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Abstract 

Background Developing trustworthy artificial intelligence (AI) models for clinical applications requires access to clini-
cal and imaging data cohorts. Reusing of publicly available datasets has the potential to fill this gap. Specifically 
in the domain of breast cancer, a large archive of publicly accessible medical images along with the corresponding 
clinical data is available at The Cancer Imaging Archive (TCIA). However, existing datasets cannot be directly used 
as they are heterogeneous and cannot be effectively filtered for selecting specific image types required to develop 
AI models. This work focuses on the development of a homogenized dataset in the domain of breast cancer includ-
ing clinical and imaging data.

Methods Five datasets were acquired from the TCIA and were harmonized. For the clinical data harmonization, 
a common data model was developed and a repeatable, documented “extract-transform-load” process was defined 
and executed for their homogenization. Further, Digital Imaging and COmmunications in Medicine (DICOM) informa-
tion was extracted from magnetic resonance imaging (MRI) data and made accessible and searchable.

Results The resulting harmonized dataset includes information about 2,035 subjects with breast cancer. Further, 
a platform named RV-Cherry-Picker enables search over both the clinical and diagnostic imaging datasets, provid-
ing unified access, facilitating the downloading of all study imaging that correspond to specific series’ characteris-
tics (e.g., dynamic contrast-enhanced series), and reducing the burden of acquiring the appropriate set of images 
for the respective AI model scenario.

Conclusions RV-Cherry-Picker provides access to the largest, publicly available, homogenized, imaging/clinical data-
set for breast cancer to develop AI models on top.

Relevance statement We present a solution for creating merged public datasets supporting AI model development, 
using as an example the breast cancer domain and magnetic resonance imaging images.

Key points 

• The proposed platform allows unified access to the largest, homogenized public imaging dataset for breast cancer.

• A methodology for the semantically enriched homogenization of public clinical data is presented.

• The platform is able to make a detailed selection of breast MRI data for the development of AI models.
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Graphical Abstract

Background
The development of robust clinical artificial intelligence (AI) 
models heavily depends on access to high-volume and high-
quality data. Obtaining an adequate amount of prospective 
data for AI model development is both costly and time-
consuming. A solution to this could be the use of combined 
retrospective datasets from multiple clinical studies. How-
ever, access to homogenous retrospective data is difficult to 
achieve since each original study had its own specific objec-
tives, and thus, its own data model and acquisition protocol. 
This makes the acquisition of an integrated homogenous 
dataset difficult, hampering the secondary usage of the 
available data. The latter is also an obstacle to using publicly 
accessible datasets. Publicly accessible datasets are a great 
solution for fast AI model prototyping, and they also pro-
vide the possibility for various AI modelers and researchers 
to compare the performance of their models without the 
concern of acquiring shared access to the training data.

In the domain of magnetic resonance imaging (MRI), 
an additional layer of heterogeneity is introduced among 
different datasets in terms of the orientation of acqui-
sition (coronal, sagittal, or axial plane), type of MRI 
sequence used (spin-echo, gradient-echo, inversion-
recovery, echo-planar imaging, or any of their variants), 
fat signal suppression/water excitation options, acquisi-
tion conditions (receiver coil selection), etc.

In this direction, basic MRI sequence requirements 
for optimizing the diagnostic value have been defined by 
the EUSOBI community [1], constituting an initial image 
quality indicator. However, several hardware constraints 
or clinical professionals’ preferences result in a non-neg-
ligible degree of heterogeneity among datasets coming 
from different sites or scanners or even from the same 
scanner after a sequence of software optimizations. In 
addition, imaging phenotype is evaluated by radiologists 
based on the BI-RADS [2] for lesion classification, link-
ing imaging characteristics to tumor grading. Information 
on the BI-RADS diagnostic category is usually available 
and compliments the imaging information with a meas-
urable and quasi-objective metric for lesion characteriza-
tion. Since AI developers heavily rely on high-quality data 
that ensure high lesion conspicuity, a well-aimed selection 
of the appropriate cases can be made when a number of 
sequence-specific metadata are taken into account for 
building up the specific cohort for a given clinical question.

Apart from the conventional T1-weighted or T2-weighted 
contrast Digital Imaging and Communications in Medi-
cine (DICOM) series, a breast MRI protocol comprises dif-
ferent techniques, including diffusion-weighted imaging 
(DWI) and dynamic contrast-enhanced (DCE), which differ 
from conventional anatomical sequences in the sense that 
they provide functional information about cellularity and 
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vascularization pattern respectively. Access and selection of 
the study cases that include images of a specific MRI tech-
nique is a preliminary step before developing a certain AI 
model and that step requires a significant amount of time. 
Moreover, identifying the number of MRI series of a certain 
imaging technique in several different datasets might easily 
highlight whether a public dataset has the required amount 
of imaging data that are needed to train an AI model.

The aim of the EU-funded RadioVal project [3] is to 
evaluate the potential of radiomics to predict response 
to neoadjuvant chemotherapy in breast cancer patients, 
using AI. The project leverages large imaging repositories 
and implements a multifaceted evaluation of radiomics 
AI tools in eight hospitals across Europe and beyond, to 
test their technical robustness, algorithmic fairness, as 
well as usability and acceptance in clinical settings.

For developing preliminary AI models, publicly available 
datasets were primarily explored, identifying five promising 
datasets available by The Cancer Imaging Archive (TCIA). 
However, these datasets were heterogeneous requiring a 
significant effort for their harmonization. The resulting 
dataset comprises five individual datasets, with information 
about 2,035 subjects with breast cancer. We present the 
process followed to (a) harmonize clinical data by develop-
ing a common data model and a repeatable, documented 

extract-transform-load (ETL) process [4]; (b) uniformly 
expose them, following the Findability, Accessibility, Inter-
operability, and Reuse (FAIR) principles [5], enabling data 
selection and filtering; and (c) extract relevant information 
from the DICOM headers of the corresponding imaging 
series, enabling selection and downloading of imaging data 
subsets with specific characteristics. Subsequently, we pre-
sent “RV-Cherry-Picker,” a free-to-access public tool that 
provides access to the largest homogenized and semanti-
cally enriched dataset with imaging and clinical data pub-
licly available for breast cancer.

Methods
For developing preliminary AI models for the predic-
tion of treatment response in breast cancer, the RadioVal 
consortium first identified the public datasets available 
online. However, to be used for modeling tasks, the data-
sets needed to be harmonized and integrated.

The pipeline that was followed for harmonizing and 
exposing both clinical and imaging data is presented in 
Fig. 1. Regarding the clinical public data, upon the selection 
of the publicly available datasets, a data homogenization 
pipeline was followed that included (a) the definition of a 
common data model that describes and unifies them (Fig. 1 
(1a)); (b) the identification of the corresponding semantic 

Fig. 1 Data homogenization pipeline
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annotations (Fig. 1 (2a–3a)); (c) the ETL process which was 
applied for each one of the datasets for converting the ini-
tial data into the common data model defined (Fig. 1 (4a)); 
and (d) publication of the FAIRified homogenized dataset 
available through the RV-Cherry-Picker tool (Fig.  1 (5a)). 
Regarding imaging data, by leveraging TCIA application 
programming interface (API), the corresponding imaging 
metadata was retrieved (Fig. 1 (1b)) and was examined for 
the presence of the relevant DICOM tags (Fig. 1 (2b)). This 
process enabled the generation of statistics per public data-
set (Fig. 1 (3b)) and the deployment of the graphical tool for 
the targeted selection of imaging series acquired via a spe-
cific MRI technique (Fig. 1 (4b)).

In the following paragraphs, we describe the aforemen-
tioned steps in detail for both data selection, homogeniza-
tion of clinical data, and enhanced selection of imaging data.

Data selection
The datasets were identified and retrieved through TCIA, 
a service that deidentifies and hosts a large publicly avail-
able archive of medical images of cancer [6]. TCIA provides 
clinical data in the form of downloadable comma-separated 
values (CSV) files along with a graphical tool for selecting 
and downloading imaging studies per subject or study.

Since RadioVal project’s domain of interest is breast 
cancer, the datasets that we considered in the context 
were the following:

• I-SPY 2 Breast Dynamic Contrast-Enhanced MRI 
Trial (ISPY2) [7]

• Dynamic contrast-enhanced magnetic resonance 
images of breast cancer patients with tumor locations 
(Duke-Breast-Cancer-MRI / DUKE) [8]

• Multicenter breast DCE-MRI data and segmenta-
tions from patients in the I-SPY 1/ACRIN 6657 trials 
(ISPY1) [9]

• The Cancer Genome Atlas Breast Invasive Carci-
noma Collection (TCGA-BRCA) [10]

• Single-site breast DCE-MRI data and segmentations 
from patients undergoing neoadjuvant chemotherapy 
(Breast-MRI-NACT-Pilot) [11]

The selected clinical datasets include an arbitrary num-
ber of concepts, based on the original study’s requirements 
and they also have corresponding imaging MRI data. Gen-
erally, these clinical concepts correspond to demographic 
information (e.g., age, ethnicity), clinical and/or tumor 
pathology and treatment information (e.g., tumor hor-
mone receptor status, TNM stage), and outcome informa-
tion (e.g., last follow-up date, response to treatment).

For most of these concepts, the corresponding value 
set is either a number or a value from a predefined 
list. Quite common is the use of binary (0 or 1) values 

corresponding to no/yes as a value set while there are also 
cases where either the field is a concatenation of values or 
the field contains additional text apart from the expected 
value (e.g., for tumor position, instead of the expected by 
the study protocol “L 2,” signifying tumor in left breast at 
clock hour 2, the field contains “L 2 with calcs”).

Additional information (not explicitly defined in the 
corresponding CSV file) can be derived from the original 
study design. For example, in Breast-MRI-NACT-Pilot, 
all study subjects had undergone adjuvant radiother-
apy, or in all ISPY2 study subjects, cyclophosphamide 
was administered apart from the medication regimen 
described in the corresponding CSV file.

Lastly, the comment fields in the CSVs were examined to 
identify possible hidden information, which was considered 
during the conversion of the dataset. For example, subject 
27 in Breast-MRI-NACT-Pilot had the comment “declined 
standard-of-care post-surgery radiation and hormonal 
treatments” which resulted in a case-specific definition of 
the adjuvant therapy fields (i.e., adjuvant.hormone_therapy 
and adjuvant_radiotherapy were set to “NO”).

In Table 1, the number of distinct subjects in the origi-
nal CSV files of the public datasets is presented. These 
files include data corresponding to 2332 study subjects 
and 251 domain concepts, excluding case identification 
codes. Note that the number of subjects per dataset var-
ies from around 1,000 in one dataset (e.g., ISPY2) to only 
64 subjects in another (e.g., Breast-MRI-NACT-Pilot), and 
the number of concepts and the granularity of information 
provided by each dataset varies as well (e.g., ISPY2 has only 
9 concepts versus 110 concepts in TCGA-BRCA).

The selected public datasets also have corresponding 
MRI DICOM files of different MRI techniques such as 
DCE or DWI or different orientations (axial, sagittal, or 
coronal). The number of MR imaging series per dataset is 
presented also in Table 1.

Homogenization of clinical data
Definition of the common data model and semantic anno-
tations. The definition of a common data model refers to 

Table 1 The public datasets that were used along with the 
number of cases and concepts per case they included in the 
corresponding clinical data comma-separated values file

MRI Magnetic resonance imaging

Dataset Number of 
subjects

Number of 
concepts

Number of 
MRI series

ISPY2 985 9 9,391

Duke-Breast-Cancer-MRI 922 74 5,034

ISPY1 221 17 6,464

TCGA-BRCA 140 110 1,858

Breast-MRI-NACT-Pilot 64 41 1,846
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the selection of concepts to be included, as well as to the 
selection of possible values for each one of them. The aim 
of this process, to ensure high reusability through high 
semantic coherence and completeness, is to produce a sin-
gle dataset including only scalar (numeric) fields and nom-
inal (categorical) fields that are coded, using codes from 
standardized vocabularies, i.e., concept identifiers (IDs).

The set of standardized vocabularies that was used in 
the harmonization process is based on the OMOP [12] 
standardized vocabularies representing clinical concepts 
which can be accessed by the ATHENA (Accessible Ter-
minology, Health Information, and Navigation) web-based 
tool [13] developed by the National Library of Medicine. 
These vocabularies include standard terminologies such 
as SNOMED-CT [14], LOINC [15], and UMLS-RxNorm 
[16] as well as a set of specialized vocabularies, such as the 
HemOnc Vocabulary [17] and the Cancer Modifiers ontol-
ogy [18] for representing concepts in the oncology domain. 
For our purposes, we used ATHENA to browse the various 
standardized vocabularies while mapping each dataset con-
cept to the corresponding OMOP standardized concept.

For choosing the concepts to include, an analysis was con-
ducted on the four larger datasets (namely, DUKE, ISPY2, 
ISPY1, and TCGA) collectively, to ascertain the semantics 
associated with the concepts in each dataset. Although 
there are many relevant concepts in the breast cancer 
domain, we examined only concepts originally included in 
the selected datasets. The main criterion that was used to 
include a concept in the common data model was to iden-
tify the same concept in at least two of the original data-
sets. The rationale behind this decision was twofold, first, 
to acquire a dataset with as few as possible missing values 
and, second, to acquire a dataset that includes more cases 
having the specific concept defined than any single, original 
dataset. The latter is a key requirement, set to enhance the 
added value of the resulting dataset. The process included 
taking one by one the concepts of each dataset and finding 
corresponding concepts in the other datasets. The corre-
sponding concepts were either synonymous concepts with 
the same or similar value sets or a combination of concepts 
that could be used to evaluate the concept of the common 
data model. For example, the common data model con-
cept tumor hormone receptor status (OMOP:4,160,341) 
is part of the ISPY2 dataset as “HR” and as “HR Pos” in 
ISPY1, although it is not explicitly defined in the DUKE 
dataset, the fields, “ER,” corresponding to “Status of estro-
gen receptors of neoplasm” (OMOP:40,481,986), and “PR” 
mapped to “Status of progesterone receptors of neoplasm” 
(OMOP:40,481,987) can be used to calculate the appropri-
ate value for all DUKE subjects.

This process was performed also in reverse, i.e., in 
one dataset a concept was described with semantics 
that required a generic value-set while in others there 

was detailed information. In that case, we have decided 
to calculate the generic values from the detailed infor-
mation and include both in two distinct concepts in the 
common data model. For example, in the ISPY2 dataset, 
neoadjuvant chemotherapy was defined in the field “Arm” 
using the administered drug name while in DUKE the 
corresponding “Neoadjuvant Chemotherapy” field was 
binary. To retain as much information as possible and 
provide access to as many cases as possible we defined 
two fields: “neoadjuvant_chemotherapy” and “neoadju-
vant_chemo_medication” both mapped to Neoadjuvant 
chemotherapy (OMOP:44,808,409). For the first, yes 
(OMOP:4,188,539)/no (OMOP:4,188,540) were defined 
as value sets, and for the second, single or multiple codes 
referring to the specific medication were used.

Once the concepts of the common data model and 
their semantics were clarified, the concepts were mapped 
manually to OMOP IDs. The selection of the specific 
concept ID was performed considering the following set 
of rules:

1. Select the concept that matches the most to the 
semantics of the concept of the original dataset 
instead of the specific textual string (“conceptual 
match VS literal match”). This rule apart from the 
concept name refers also to the selection of the con-
cept that matches the concept’s class as it is pro-
vided by the referenced terminology, e.g., ER was 
mapped to “Status of estrogen receptors of neo-
plasm” (OMOP:40,481,986) which is a SNOMED—
Observable entity, instead of “Estrogen receptor” 
(OMOP:4,051,798) which is a SNOMED – Sub-
stance.

2. Select concepts of well-known and commonly used 
terminologies. When possible, we tried to map the 
concepts to SNOMED, ICD, LOINC, and RxNorm, 
and if not possible, we then selected from other more 
disease-specific terminologies such as the Cancer 
Modifier terminology.

3. Select concepts marked as Valid and Standard over 
those marked invalid or non-standard assuming the 
semantics of the valid/standard concepts are ade-
quate;

4. Finally, if more than one concept is still applicable, 
select the one with the most synonyms to enrich the 
defined semantics.

Regarding the value sets, the core decision had to do 
with the use of values with detailed semantics instead 
of codes of generic values (i.e., yes/no, positive/nega-
tive) where this was possible. For example, for the con-
cept “Status of estrogen receptors of neoplasm,” the 
values were mapped to “Estrogen receptor positive 
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tumor” (OMOP:4,167,696) and “Estrogen receptor nega-
tive neoplasm” (OMOP:4,261,933) instead of the “yes/no” 
used in the original datasets. This decision enhances the 
semantics of any subset of the homogenized dataset since 
the value for a specific case encompasses all the meaning 
without the need to be used in conjunction with the con-
cept. Also, since all possible values were present at the 
time of conversion, no missing values are present in the 

final homogenized dataset. In cases where the original 
dataset had missing or not confirmed values, the concept 
ID of “Not provided” (OMOP:763,013) was used.

A common challenge was to handle concepts that are 
equivalent among datasets but whose value sets included 
terms in different levels of detail and all the terms (i.e., 
generic and specific) could be mapped to OMOP IDs. 
An example of such a case is the value sets for the con-
cept “pN category” (OMOP:4,161,174) of the pathologi-
cal TNM classification in the DUKE and TCGA-BRCA 
datasets. In the first, the value set is numerical from -1 
to 4, with -1 referring to the “NX category,” while in the 
second it is categorical/text including sub-categories (e.g., 
N1a, N0 (i-)). In this case, as in other similar cases, we 
have mapped all possible values of both value sets into 
distinct codes and thus, the value set of the concept in 
the homogenized dataset includes both the detailed and 
the more generic codes. This approach retains all the 
information that is included in the original dataset and at 
the same time is easy to recode the field using only the 
generic value set if this is needed.

For the concepts whose original values were combina-
tions of values (e.g., neoadjuvant chemotherapy medi-
cation), each distinct possible value was mapped to an 

Table 2 The DICOM tags of interest

DICOM tag Description

(0018, 0020) Scanning sequence

(0018, 0023) MRI acquisition type

(0020, 0037) Image orientation (patient)

(0018, 0024) Sequence name

(0008, 103E) Series description

(0008, 0008) Image type

(0018, 1314) Flip angle

(0018, 9075) Diffusion directionality

(0043, 1039) Private tag for diffusion b-value

(0018, 9087) Diffusion b-value

(0020, 0105) Number of temporal positions

Fig. 2 Usage of each vocabulary for concept mapping (inner arc) and value-set mapping (outer arc)
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OMOP ID, and the resulting field was defined as a con-
catenation of the specific concept IDs delimited using the 
vertical bar. This decision resulted in one field/column 
per concept in the resulting dataset instead of having 
multiple columns (i.e., first medication, second medica-
tion) and many empty values.

For certain fields, the value set in the original dataset 
required cleaning prior to any conversion/mapping. This 
was possible because, in the original data request form, 
the answer was requested in a free text field and the 
data provider did not adhere fully to the corresponding 
instructions. Such a field was the DUKE’s “tumor posi-
tion”. In the original dataset apart from the expected 
clock face locations there are also definitions in arbitrary 
detail, for example, “L 11:30” or “R4-5” and additional 
text such as “L with calcs” resulting in 259 different field 
values in the 922 cases included in the dataset. Since 
information regarding the tumor location was also pre-
sent in the TCGA-BRCA in the “icd_o_3_site” field, we 
have selected to map both datasets to the concept “Ana-
tomic location of neoplasm” (OMOP:4,135,405) and use 
as the value set the OMOP IDs that refer to the relevant 
concepts from International Classification of Diseases for 
Oncology, 3rd Edition (ICD-O-3).

Dataset conversion through an ETL process
The original datasets, as discussed above, were either in 
Excel (Microsoft Corporation, Redmond, WA, USA) or 
in CSV format. Instead of performing the conversion of 
these datasets to the common data model (CDM) manu-
ally, we prepared the necessary ETL scripts and docu-
mented the procedure so that this operation could be 
repeated by anyone. The major advantage of this deci-
sion against the easier one-off approach is twofold. 
Firstly, the whole conversion pipeline can be repeated in 
case of an identified conversion error at any time point 
without the need to perform several manual steps from 
scratch. Secondly, this approach provides the possibility 
to include additional concepts from the existing datasets 
into the CDM in case of either expansion of the available 
public datasets that could lead to the inclusion of addi-
tional concepts (i.e., concepts that were now omitted 
from CDM due to the fact that they were present in only 
one dataset) or use of an in-house dataset which encom-
passes different concepts from those in our CDM that are 
included in one of the original datasets.

We have used the Statistical Package for Social Sci-
ence (SPSS, IBM Corp, Armonk, NY, USA) for the con-
version of the datasets. The SPSS scripts are publicly 
available here [19] for reuse or review. In case additional 
preparatory steps were required (e.g., removal of specific 
top rows in Excel to assist auto import from SPSS), those 
instructions accompany the scripts.

Enhanced selection of imaging data
In addition to standardizing clinical data, it is essential 
to have accessible information about imaging techniques 
and acquisition characteristics identified through specific 
DICOM tags. The acquisition of the imaging metadata 
for each image series in a specific public dataset is a two-
step procedure. Initially, the NBIA Advanced REST API 
[20] is queried to retrieve all imaging series that are part 
of the specific public dataset, and then, one request query 
per series in the response must be performed to acquire 
the series’ DICOM tags. This process may require signifi-
cant time depending on the size of the dataset; thus, the 
appropriate caching mechanisms were employed to allow 
faster operation.

Regarding grouping per MRI technique, a set of 
DICOM tags was selected, and for each dataset, the num-
ber of series in various meaningful combinations of these 
tags was calculated. The set of DICOM tags of interest 
is presented in Table  2. Moreover, since in public data-
sets images have commonly undergone anonymization, 
some DICOM tags that would help identify the imag-
ing technique could be missing, e.g., number of tempo-
ral positions. To overcome this, DICOM tags defining 
technical setup information may be used to safely derive 
imaging techniques, e.g., the flip angle.1 Moreover, DWI, 
in technical terms, can be described as an echo-planar-
based acquisition, acquired in a two-dimensional mode 
and repeated with different diffusion sensitivity values 
to acquire the quantitative apparent diffusion coefficient 
maps. Additionally, for the DWI sequence, the neces-
sary DICOM tags to complement the description were 
diffusion directionality and diffusion b-value. Only one 
private tag was used to help identify the DWI series 
(General Electric, 0043,1039). These scanners perform 
unique ordering of the different b-value acquisitions in 

Table 3 Subjects and concepts included in the homogenized 
dataset

Dataset Subjects included Mapped concepts

Number Percentage Number Percentage

ISPY2 719 73% 12 133%

Duke-Breast-Cancer-
MRI

922 100% 36 49%

ISPY1 221 100% 14 82%

TCGA-BRCA 139 99% 27 25%

Breast-MRI-NACT-Pilot 64 100% 23 56%

1 Flip angle, the angle in degrees to which the magnetic vector is flipped 
from the magnetic vector of the primary field.
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Table 4 List of included concepts with corresponding OMOP ID and response to the original dataset



Page 9 of 12Kilintzis et al. European Radiology Experimental            (2024) 8:42  

the series, resulting in apparent diffusion coefficient mis-
calculation if this is ignored.

Results
In this section, we provide an overview of the results of 
our activities, which is a homogenized dataset promoting 
research in the domain and a tool enabling the explora-
tion of this dataset.

The RV‑Cherry‑Picker dataset
The resulting homogenized dataset includes 2,035 sub-
jects from 5 public datasets. The homogenized clini-
cal dataset describes 38 coded clinical concepts using 
135 coded values from 12 standardized vocabularies. In 
Fig. 2, the vocabularies used both for the coding of con-
cepts (inner arc) and for the coding of the value set (inner 
arc) are presented. For the concepts, the one mainly used 
with 31/38 concepts mapped to codes originating from it 
was SNOMED, while for coding the values, the Cancer 

Modifier and SNOMED with 60 and 26 values respec-
tively were those used more.

In Table  3, the composition of the homogenized clini-
cal dataset is presented. The first two columns present the 
final number of subjects that were included in the homog-
enized dataset along with the corresponding percentage 
of the original dataset are presented. Then, the number of 
concepts of the homogenized dataset that were mapped 
to the study-specific concepts of the original dataset and 
the corresponding percentage are presented. It must be 
noted that for the ISPY2 dataset, 12 concepts were coded 
using the information described in the original 9 concepts 
(see Table  1) resulting in 133% in the last column. This 
was a result of the concept selection methodology retain-
ing both detailed and generic concepts.2

Fig. 3 RV-Cherry-Picker clinical

2 For example, in ISPY2 from the detailed definition of neoadjuvant chem-
otherapy medication information, both the detailed field “neoadjuvant_
chemo_medication” and the binary “neoadjuvant_chemotherapy” were 
defined.
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The 38 selected and coded concepts, their mapping to 
OMOP concepts, and the presence of each concept in the 
original dataset are presented in Table  4. The concepts 
are organized into conceptual groups (e.g., demographic 
information, pathology report).

RV‑Cherry‑Picker tool
RV-Cherry-Picker is deployed and it is publicly acces-
sible [21] enabling exploration of the homogenized 
dataset. To provide public FAIR-based access to the 
homogenized and semantically enriched clinical data 

set, the Molgenis [22] metadata catalog was used. Mol-
genis provides two ways of accessing the available infor-
mation. First, there is a user-friendly interface that 
allows users to easily filter, search, and sort information 
according to their needs and specific use cases, allow-
ing download of the result in CSV or Excel format, and 
second, a set of APIs to retrieve data programmatically 
based on their own needs. A screenshot of the deployed 
browser for harmonized open clinical datasets for 
Breast Cancer (RV-Cherry-Picker clinical) is presented 
in Fig. 3.

Fig. 4 Public DICOM Cherry-Picker tool user interface excerpt
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For the second part of RV-Cherry-Picker (Public 
DICOM cherry picker), a lightweight standalone web 
application was developed that implements the acqui-
sition, caching, and grouping of the imaging series 
metadata, and provides the web interface that enables 
browsing the information per public study and selecting 
an identified subset of the data. Subsequently, the Public 
DICOM Cherry Picker generates, for the selected subset 
of MRI images, the specific manifest file to be used by 
NBIA Retriever [23] for image downloading.

The Public DICOM Cherry Picker tool extends the 
existing TCIA functionality by analyzing the charac-
teristics of each imaging dataset enabling the selection 
of specific subsets of the data. The selection is based on 
imaging technique and acquisition characteristics identi-
fied via specific DICOM tags. A part of the user interface 
of the tool is depicted in Fig. 4.

Discussion
The availability of public datasets can be considered a 
major barrier to the production of high-quality image 
analysis AI systems in radiology, not only because the 
cost to produce these datasets is high, but also because 
access to existing datasets is restricted and hampered 
by quality problems in their curation [24]. Existing 
repositories, such as the TCIA and the National Cancer 
Institute’s Imaging Data Commons [25], offer access to 
both clinical and imaging data; however, most of them 
have significant shortcomings in terms of clinical data 
homogenization and deficiencies in the selection of 
a specific imaging subset (e.g., based on specific MRI 
techniques).

In this paper, we focus on five datasets retrieved from 
the TCIA and present our efforts for creating and FAIRi-
fying one of the most comprehensive publicly available 
datasets in the domain of breast cancer including both 
clinical and imaging data. The resulting harmonized 
dataset encompasses information on 2035 subjects. We 
detail the methodology followed, and we provide public 
access to the complete ETL scripts to allow both repro-
ducibility and future dataset extension with minimal 
effort.

RV-Cherry-Picker allows fine-grained exploration of 
the dataset and enables users to search both the clini-
cal and diagnostic imaging datasets, providing unified 
access and facilitating the downloading of selected series 
subsets, such as DWI or DCE images. This feature sig-
nificantly reduces the burden of managing and identify-
ing the appropriate sets of images for specific AI model 
scenarios.

Our effort enables access to the largest publicly avail-
able imaging dataset for breast cancer, already complet-
ing the first step for the development of downstream 

clinical AI models, i.e., the step of data cleaning and har-
monization, further guiding similar efforts and promot-
ing research in the domain.

As highlighted by other authors [26], tracking and ame-
liorating quality problems in public datasets can have a 
significant impact on AI system performance. Consider-
ing this, in our future work, we plan to expand the RV-
Cherry-picker platform to include compatibility checking 
mechanisms during the selection of imaging data origi-
nating from different device vendors or different studies, 
and automatically detecting curation errors and incom-
patibilities among the ingested datasets.
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