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Abstract 

Background Nowadays, there is no method to quantitatively characterize the material composition of acute 
ischemic stroke thrombi prior to intervention, but dual‑energy CT (DE‑CT) offers imaging‑based multimaterial decom‑
position. We retrospectively investigated the material composition of thrombi ex vivo using DE‑CT with histological 
analysis as a reference.

Methods Clots of 70 patients with acute ischemic stroke were extracted by mechanical thrombectomy and scanned 
ex vivo in formalin‑filled tubes with DE‑CT. Multimaterial decomposition in the three components, i.e., red blood cells 
(RBC), white blood cells (WBC), and fibrin/platelets (F/P), was performed and compared to histology (hematoxylin/
eosin staining) as reference. Attenuation and effective Z values were assessed, and histological composition was com‑
pared to stroke etiology according to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria.

Results Histological and imaging analysis showed the following correlation coefficients for RBC (r = 0.527, p < 0.001), 
WBC (r = 0.305, p = 0.020), and F/P (r = 0.525, p < 0.001). RBC‑rich thrombi presented higher clot attenuation in Houns‑
field units than F/P‑rich thrombi (51 HU versus 42 HU, p < 0.01). In histological analysis, cardioembolic clots showed 
less RBC (40% versus 56%, p = 0.053) and more F/P (53% versus 36%, p = 0.024), similar to cryptogenic clots containing 
less RBC (34% versus 56%, p = 0.006) and more F/P (58% versus 36%, p = 0.003) than non‑cardioembolic strokes. No dif‑
ference was assessed for the mean WBC portions in all TOAST groups.

Conclusions DE‑CT has the potential to quantitatively characterize the material composition of ischemic stroke 
thrombi.

Relevance statement Using DE‑CT, the composition of ischemic stroke thrombi can be determined. Knowledge 
of histological composition prior to intervention offers the opportunity to define personalized treatment strategies 
for each patient to accomplish faster recanalization and better clinical outcomes.
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Key points 

• Acute ischemic stroke clots present different recanalization success according to histological composition.

• Currently, no method can determine clot composition prior to intervention.

• DE‑CT allows quantitative material decomposition of thrombi ex vivo in red blood cells, white blood cells, and fibrin/
platelets.

• Histological clot composition differs between stroke etiology.

• Insights into the histological composition in situ offer personalized treatment strategies.

Keywords Blood coagulation, Ischemic stroke, Thrombectomy, Thrombosis, Tomography (x‑ray computed)

Graphical Abstract

Background
Acute ischemic stroke (AIS) is a common vascular dis-
ease associated with high morbidity and mortality [1]. 
Endovascular thrombectomy of large vessel occlusions 
and following histological analysis of extracted thrombus 
material allows characterization of AIS clots ex vivo and 
offers potential findings according to stroke etiology.

AIS thrombi consist of three main components, i.e., 
red blood cells (RBC), white blood cells (WBC), and 
fibrin/platelets (F/P), and can be determined histologi-
cally using hematoxylin and eosin staining [2]. Previ-
ous studies showed associations between histological 
clot composition and etiology and present the potential 
to differentiate especially between cardioembolic and 

non-cardioembolic strokes [3–6]. Therefore, main stroke 
causes according to Trial of ORG 10172 in acute stroke 
treatment (TOAST) criteria [7] show differences in mean 
percentages of main clot components. Nevertheless, find-
ings on the impact of histological clot composition on 
pathogenesis remain controversial [8, 9].

Besides, clots seem to present different treatment char-
acteristics and recanalization success according to their 
histological composition and etiology [2, 10–13]. Com-
ponent fractions may have an impact on treatment strat-
egy and knowledge of exact material decomposition may 
be helpful prior to endovascular therapy to achieve better 
treatment success, higher recanalization rates, and more 
favorable clinical outcomes [14–16].
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To date, there is no quantitative method for pre-inter-
ventional clot characterization is available that allows 
material decomposition without histological analy-
sis. Initial computed tomography (CT) images of AIS 
patients show a positive association between attenuation 
in intracranial clots and RBC fraction [3]. The presence 
of a hyperdense artery sign and thrombus attenuation 
are related to stroke etiology [17] and can be detected 
in non-contrast CT. Besides, thrombus permeability in 
admission CT before and after release of contrast agent 
is associated with higher F/P and WBC fractions and is 
related to cardioembolic strokes [18].

Knowledge of the histological composition of intrac-
ranial clots could potentially help guide the choice 
between different treatment devices and may offer the 
opportunity of faster and more efficient recanalization 
of AIS. Dual-energy CT (DE-CT) presents information 
on attenuation of an object at two different energy levels. 
As the overall attenuation values in CT depend on the 
scanned material but also the energy level, DE-CT offers 
the possibility to quantitatively determine the specific 
sample material [19, 20].

In this study, we present a quantitative multimaterial 
decomposition approach for ex vivo thrombi with differ-
ent stroke etiologies using DE-CT, with histological anal-
ysis of clot composition as reference.

Methods
Study patients
This retrospective study was approved by our local ethics 
committee and informed consent of patients was waived 
due to the retrospective design. A total of 79 AIS thrombi 
were collected by endovascular thrombectomy between 
June 2020 and April 2021 and received postinterven-
tional DE-CT imaging and histological analysis. Finally, 
70 thrombi were included in this study. Four clots with 
inadequate image quality, one patient with sinus venous 
thrombosis, and 1 patient with iatrogenic AIS after inter-
ventional treatment of a subarachnoid hemorrhage were 
excluded. In addition, for 3 patients with multiple events, 
only the first AIS event was included, subsequent events 
in the same patients were excluded.

Clot collection and clinical data
All patients underwent endovascular recanalization 
therapy within clinical routine. According to institutional 
practice and depending on individual patient characteris-
tics, interventional therapy was performed with a combi-
nation of distal access aspiration catheter, stent retriever, 
and balloon guide catheter. Extracted clot material was 
immediately fixed in phosphate-buffered 3.5–3.7% for-
malin. The experimental setup of DE-CT imaging is 
shown in Fig. 1.

Data of demographic, clinical, and interventional 
parameters were collected. In accordance with the inter-
national TOAST classification [7], the most likely cause 
of AIS was determined individually using clinical and 
diagnostic information, including cerebral CT imag-
ing, MRI, transcranial and extracranial duplex sonogra-
phy, transthoracic or transesophageal echocardiography, 
long-term electrocardiography, and coagulation tests.

Imaging protocol and scan assessment
DE-CT scan was performed using a dual-layer CT (IQon 
spectral CT, Philips Healthcare, Best, The Netherlands) 
with tube voltage of 120 kVp, exposure of 500 mAs, rota-
tion time of 0.75 s, pitch of 0.328 s and axial slice thick-
ness of 0.8  mm. Spectral level 2 and Brain Sharp (UC) 
filter were used for scans. The volumetric CT dose index-
CTDIvol was 85.9  mGy for all scans and the mean dose 
length product-DLP was 215 mGy*cm. Extracted throm-
bus material stored in formalin-filled tubes was scanned 
inside a phantom model to accomplish equal scan condi-
tions. The phantom model was tilted for scanning so that 
all thrombus material was located on the bottom of the 
tubes. Time between thrombus extraction and DE-CT 
scan was determined as storage time. Post-processing 
and imaging analysis were performed using a Philips 
internal software. Conventional CT and virtual mono-
energetic images at 50 keV and 200 keV were generated 
from spectral data sets for later analysis.

With DE-CT data sets a multimaterial decomposition 
was performed. In general, the method for multimate-
rial decomposition relies on the fact that for two differ-
ent modalities, which are commonly sensitive to three 
of the five materials to be analyzed and the remaining 
two materials can only be co-determined by one of these 
modalities, a mathematical relationship can be estab-
lished. This relationship is described in such a way that 
the sum of all volume fractions of that modality, which is 
sensitive to all five materials, can be equated with a mod-
ified representation of the other modality.

For this, the result of the second modality is multi-
plied by a correction factor variable and then the missing 
two volume fractions are added. Letting the absorption 
coefficients of the base material and the fact that for 
both modalities the sum of all volume parts is 1, flow 
in, it is possible to determine a function which has a 
global minimum at 0. A global optimizer was then used 
to determine the correction factor and the missing two 
materials in such a way that the function takes its mini-
mum sufficient close to 0. In our specific case, the first 
modality, which is sensitive to all five materials RBC, 
WBC, F/P, iodine, and formalin, is the DE-CT and the 
second modality is the histological finding, which only 
includes the proportions of RBC, WBC, and F/P. This 
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then enables a quantitative differentiation of RBC, WBC, 
F/P, iodinated contrast medium, and formalin to deter-
mine the clot composition [21].

All 70 clots were previously reported in a prior work 
describing the technical development of the method 
[21], while this study focused on the clinical correlations. 
Twelve thrombi were used for the optimization of the 
algorithm and were excluded for statistical analysis that 
considered 58 of 70 clots. The selection of appropriate 
thrombi for the optimization of base materials is crucial, 
as only a successful optimization of the base materi-
als can ensure a successful decomposition of additional 
thrombi. For this purpose, arbitrary samples cannot be 
utilized. Collectively, they must satisfy several criteria. 
Primarily, only those samples were employed that vary 
in their composition in such a manner that the entire 
space, which is confined by the maximum and minimum 
feasible values of RBC, WBC, and F/P, is covered as uni-
formly as possible. Only in this manner is the successful 

optimization of the base materials valid for additional 
samples, which are situated in their composition in this 
confined space. Moreover, samples were utilized which 
have been extensively rinsed with formalin and hence no 
diffused iodine can be detected in the thrombus. This is 
significant because the optimization of the base materi-
als does not rectify the iodine. Considering all criteria, it 
was found that the optimization for 12 samples converges 
adequately well on the one hand and the optimization 
time is merely a few minutes on the other hand. Con-
sequently, 12 samples were chosen which satisfy all the 
mentioned criteria.

Additionally, three regions of interest (ROIs), 1  mm2, 
1.5  mm2, and 2  mm2, were drawn in different parts of 
thrombi in conventional CT to determine mean clot 
attenuation and effective Z values. Attenuation images in 
DE-CT of different clot examples according to clot com-
ponent dominance are shown in Fig. 2.

Fig. 1 Initial CT and angiographic series of a stroke patient and experimental set‑up of clot scans. a–d Examinations of a 47‑year‑old woman 
with AIS. a Initial non‑enhanced cerebral CT image in axial view with hyperdense artery sign in the right middle cerebral artery (white arrow). b 
Initial cerebral CT angiography in axial view with stop of contrast agent in the right middle cerebral artery in the M1 segment where the thrombus 
is located (white arrow). c, d Angiographic series of the patient in frontal view before (c) and after (d) mechanical thrombectomy. e Three examples 
of different formalin‑fixed thrombi after thrombectomy. f Two thrombi inside the phantom model (black arrows). AIS, Acute ischemic stroke; CT, 
Computed tomography
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Histological analysis of thrombus material
After scanning thrombus material was transferred to 70% 
ethanol, embedded in paraffin, and cut into 2-µm slices. 
The processing of slices was completed with hematoxylin 
and eosin staining and slices were scanned at high resolu-
tion (40 ×) and digitally stored. Histological characteriza-
tion into the main components RBC, WBC, and F/P was 
performed blind to clinical data. As it is impossible to 
differentiate fibrin and platelets with H&E staining, these 
areas were combined as F/P.

The percentage distribution of each component was 
assessed by using Orbit Image Analysis, a free open-
source software using machine learning segmentation 
[22]. One representative slice of thrombus material was 
selected for analysis. First of all, only thrombus material 
was selected using the exclusion model, while the back-
ground of digitized slices was excluded. In cases of over-
lapping material or unfavorable staining, affected areas 
were excluded by using a second exclusion model. Sub-
sequently, the three main clot components were defined 
by selecting between three to five different areas of each 
component. In this classification, the machine learning 
segmentation enables the differentiation between the 

three clot components and the quantitative analysis can 
be performed automatically with the percentage of clot 
composition.

Statistical analysis
Descriptive statistics for demographic, clinical, and 
interventional parameters, as well as for histological 
and imaging analysis were evaluated. Nonparamet-
ric Kruskal–Wallis test was used to show differences 
between TOAST groups and results were presented with 
box plots. Shapiro–Wilk test was used for normal distri-
bution analysis. Histological analysis was compared with 
multimaterial decomposition using Pearson’s correlation 
coefficient for RBC and F/P and Spearman’s rank corre-
lation coefficient for WBC. Bland–Altman analysis was 
performed, and Bland–Altman plots are presented. Com-
ponent percentages were correlated with CT attenuation 
and effective Z values using Spearman’s rank correlation 
coefficient. Group differences between CT parameters 
and clot composition were presented using nonpara-
metric Kruskal–Wallis tests. Statistical analysis was per-
formed with the SPSS software. Test results with p < 0.05 
were considered as statistically significant.

Fig. 2 Examples of attenuation images in DE‑CT. a DE‑CT scan in the axial view of a formalin‑fixed clot in a tube inside a phantom model, scale 
bar is attached on the left. Three different examples of thrombi scanned in DE‑CT in axial view (white arrows): F/P‑rich thrombus (F/P 63%, 42 HU) 
(b), RBC‑rich thrombus (RBC 63%, 64 HU) (c), and mixed thrombus (F/P 39%, RBC 56%, 59 HU) (d). DE‑CT, Dual‑energy computed tomography; F/P, 
Fibrin/platelets; HU, Hounsfield units; RBC, Red blood cells
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Results
Demographics and clinical data
In total, 70 of the 79 patients met the inclusion crite-
ria. Basic clinical data, occlusion site, and stroke etiol-
ogy according to the TOAST criteria are summarized in 
Table 1.

Histological clot composition and correlation with stroke 
etiology
All clots showed a heterogeneous pattern of the three 
main clot components RBC, WBC, and F/P. The quantita-
tive thrombus composition of all 70 clots is summarized 
at the bottom of Fig. 3. The percentages (mean ± standard 
deviation in %) of RBC (40 ± 21), WBC (8 ± 4), and F/P 
(52 ± 20) were assessed. In addition, the clots were classi-
fied according to their component dominance in 13 RBC-
rich (≥ 60% of RBC), 23 F/P-rich (≥ 60% of F/P), and 34 
mixed thrombi.

The quantitative clot composition was analyzed according 
to stroke etiology and one representative clot slice for each 
stroke cause including magnification is shown in Fig. 3.

Clot composition was associated with stroke etiol-
ogy according to TOAST classification. Arterioem-
bolic (TOAST-1) and strokes of other determined cause 
(TOAST-4) were summarized as non-cardioembolic and 
were compared to cardioembolic (TOAST-2) and cryp-
togenic (TOAST-5) strokes. Cardioembolic clots showed 
less mean proportions of RBC (40% versus 56%, p = 0.053) 

and more F/P (53% versus 36%, p = 0.024) than non-car-
dioembolic strokes. Similarly, cryptogenic strokes con-
tained less RBCs (34% versus 56%, p = 0.006) and higher 
fractions of F/P (58% versus 36%, p = 0.003) compared to 
non-cardioembolic. Mean percentages of WBCs showed 
no significant difference (p = 0.833) in non-cardioembolic 
(8%) compared to cardioembolic (8%) and cryptogenic 
(7%) strokes. Comparison between cardioembolic and 
cryptogenic strokes presented similar histological clot 
composition for RBC (40% versus 34%, p = 0.839) and 
F/P (53% versus 58%, p = 0.937). Differences in quantita-
tive fraction in histology between cardioembolic, cryp-
togenic, and non-cardioembolic strokes are presented in 
Fig. 4 with attached statistical analysis.

Imaging analysis of thrombi with dual‑energy CT
For evaluation of the multimaterial decomposition using 
DE-CT, 58 of the 70 clots were included in statistical 
analysis, as 12 thrombi were used for the optimization 
of the algorithm and could possibly interfere with sta-
tistical findings. Results of quantitative multimaterial 
clot decomposition and histological clot characteristics 
are shown for each of the 3 main clot components, F/P, 
RBC, and WBC in Fig. 5. For each plot trendline, equa-
tion and r values are given. Evaluating the accordance 
of both methods assessing the quantitative mixture of 
stroke thrombi, correlation coefficients were determined 
for each main component, RBC (r = 0.527, p < 0.001), 
WBC (r = 0.305, p = 0.020), and F/P (r = 0.525, p < 0.001). 
Bland–Altman analysis was performed afterwards, and 
Bland–Altman plots are presented in Fig. 6.

Further imaging analysis included all 70 clots. Descrip-
tive values of storage time, clot attenuation in Houns-
field units (HU), and effective Z values as mean values of 
three ROIs in different parts of clot material in conven-
tional CT are summarized in Table 2. For further imag-
ing analysis, clots were divided into 3 groups according 
to component dominance in RBC-rich, F/P-rich, and 
mixed thrombi, and group tests using the nonparametric 
Kruskal–Wallis test were performed for detecting dif-
ferences in mean storage time, HU, and effective Z val-
ues. The mean storage time of thrombi was about 49  h 
and presented a wide range between 1 and 173  h. This 
resulted in a relatively high heterogeneity of thrombus 
age after extraction, but mean storage time in hours 
showed no significant difference (p = 0.893) between 
RBC-rich (43), F/P-rich (48), and mixed thrombi (51). 
The mean clot attenuation showed a significant difference 
between the three groups according to component domi-
nance (p = 0.006), and the Dunn-Bonferroni post hoc test 

Table 1 Clinical characteristics of all 70 patients in this study

TOAST Trial of ORG 10172 in Acute Stroke Treatment

Characteristic Value

Patients, n 70

Age, years, mean ± standard deviation (range) 76 ± 12 (46–96)

Sex, n (men/women) 30/40

Localization of occlusion, n (%)

 Internal carotid artery/carotid‑T 14 (20)

 M1 segment of the middle cerebral artery 33 (47)

 M2 segment of the middle cerebral artery 9 (13)

 Combined internal carotid artery and M1 segment 
of the middle cerebral artery

8 (11)

 A2 segment of the anterior cerebral artery 2 (3)

 Vertebrobasilar 4 (6)

Stroke etiology (TOAST), n (%)

 Arterioembolic (TOAST‑1) 6 (9)

 Cardioembolic (TOAST‑2) 33 (47)

 Other determined cause (TOAST‑4) (3 dissections, 1 
in‑stent thrombosis, 1 patent foramen ovale)

5 (7)

 Cryptogenic (TOAST‑5) 26 (37)
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has been performed. RBC-rich clots showed higher mean 
HU values in conventional CT than F/P-rich thrombi (51 
versus 42, p = 0.005). The mean density value of mixed 
thrombi (47 HU) presented values between the two other 

groups but showed no significant difference between 
RBC-rich (p = 0.250) and F/P-rich (p = 0.160) groups. 
Additionally, there was no significant group difference in 
effective Z values (p = 0.544).

Fig. 3 Overview of four groups of stroke etiology in this study according to the TOAST criteria. First row: group differences in clot composition, 
including the three main clot components RBC, WBC, and F/P, are shown in box plots and ranged according to the four TOAST groups included 
in this study, arterioembolic (TOAST‑1), cardioembolic (TOAST‑2), other determined cause (TOAST‑4), and cryptogenic (TOAST‑5) strokes. Second and 
third rows: a representative thrombus slice with hematoxylin and eosin staining for each TOAST group and magnification of the black squares below. 
With hematoxylin and eosin staining, RBC are presented in red, F/P are stained pink, and WBC are presented as little blue cells with nuclei. Fourth 
row: Graphical representation of histological clot composition including RBC, WBC, and F/P of each of the 70 thrombi included in this study ranged 
according to the TOAST group. F/P, Fibrin/platelets; RBC, Red blood cells; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; WBC, White blood 
cells
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Correlation analysis between clot attenuation and 
histological clot characteristics using the two-sided 
Spearman´s correlation coefficient showed a moderate 
correlation between HU values and RBC (rho = 0.390, 
p < 0.001) respectively F/P (rho = -0.384, p = 0.001). No 
significant correlation between HU values and WBC 
fraction, as well as between effective Z values and his-
tological clot parameters were assessed, values are pre-
sented in Table 3.

Discussion
To the best of our knowledge, this is the first study to 
implement quantitative characterization of AIS clots ex 
vivo using DE-CT.

Using the multimaterial decomposition method with 
DE-CT, it is possible to determine the three main clot 
components, RBC, WBC, and F/P in comparison with his-
tological analysis as a reference method [21]. Our correla-
tion coefficients between clot composition of histological 
and DE-CT-based analysis resulted in the following data: 
RBC (r = 0.527, p < 0.001), WBC (r = 0.305, p = 0.020), and 
F/P (r = 0.525, p < 0.001). These results show the possibility 

to differentiate between RBC-rich and F/P-rich thrombi 
measuring clot attenuation in HU, as higher RBC frac-
tions come along with higher HU than F/P-rich thrombi 
(51 versus 42, p = 0.005). In this study, arterioembolic and 
strokes of other determined causes summarized as non-
cardioembolic showed more RBC and less F/P fractions 
than cardioembolic, as well as compared to cryptogenic. 
Comparison between the groups did not show a significant 
difference in the mean portions of WBCs.

DE-CT offers the opportunity to quantitatively deter-
mine highly mixed materials using information from two 
different energy levels [19]. In contrast to single-energy 
CT, DE-CT can differentiate between blood and iodi-
nated contrast medium [23]. For AIS in particular, this 
allows differentiation between hyperdense areas after 
endovascular therapy, which may be either hemorrhage 
or contrast enhancement due to disruption of the blood–
brain barrier [24, 25] and offers improved detection of 
acute ischemic lesions [26].

On conventional CT of patients with AIS, higher HU 
of in situ thrombi presented higher portions of RBC 
on subsequent histological analysis [3]. The presence 

Fig. 4 Difference in quantitative fraction in histology between cardioembolic, cryptogenic, and non‑cardioembolic strokes. Mean percentages 
of each clot component, i.e., red blood cells, fibrin/platelets, and white blood cells, are shown in box plots according to three TOAST groups: 
cardioembolic (TOAST‑2), cryptogenic (TOAST‑5), and non‑cardioembolic strokes (TOAST‑1 and TOAST‑4). Arterioembolic (TOAST‑1) and strokes 
of other determined causes (TOAST‑4) are summarized as non‑cardioembolic. Statistical analysis was performed by using the nonparametric 
Kruskal–Wallis test and p values are presented in the diagram. Cardioembolic clots showed fewer mean proportions of RBC (p = 0.053) and more 
F/P (p = 0.024) than non‑cardioembolic strokes. Similarly, cryptogenic strokes contained less RBCs (p = 0.006) and higher fractions of F/P 
(p = 0.003) compared to non‑cardioembolic. Comparison between cardioembolic and cryptogenic strokes presented similar histological clot 
composition for RBC (p = 0.839) and F/P (p = 0.937). Mean percentages of WBCs showed no difference (p = 0.833) in non‑cardioembolic compared 
to cardioembolic and cryptogenic strokes. TOAST Trial of ORG 10172 in Acute Stroke Treatment
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of hyperdense artery sign suggests RBC-dominant or 
mixed clots and possibly predicts low F/P fractions [27]. 
This knowledge may have an impact on following treat-
ment as intracranial thrombi with lower attenuation are 
associated with more difficult medical and interven-
tional recanalization treatment [28] and longer interven-
tion times [29]. In contrast, the hyperdense artery sign 

has been reported to be associated with more success-
ful recanalization [30]. Experimental ovine blood clots 
with defined RBC amounts also differed in attenuation 
from fibrin-rich clots and showed higher HU in conven-
tional CT [31]. In additional DE-CT imaging fibrin-rich 
clots presented an increase of attenuation after contrast 
medium exposure. Together with thrombus permeability 

Fig. 5 Comparison of histological analysis and experimental analysis of multimaterial decomposition with DE‑CT determining clot composition. 
For this evaluation, 58 of the 70 clots were included, as 12 thrombi were already used for the optimization of the algorithm. For each clot 
component, F/P (a), RBC (b), and WBC (c), percentages of histological results are shown in the horizontal axis, and quantitative fractions of DE‑CT 
imaging analysis are presented in the vertical axis. The trendline, equation, and correlation coefficient r are presented for each plot. DE‑CT, 
Dual‑energy computed tomography; F/P, Fibrin/platelets; RBC, red blood cells; WBC, White blood cells
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Fig. 6 Bland–Altman plot for each clot component, red blood cells (a), fibrin/platelets (b), and white blood cells (c). In the diagram, the mean 
difference (red line) and standard deviation of the differences, +1.96 × standard deviation and ‑1.96 × standard deviation (green dotted line), are 
given
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on admission CT [18], these insights suggest that iodine 
uptake is dependent on F/P clot fraction.

In this study, the impact of histological composition 
on interventional treatment was not analyzed, but in 
further studies, especially RBC and F/P fractions seem 
to have an impact on interventional parameters and 
treatment success. Experimental fibrin-rich clots were 
associated with longer intervention time and lower 
recanalization rate than RBC-rich clots [11] and the 
amount of RBC seems to be associated with better rep-
erfusion [12]. A per-pass analysis of histological clot 
composition showed that extracted thrombi showed 
higher RBC fractions within the first two passes than 
within further passes [32]. In summary, fibrin-rich 
thrombi are likely to be more resistant to recanalization 
treatment. Therefore, it is important to select appropri-
ate mechanical devices depending on clot properties 
[14, 16]. CT imaging, especially DE-CT prior to inter-
vention, may accomplish virtual histology of intracra-
nial thrombi.

Furthermore, clot composition appears to depend on 
stroke pathogenesis. According to prior findings, arteri-
oembolic clots and strokes of other determined causes 
are more likely to contain higher percentages of RBC 
[3, 6]. In contrast, cardioembolic and cryptogenic clots 
appear to be histologically similar, consisting of higher 
fractions of WBC and F/P [4–6]. Otherwise, certain stud-
ies exist that attained opposite conclusions and reported 

on higher fractions of F/P in large artery atherosclerosis 
or even higher RBC fractions in cardioembolic strokes 
than in large artery atherosclerosis [33, 34]. In particular, 
cryptogenic strokes are a challenge to relate histological 
clot composition to specific stroke causes, but similar 
histology suggests cardioembolic pathogenesis in most of 
these cases [4]. Indeed, there are studies that could not 
find associations between histological clot characteris-
tics and stroke causes, and some even presented opposite 
findings [8].

This study has limitations. Thrombus material remain-
ing in situ due to fragmentation or unsuccessful recanali-
zation was not analyzed and important information may 
have been lost. Administration of the intravenous tissue 
plasminogen activator before intervention may also affect 
thrombus composition and fragmentation [35], but in 
this study the clot composition was determined ex vivo 
for both methods, using the DE-CT-based determination 
and histological analysis. For this reason, this limitation is 
important for the evaluation of the impact of histological 
clot composition on stroke pathogenesis. Additionally, 
formalin occupies an important fraction in multimaterial 
decomposition and x-ray mass attenuation coefficient of 
formalin cannot be neglected in DE-CT-based decompo-
sition [21, 36], whereas in histological analysis no forma-
lin is determined. The clots also showed a wide variation 
in storage time making it difficult to detect any changes 
in their composition. According to Douglas et al. [37], a 

Table 2 DE‑CT imaging characteristics of all 70 clots

Mean storage time (p = 0.893) and effective Z values (p = 0.544) showed no significant group difference between RBC-rich, F/P-rich, and mixed thrombi using 
nonparametric Kruskal–Wallis. Mean attenuation showed only a significant difference between RBC-rich and F/P-rich thrombi (p < 0.01) in the Dunn-Bonferroni post 
hoc test. Mean attenuation of mixed thrombi showed no significant difference between RBC-rich (p = 0.250) and F/P-rich thrombi (p = 0.160). F/P Fibrin/platelets, RBC 
Red blood cells

Clot characteristics All clots (n = 70) RBC‑rich (n = 13) F/P‑rich (n = 23) Mixed (n = 34)

Storage time, h, mean ± standard deviation (range) 49 ± 38 (1−173) 43 ± 30 (6−93) 48 ± 30 (1−106) 51 ± 45 (4−173)

Attenuation, HU, mean ± standard deviation 46 ± 9 51 ± 10 42 ± 8 47 ± 9

Effective Z value, mean ± standard deviation 7.2 ± 0.1 7.1 ± 0.1 7.2 ± 0.1 7.2 ± 0.1

Table 3 Correlation analysis of DE‑CT parameters with histological clot composition

F/P Fibrin/platelets, RBC Red blood cells, WBC White blood cells

RBC at histology (%) F/P at histology (%) WBC at histology (%)

r‑value p‑value r‑value p‑value r‑value p‑value

RBC at histology (%) ‑0.979  < 0.001 ‑0.254 0.034

F/P at histology (%) ‑0.979  < 0.001 0.088 0.469

WBC at histology (%) ‑0.254 0.034 0.088 0.469

Attenuation (HU) 0.390  < 0.001 ‑0.384 < 0.01 ‑0.095 0.434

Effective Z value ‑0.047 0.700 0.020 0.871 0.086 0.480
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change in clot composition of formalin-fixed clots is not 
expected if the analysis was performed within one week, 
which was done in this study.

In our case, the entire thrombus was segmented and the 
average absorption at high and low monoenergetic energy 
was used for evaluation. A resolution of finer structures 
and concentrations within the thrombi was not required 
for our question, as this was not relevant for the validation 
of the algorithm and for the comparison of different thrombi 
among each other. Should a future application of our meth-
odology require a higher resolution to be able to represent 
concentration and structural differences within a thrombus, 
a photon-counting detector could potentially deliver suc-
cessful results in this regard. If an even finer differentiation 
of the concentrations is to be made possible, there is also the 
possibility that measurements on a photon-counting detec-
tor could lead to success, as the spectral separation achieved 
by using energy thresholds could result in smaller concentra-
tion differences for this new question being better resolved. 
A frequently mentioned method for multimaterial decom-
position is the so-called K-edge imaging, which is made 
possible using photon-counting technology [38]. However, 
it is important to point out at this point that this method is 
not suitable for use on thrombi, as it is only applicable if the 
K-edges of all materials lie in the medically relevant x-ray 
spectrum. This is not the case for our samples having a small 
nuclear charge number [39, 40]. Finally, the small sample 
size of this study should be considered. Stroke etiology was 
determined as arterioembolic in only six cases and as other 
determined cause in only five cases. Subsequently, only a 
small sample size of non-cardioembolic strokes was com-
pared with cardioembolic and cryptogenic strokes. Statistical 
differences in histological clot composition between different 
stroke etiologies may not be reported.

In conclusion, DE-CT offers potential for multimaterial 
decomposition even in small objects as thrombus material 
and provides the ability to distinguish between RBC-rich 
and F/P-rich thrombi by measuring clot attenuation. Further 
studies should apply this method on patients who received 
DE-CT imaging prior to intervention to perform clot char-
acterization in situ. These findings need to be correlated with 
interventional parameters to answer the question of whether 
it is possible to define personalized treatment strategies and 
to select between interventional devices according to clot 
composition in order to achieve faster reperfusion, higher 
recanalization rates, and better clinical outcomes.
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