176 ± 11 cm, range 155−90 cm) were included.

Image analysis
Scan time decreased with increasing acceleration fac-
tors; for instance, from 384 s for the standard sequence 

to 178  s for an acceleration factor of 10 and down to 
105 s for an acceleration factor of 17. An overview of the 
duration of the sequences is shown in Table 1. Figure 1 
shows the same 3D sequence reconstructed using CS 
and CS-AI at the respective acceleration levels as well as 
the standard sense sequence as a reference. Upon review 
of the acquired images, it was discovered that one par-
ticipant had a meniscal tear. Figure 2 shows the pathol-
ogy on a 3D sequence with an acceleration factor of 10 

Fig. 1 Comparison of a fat-saturated three-dimensional proton density sequence reconstructed using conventional compressed sensing (CS) 
and compressed sense with artificial intelligence (CS-AI) with acceleration levels of 10, 13, 15, and 17 as well as the standard sequence as reference 
(SENSE sequence with an acceleration factor of 2, included twice for easier comparison). Note the decreasing image quality with increasing 
acceleration factor. Overall, a better delineation can be observed in the lower row (CS-AI) compared to the upper row (CS)

Fig. 2 Example of a meniscal tear: linear hyperintensity in the posterior horn of the meniscus. Almost no difference can be observed 
between the delineation of the lesion in the reference compressed sensing (CS) SENSE sequence (standard) compared to the CS with acceleration 
levels of 10 (CS-10) and CS-10 with artificial intelligence (CS-AI 10)
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reconstructed using CS and CS-AI compared to the ref-
erence sequence.

Subjective image analysis
Interrater agreement was assessed using Krippendorff´s 
α, indicating substantial interrater agreement for the sub-
jective scoring for overall image impression at all accel-
eration factors (Krippendorff´s α = 0.71). The restricted 
maximum likelihood method-REML demonstrated a sig-
nificant effect of the acceleration factors on the subjective 
measures of image quality (p < 0.001). Images recon-
structed using CS-AI were rated significantly better than 
the respective sequences reconstructed using CS for all 
acceleration levels and all evaluated criteria (all p ≤ 0.001; 
see Table 3 and Fig. 3). Regarding the comparison to the 
reference sequence (CS sequence with an acceleration 
factor of 2), ratings for the sequences reconstructed using 

CS-AI did not differ significantly from the reference 
sequence for all evaluated criteria for an acceleration fac-
tor up to 10 (all p ≥ 0.999; see Table 3 and Fig. 3).

Discussion
The aim of the current study was to assess the subjective 
image quality of conventional CS and CS with AI at dif-
ferent acceleration factors for 3D diagnostic MRI of the 
knee. The purpose was to investigate the feasibility of 
using CS with AI to further decrease acquisition times of 
knee MRI while maintaining diagnostic image quality.

The findings demonstrate that images reconstructed 
using CS-AI consistently achieved significantly higher 
ratings for subjective measurements of image qual-
ity across all acceleration levels, compared to the cor-
responding images reconstructed using CS. These 
results align with previous research employing the same 

Table 3 Mean values and standard deviation for the subjective reading

ACL Anterior cruciate ligament, PCL Posterior cruciate ligament, CS Compressed sensing, CS-AI Compressed sensing combined with a deep learning-based algorithm
* /*denotes statistically significant differences (p ≤ 0.034) compared to the standard sequence (*before diagonal slash) or the corresponding reconstruction with the 
same acceleration level (CS versus CS-AI) (*after diagonal slash)

Standard
SENSE

CS 10/
CS-AI 10

CS 13/
CS-AI 13

CS 15/
CS-AI 15

CS 17/
CS-AI 17

Cartilage

 Standard 4.93 ± 0.18

 CS 4.08 ± 0.18 − /* 3.28 ± 0.38 */* 2.90 ± 0.38 */* 2.48 ± 0.41 */*

 CS-AI 4.48 ± 0.20 − /* 3.93 ± 0.47 */* 3.53 ± 0.41 */* 3.03 ± 0.26 */*

ACL

 Standard 4.90 ± 0.18

 CS 3.50 ± 0.34 */* 3.00 ± 0.36 */* 2.20 ± 0.50 */* 1.80 ± 0.38 */*

 CS-AI 4.10 ± 0.34 − /* 3.50 ± 0.50 */* 2.90 ± 0.35 */* 2.70 ± 0.37 */*

PCL

 Standard 4.90 ± 0.29

 CS 3.30 ± 0.37 */* 2.70 ± 0.44 */* 2.00 ± 0.49 */* 1.50 ± 0.43 */*

 CS-AI 3.90 ± 0.34 − /* 3.30 ± 0.44 */* 2.80 ± 0.47 */* 2.40 ± 0.43 */*

Menisci

 Standard 4.90 ± 0.33

 CS 4.00 ± 0.30 − /* 3.20 ± 0.41 */* 2.90 ± 0.45 */* 2.40 ± 0.45 */*

 CS-AI 4.40 ± 0.29 − /* 3.90 ± 0.35 */* 3.50 ± 0.34 */* 3.00 ± 0.30 */*

Bone

 Standard 4.70 ± 0.41

 CS 3.60 ± 0.46 − /* 2.80 ± 0.41 */* 2.10 ± 0.34 */* 1.80 ± 0.41 */*

 CS-AI 4.20 ± 0.33 − /* 3.40 ± 0.34 */* 2.80 ± 0.30 */* 2.50 ± 0.30 */*

Artifacts

 Standard 4.60 ± 0.50

 CS 3.30 ± 0.34 − /* 2.60 ± 0.41 */* 2.00 ± 0.20 */* 1.80 ± 0.30 */*

 CS-AI 3.80 ± 0.38 − /* 3.00 ± 0.46 */* 2.60 ± 0.39 */* 2.20 ± 0.44 */*

Overall image impression

 Standard 4.90 ± 0.28

 CS 3.50 ± 0.41 */* 2.90 ± 0.35 */* 2.30 ± 0.34 */* 1.90 ± 0.32 */*

 CS-AI 4.10 ± 0.28 − /* 3.50 ± 0.38 */* 3.10 ± 0.35 */* 2.70 ± 0.24 */*
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algorithm. Notably, Fervers et  al. observed significantly 
improved subjective image quality for 3D T2-weighted 
images of the lumbar spine when employing CS-AI, as 
opposed to CS-based reconstruction [20]. Moreover, 
studies focusing on MRI of the ankle and prostate have 
reported enhanced objective and subjective image quality 
for sequences reconstructed with CS-AI [21, 22]. While 
CS-AI yields images with superior subjective image qual-
ity in comparison to CS, it is important to consider that 
excessively high acceleration levels may compromise 
diagnostic quality. Thus, our study aimed to assess the 
images generated by CS-AI across various acceleration 
levels and compare them to the reference sequence cur-
rently employed in clinical practice (a sense sequence 
with an acceleration factor of 2). Our objective was to 
determine an optimal acceleration factor that produces 
images with subjective image quality that is not signifi-
cantly different from the existing clinical standard.

Based on the subjective image quality, a 3D sequence 
reconstructed using CS-AI with a tenfold accelera-
tion did not perform significantly worse than the same 
sequence reconstructed using sense with an acceleration 
factor of 2. It is important to note that the other accel-
eration factors (13, 15, 17) did demonstrate a significant 
decline in image quality compared to the standard acqui-
sition sequence. This decline was evident to a degree 
where these higher acceleration levels are not currently 
suitable to replace the standard sequence in clinical 

practice. This finding underscores the trade-off between 
higher acceleration and image quality, which is a critical 
consideration for the practical application of DL-based 
algorithms in MRI.

Replacing the standard sensitivity encoding 
sequence − SENSE 2 with the CS-AI 10 sequence (384  s 
versus 178  s) would result in 54% faster image acquisi-
tion for 3D sequences. Faster image acquisition holds the 
potential to enhance operational efficiency within imag-
ing centers while enhancing patient accessibility to imag-
ing services. Moreover, reducing the duration of patient 
scans can effectively minimize motion artifacts, lead-
ing to improved image quality, and therefore enhanced 
diagnostic accuracy. Moreover, short acquisition times 
can increase patient comfort during MRI, possibly mak-
ing it more accessible to a broader range of patients. For 
instance, patients suffering from claustrophobia may find 
MRI more tolerable with reduced scan durations.

Nevertheless, it is essential to acknowledge the limi-
tations of our study.

First, our sample size was relatively small, consisting 
solely of healthy volunteers. While the results from the 
two readers indicate comparable delineation of ana-
tomical structures to the reference sequences, future 
investigations should involve scanning patients with 
prevalent knee pathologies to verify the preservation 
of image quality for pathological findings. An ongoing 
concern regarding DL-based reconstruction algorithms 

Fig. 3 Mean subjective ratings of the overall image quality for sequences reconstructed using compressed sensing (CS) and compressed sensing 
combined with a deep learning-based algorithm (CS-AI). The comparison between CS and CS-AI is shown in a, whereas b shows the comparison 
between CS-AI and the reference sequence (SENSE sequence with an acceleration factor of 2). * p ≤ 0.024, ** p < 0.010, *** p < 0.001
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is the potential loss of information, where abnormal 
anatomical findings may be substituted with normal 
anatomy learned from the training data. To counteract 
this, the multi-scale network used in this study includes 
the integration of a data consistency term per coil ele-
ment comparing the reconstructed data with the origi-
nally acquired data to ensure consistency [17]. Studies 
assessing other anatomical regions, including patients 
with pathologies and using the same CS-AI algorithm 
as in our study found no evidence for loss of informa-
tion. For instance, Bischof et  al. found no difference 
in Prostate Imaging Reporting and Data System − PI-
RADS scores between images reconstructed using 
CS-AI compared to images reconstructed using CS 
[22]. Nevertheless, future studies should include more 
participants as well as patients with different patholo-
gies to further evaluate the accuracy of algorithm.

Second, our study only focused on a 3D proton den-
sity sequence of the knee. Whereas other studies have 
shown similar performance of DL-based reconstruction 
algorithms across different MRI sequences [23], there 
are also studies showing that performance can differ 
between MRI sequences [24]. Thus, future studies should 
also include other sequences besides proton density 
sequences (e.g., T1-weighted sequences) to ensure that 
image quality are equally well preserved.

Third, it is important to note that our study did not 
incorporate objective measures of image quality. Previ-
ous research by Foreman et al. has discussed that tradi-
tional objective quality measures, such as signal-to-noise 
ratio, may not accurately reflect the quality of accelerated 
images generated through DL techniques [21]. Interest-
ingly, Foreman et al. [21] observed an increase in signal-
to-noise ratio with higher acceleration levels, despite a 
decrease in subjective image quality. This discrepancy 
could be attributed to the inherent noise reduction capa-
bilities of DL-based reconstructions, rendering them less 
noisy compared to conventional reconstructions. There-
fore, in our study, we relied solely on subjective image 
quality as the determining criterion to establish an appro-
priate acceleration factor that achieves comparable image 
quality to the reference sequence. Future investigations 
should explore alternative objective image quality meas-
ures that are not influenced by smoothing or denoising 
effects introduced by DL algorithms.

In sum, the results of our study show that the combi-
nation of DL and CS hold the potential for further scan 
time reduction in 3D imaging of the knee while provid-
ing overall better subjective image quality compared 
to CS alone. The implementation of this algorithm can 
help increase patient access to imaging and reduce 
motion artifacts by decreasing the overall time patients 

spend in the scanner. The results encourage further 
clinical investigation, extending the use cases to a clini-
cal population and a wider range of MRI sequences. 
However, this study is limited by its small sample size 
and inclusion of only healthy volunteers, indicating the 
need for further research with a more diverse and larger 
sample.
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