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Abstract 

Background To assess the feasibility and tissue response of using a gold nanoparticle (AuNP)-integrated silicone-
covered self-expandable metal stent (SEMS) for local hyperthermia in a rat esophageal model.

Methods The study involved 42 Sprague–Dawley rats. Initially, 6 animals were subjected to near-infrared (NIR) laser 
irradiation (power output from 0.2 to 2.4 W) to assess the in vitro heating characteristics of the AuNP-integrated 
SEMS immediately after its placement. The surface temperature of the stented esophagus was then measured using 
an infrared thermal camera before euthanizing the animals. Subsequently, the remaining 36 animals were randomly 
divided into 4 groups of 9 each. Groups A and B received AuNP-integrated SEMS, while groups C and D received 
conventional SEMS. On day 14, groups A and C underwent NIR laser irradiation at a power output of 1.6 W for 2 min. 
By days 15 (3 animals per group) or 28 (6 animals per group), all groups were euthanized for gross, histological, 
and immunohistochemical analysis.

Results Under NIR laser irradiation, the surface temperature of the stented esophagus quickly increased to a steady-
state level. The surface temperature of the stented esophagus increased proportionally with power outputs, being 
47.3 ± 1.4 °C (mean ± standard deviation) at 1.6 W. Only group A attained full circumferential heating through all layers, 
from the epithelium to the muscularis propria, demonstrating marked apoptosis in these layers without noticeable 
necroptosis.

Conclusions Local hyperthermia using the AuNP-integrated silicone-covered SEMS was feasible and induced cell 
death through apoptosis in a rat esophageal model.

Relevance statement A gold nanoparticle-integrated silicone-covered self-expanding metal stent has been devel-
oped to mediate local hyperthermia. This approach holds potential for irreversibly damaging cancer cells, improving 
the sensitivity of cancer cells to therapies, and triggering systemic anticancer immune responses.
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Key points 

• A gold nanoparticle-integrated silicone-covered self-expanding metal stent was placed in the rat esophagus.

• Upon near-infrared laser irradiation, this stent quickly increased the temperature of the stented esophagus.

• Local hyperthermia using this stent was feasible and resulted in cell death through apoptosis.

Keywords Biliary tract, Gastrointestinal tract, Hyperthermia (induced), Neoplasms, Self-expandable metallic stents

Graphical Abstract

Background
Self-expandable metal stent (SEMS) placement is a well-
established method for the palliative treatment of malig-
nant esophageal strictures [1]. This procedure quickly 
relieves dysphagia compared with brachytherapy and 
radiotherapy but does not treat the underlying cancer [2]. 
In addition, recurrent dysphagia occurs in approximately 
14% of patients after SEMS placement because of tumor 
growth [3]. To address these limitations, a radioactive 
SEMS was introduced [4, 5]. In a randomized trial, this 
radioactive SEMS prolonged patient survival compared 
with a conventional SEMS [5]. Although further stud-
ies are necessary to confirm this result, the potential for 
local cancer therapy with SEMSs has been realized.

Recently, a gold nanoparticle (AuNP)-coated uncov-
ered SEMS was investigated for its ability to mediate 
local heat treatment upon near-infrared (NIR) laser 
irradiation in a rat esophageal and gastric outlet model 
[6, 7]. This SEMS is of clinical interest because hyper-
thermia can induce irreversible damage to cancer cells, 
enhance the delivery of anticancer drugs, improve the 
sensitivity of cancer cells to therapies, and trigger sys-
temic anticancer immune responses [8]. However, 
uncovered SEMSs are not recommended for patients 
with malignant esophageal strictures, as they are associ-
ated with a higher rate of tumor or tissue ingrowth com-
pared to covered SEMSs [1].
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Silicone is commonly used as the covering membrane 
for covered SEMSs due to its high chemical and ther-
mal stability [9]. The dipping method is often employed 
to apply this silicone membrane to SEMSs [10]. By 
adding silver particles to the silicone solution before 
dipping, Lee et  al. [11] successfully fabricated a silver 
particle-integrated silicone-covered SEMS for biliary 
obstructions. Using the same method, we fabricated 
an AuNP-integrated silicone-covered SEMS. The aim 
of this study was to evaluate the feasibility and tissue 
response of using this AuNP-integrated silicone-cov-
ered SEMS for local hyperthermia in a rat esophageal 
model.

Methods
This study was approved by the Animal Research Com-
mittee of the National Cancer Center (identifier: 
NCC2019A114) on March 1, 2019, and conformed to the 
guidelines for the Care and Use of Laboratory Animals.

SEMS description
The AuNP-integrated and conventional silicone- 
covered SEMSs used in this study were both supplied 
by Youan Medical (Beijing, China) (Fig.  1a,b). These 
SEMSs are braided from nitinol wire and are available 
in diameters ranging from 4 to 20  mm and lengths of 
1 to 15  cm. Given the diameter and length of the rat 

Fig. 1 a Photograph showing the AuNP-integrated silicone-covered SEMS (left) and the conventional silicone-covered SEMS (right). b Light 
microscope image showing that the AuNPs were integrated into the silicone membrane of the SEMS. c Scanning electron microscope 
image showing the gold nanospheres with an average diameter of 20 nm. d Bar graph showing the amount of gold ions released 
from the AuNP-integrated silicone-covered SEMSs into phosphate-buffered saline at 37 °C over a span of 28 days. AuNP, Gold nanoparticle; SEMS, 
Self-expandable metal stent
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esophagus, SEMSs with a 5 mm diameter and 1.5 cm 
length were selected for this study [12]. Both type of 
SEMSs were fully covered with a silicone membrane 
using the dipping method. Specifically, an 8 mm diam-
eter cylindrical Teflon mandrel was inserted into the 
lumen of the SEMS and heat-treated at approximately 
150  °C for around 2  h after being dipped in the sili-
cone solution. To integrate AuNPs into the silicone 
membrane of the AuNP-integrated SEMS, gold nano-
spheres were added to the dipping solution at a con-
centration of 1.5 mg/mL. These gold nanospheres were 
produced using laser ablation and had an average diam-
eter of 20 nm (Fig. 1c). Gold ion quantification in three 
AuNP-integrated SEMS samples was performed using 
inductively coupled plasma optical emission spectros-
copy (iCAP7200; Thermo Fisher Scientific, Freemont,  
CA, USA). Each sample was immersed in aqua regia, 
heated to 180  °C for 1  h, and then the resulting solu-
tion’s gold ions were analyzed. Analysis revealed 
that the SEMSs contained a gold ion concentration 
of 115,997.2 ± 554.1  mg/kg (mean ± standard devia-
tion). Gold ion release from AuNP-integrated SEMSs 
was quantified using inductively coupled plasma mass 
spectroscopy (NexION 300D; PerkinElmer, Shelton,  
CT, USA). Three AuNP-integrated SEMS samples were 
immersed in phosphate-buffered saline for 28  days at 
37  °C, with gold ion concentrations in the saline ana-
lyzed at set intervals (days 1, 3, 7, 14, and 28) over a 
28-day period. Analysis indicated minimal gold 
ion release from the SEMSs over the 28-day period 
(Fig. 1d).

In vitro heating characteristics
To evaluate the in vitro heating characteristics of the 
SEMSs used in this study, we irradiated them with an 
808 nm NIR laser (Lumen Photonics, Beijing, China) at 
power outputs ranging from 0.2 to 0.8 W using a 1 mm-
diameter optic fiber (Lumen Photonics, Beijing, China). 
The surface temperature of these SEMSs was then meas-
ured using an infrared thermal camera (E5-XT; Teledyne 
FLIR, OR, USA). Under NIR laser irradiation, the sur-
face temperature of the AuNP-integrated SEMSs quickly 
increased and stabilized, while the conventional SEMSs 
experienced a slower increase, requiring ≥ 30 s to reach a 
steady-state temperature. After the cessation of NIR laser 
irradiation, the surface temperature of all SEMSs quickly 
returned to room temperature. The in vitro steady-state 
surface temperatures of the SEMSs are summarized in 
Table  1. For both SEMS types, the surface temperature 
increased proportionally with power outputs. However, 
the AuNP-integrated SEMSs consistently showed notably 
higher temperatures compared to conventional SEMSs.

In vivo heating characteristics
Six male Sprague–Dawley rats, weighing between 300 
and 350 g, were used to assess the in vitro heating charac-
teristics of the AuNP-integrated SEMS. After AuNP-inte-
grated SEMS placement, these animals were immediately 
exposed to 808 nm NIR laser (Lumen Photonics, Beijing, 
China) with power outputs ranging from 0.2 to 2.4 W. A 
1 mm-diameter optic fiber (Lumen Photonics, Beijing, 
China) was used for the irradiation, and it was inserted 
into the stented esophagus through a 6-Fr sheath (con-
structed in-house) (Fig.  2a). The surface temperature of 
the stented esophagus was monitored using an infrared 
thermal camera (E5-XT; Teledyne FLIR, OR, USA). Upon 
NIR laser irradiation, the surface temperature quickly 
increased to a steady-state level and then promptly 
returned to core body temperature after the irradiation 
ceased (Fig. 2b). The steady-state surface temperature of 
the stented esophagus increased proportionally with the 
power outputs, ranging from 37.5 ± 1.2 °C (mean ± stand-
ard deviation) at 0.2 W to 54.0 ± 2.7 °C at 2.4 W (Fig. 3). 
At a power output of 1.6 W, the steady-state surface tem-
perature was 47.3 ± 1.4  °C. The cumulative equivalent 
min at 43  °C (CEM43) is a metric commonly utilized in 
hyperthermia research to standardize the thermal dose [13]. 
At 47.3  °C for 2  min, the CEM43 value is approximately 
39.4 min.

Animal study
Thirty-six male Sprague–Dawley rats, weighing between 
300 and 350 g, were randomly divided into four groups 
using computer-generated random numbers (Fig.  4). 
Animals in groups A (n = 9) and B (n = 9) received 
AuNP-integrated SEMS placement, while those in 
groups C (n = 9) and D (n = 9) received conventional 
SEMS placement. Fourteen days after SEMS placement, 
animals in groups A and C underwent peroral NIR laser 
irradiation at a power output of 1.6 W for 2 min. In con-
trast, animals in groups B and D did not undergo NIR 
laser irradiation. This experimental design was intended 

Table 1 In vitro steady-state surface temperatures of SEMSs 
under NIR laser irradiation

Data are given as mean ± standard deviation. AuNP Gold nanoparticle, NIR Near-
infrared, SEMS Self-expandable metal stent

Power output (W) Steady-state surface temperature (°C)

AuNP-integrated SEMS 
(n = 24)

Conventional 
SEMS (n = 18)

0.2 35.9 ± 0.3 24.4 ± 1.5

0.4 43.9 ± 0.4 30.1 ± 1.0

0.6 53.5 ± 0.6 36.3 ± 1.0

0.8 62.9 ± 2.1 41.1 ± 2.1
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to confirm whether the tissue response was specifically 
induced by the AuNP-integrated SEMS under near-
infrared laser irradiation. Three animals from each group 
were euthanized 15  days after SEMS placement. The 
remaining animals were euthanized 28 days after SEMS 
placement. All animals were euthanized using a gradual-
fill method of carbon dioxide inhalation to ensure mini-
mal distress. The concentration of carbon dioxide was 
progressively increased to induce unconsciousness and 

subsequently death. After the animals were euthanized, 
gross, histological, and immunohistochemical analyses 
were conducted.

SEMS placement procedure
After 8  h of fasting, the rats were anesthetized with 
an intramuscular injection of a mixture of 50  mg/kg  
zolazepam and tiletamine. A 2 cm incision along the mid-
line of the upper abdomen was made to expose the lower 

Fig. 2 a Photograph showing the stented (AuNP-integrated silicone-covered SEMS) esophagus (arrow) during NIR laser irradiation. b Photothermal 
image showing the stented (AuNP-integrated silicone-covered SEMS) esophagus (cursor) during NIR laser irradiation. AuNP, Gold nanoparticle; NIR, 
Near-infrared; SEMS, Self-expandable metal stent

Fig. 3 Line diagram showing the mean in vivo steady-state surface temperatures of the stented (AuNP-integrated silicone-covered SEMS) 
esophagus with NIR laser irradiation. Error bars are standard deviations. AuNP, Gold nanoparticle; NIR, Near-infrared; SEMS, Self-expandable metal 
stent
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esophagus. A 6-Fr sheath (constructed in-house) loaded 
with a SEMS was inserted into the lower esophagus 
through the mouth. Under direct visualization through 
the semitransparent esophageal wall, the SEMS was 
placed in the lower esophagus. To prevent stent migra-
tion, the SEMS was sutured to the lower esophageal wall 
at three points using 4–0 silk sutures. The abdominal 
cavity was then closed with 4–0 Vicryl and silk sutures. 
After SEMS placement, radiographs were taken at 14 and 
28 days to monitor stent migrations.

Local hyperthermia procedure
After fasting for 8 h, the rats were anesthetized with an 
intramuscular injection of a 50 mg/kg mixture of zolaze-
pam and tiletamine. Under fluoroscopic guidance, a 5-Fr 
sheath with a radiopaque tip (constructed in-house) was 
inserted through the mouth into the stented esophagus 
over a 0.035 inch guidewire (Radiofocus; Terumo, Tokyo, 
Japan) (Fig.  5a). A 1 mm-diameter optic fiber (Lumen 
Photonics, Beijing, China) was then inserted through 
the sheath until the tip of the optic fiber reached the tip 
of the sheath. The sheath was then withdrawn from the 
stented esophagus, leaving the optic fiber in place, and 
808 nm NIR laser irradiation (Lumen Photonics, Beijing, 

China) was performed at a power output of 1.6 W for 
2 min (Fig. 5b,c).

Histological and immunohistochemical analyses
The stented esophagus was harvested from rats eutha-
nized either 15 or 28 days after SEMS placement. The tis-
sue samples, once fixed and embedded in paraffin, were 
sectioned into 4  μm slices and stained with hematoxylin 
and eosin for histological analysis. For immunohistochem-
ical analysis, sections from animals euthanized at 15 days 
after SEMS placement were deparaffinized, rehydrated, 
and incubated with a primary antibody against heat shock 
protein 70 (HSP70) (ab2747; Abcam, Cambridge, UK; 
diluted 1:400). Conversely, sections from 28-day eutha-
nized animals underwent similar IHC preparation and 
were stained using terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL) (ApopTag; 
Qbiogene, Darmstadt, Germany) and a primary antibody 
against Receptor-interacting kinase 3 (RIP3) (sc-374639; 
Santa Cruz Biotechnology, CA, USA; diluted 1:50). After 
staining, sections were examined using a digital slide scan-
ner (Aperio ScanScope CS; Leica Biosystems, CA, USA). 
Epithelial and submucosal layer thickness and percentages 
of TUNEL-, HSP70-, and RIP3-positive cells were assessed 

Fig. 4 Flow diagram showing the study design and the number of rats that completed each part of the study. AuNP, Gold nanoparticle; NIR, 
Near-infrared; SEMS, Self-expandable metal stent
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using ImageJ v1.53 (NIH, MD, USA). Inflammatory cell 
infiltration was graded from 1 (mild) to 5 (severe). Data 
were averaged from 2 segments (proximal and distal) and 
6 points on each segment’s circumference. Two blinded 
observers reached consensus on results.

Statistical analysis
For normally distributed data, one-way ANOVA was used 
to determine if there were statistically significant differences 
among the groups. In cases where the assumption of equal 
variances was violated, Welch’s ANOVA was used instead. 
In instances where the ANOVA indicated statistically sig-
nificant differences, Tukey’s HSD pairwise comparison was 
used to identify specific group differences. Non-normally 
distributed data were evaluated using the Kruskal–Wallis 
test, followed by Dunn-Bonferroni post hoc tests for statisti-
cally significant findings. A p value of < 0.05 denoted statisti-
cal significance. All statistical analyses were conducted with 
SPSS Statistics v21.0 (IBM Corp., Armonk, NY, USA).

Results
Technical success and adverse events
SEMS placement was successfully achieved in all 36 rats 
without any procedure-related adverse events (AEs). 
Similarly, NIR laser irradiation was successfully per-
formed in all 18 animals from groups A and C, with no 
procedure-related AEs. Fourteen days after SEMS place-
ment, a radiograph revealed stent migration into the 
stomach in one animal from group B. This animal was 
subsequently euthanized and excluded from the analysis. 

The remaining 35 animals survived until the end of the 
experimental period. However, 28 days after SEMS place-
ment, radiographs detected stent migration into the 
stomach in 18 animals. This included 6 animals in group 
A, 3 in group B, 5 in group C, and 4 in group D. These 
18 animals were not excluded from the analysis, as the 
stent migration happened after the NIR laser irradiation 
had been performed in groups A and C. Gross exami-
nation revealed no abnormalities, such as ulceration, 
perforation, or hemorrhage, in the lower esophagus or 
surrounding organs of any animal. The SEMS was suc-
cessfully extracted and found intact in each animal.

Histological analysis
The esophageal squamous epithelium exhibited consist-
ent cellular structure and morphology across all groups,  
maintaining a uniform thickness in the epithelial  
layer (60.5 ± 19.8 μm [mean ± standard deviation] versus 
67.0 ± 40.8 μm versus 66.1 ± 10.0 μm versus 65.0 ± 50.0 μm; 
p = 0.787) (Figs. 6a and 7a). The submucosal layer showed 
characteristic loose connective tissue, without signs of 
fibrotic changes, and its vascular structures remained 
intact, displaying no increased vascularity. Furthermore, 
the thickness of this layer was consistent across the groups 
(68.7 ± 38.3 μm versus 71.3 ± 31.5 μm versus 57.6 ± 14.8 μm 
versus 71.3 ± 44.7 μm; p = 0.089) (Fig. 7b). No groups had 
excessive or aberrant accumulation of inflammatory cells. 
The levels of inflammatory cell infiltration remained sta-
tistically consistent across groups (1.2 ± 0.5 versus 1.2 ± 0.4 
versus 1.0 ± 0.0 versus 1.4 ± 0.6; p = 0.506) (Fig. 7c).

Fig. 5 a Fluoroscopic image showing that the 5-Fr sheath (black arrow) was inserted in the stented (AuNP-integrated silicone-covered SEMS) 
esophagus (arrowhead) over a 0.035-in guidewire (white arrow). b Photograph showing the 1-mm-diameter optic fiber (black arrow) which 
was inserted through the 5-Fr sheath (arrowhead) with a radiopaque tip (white arrow). c Fluoroscopic image showing that the 5-Fr sheath (arrow) 
was withdrawn from the stented (AuNP-integrated silicone-covered SEMS) esophagus (arrowhead) with the 1-mm-diameter optic fiber (not visible 
fluoroscopically) left in place. Dotted line indicates the presumed location of the optic fiber. AuNP, Gold nanoparticle; NIR, Near-infrared; SEMS, 
Self-expandable metal stent
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Immunohistochemical analysis
In group A, HSP70-positive cells were uniformly  
distributed around the circumference of the stented 

esophagus tissue (Fig. 6b). The percentage of these cells 
was significantly higher in this group than in the others  
(62.5 ± 23.7% versus 11.6 ± 7.7%, 15.6 ± 8.4%, and 8.3 ± 3.3%;  

Fig. 6 a Hematoxylin and eosin-stained representative histological images of the stented esophagus (× 1 magnification). From left to right: 
groups A through D. b HSP70-stained representative histochemical images of the stented esophagus (× 10 magnification). From left to right: 
groups A through D. c TUNEL-stained representative histochemical images of the stented esophagus (× 10 magnification). From left to right: 
groups A through D. d RIP3-stained representative histochemical images of the stented esophagus (× 10 magnification). From left to right: groups 
A through D. HSP70, Heat shock protein 70; RIP3, Receptor-interacting kinase 3; TUNEL, Terminal deoxynucleotidyl transferase-mediated dUTP nick 
end labeling
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all p < 0.001) (Fig. 7d). HSP70-positive cells spanned from  
the mucosal to the muscular layer. However, their count 
consistently decreased with increasing tissue depth, 
reaching its lowest in the muscularis propria. Similarly, 
TUNEL-positive cells in group A exhibited a uniform 
distribution throughout the stented esophagus and had 
a significantly higher percentage than the other groups 
(83.5 ± 14.4% versus 9.7 ± 6.8%, 9.6 ± 7.3%, and 6.5 ± 3.9%; 
all p < 0.001) (Figs. 6c and 7e). These cells were observed 
from the mucosal layer down to the muscular layer, 
but their number decreased as tissue depth increased, 
reaching its minimum in the muscularis propria. In 
contrast, RIP3-positive cells were not detectable across all 
groups (Fig. 6d).

Discussion
It is well-recognized that hyperthermia within the 
temperature range of 40 to 47  °C kills cells in a repro-
ducible, time- and temperature-dependent manner 
[14]. In our study, the in vivo surface temperature of 
the esophagus, stented with AuNP-integrated sili-
cone-covered SEMS, reached this hyperthermic range 
upon 808  nm NIR laser irradiation. Furthermore, the  

AuNP-integrated silicone-covered SEMS remained intact 
after being subjected to a mean temperature of 47.3  °C 
for 2 min. This exposure translates to a CEM43 value of 
approximately 39.4  min, which falls within the 30 to 60 
min range commonly employed in cancer therapy [13]. 
Additionally, staining of the stented esophagus tissue 
with hematoxylin and eosin and HSP70 indicated that full 
circumferential heating had been successfully achieved, 
affecting all layers from the mucosa to the muscularis 
propria, without causing any associated AEs.

Cell killing is one of the primary effects of hyper-
thermia in cancer therapy [14]. In our study, TUNEL 
staining of the stented esophagus tissue revealed full 
circumferential apoptosis across all layers, from the 
mucosa to the muscularis propria. However, when the 
same tissue samples were subjected to RIP3 staining, no 
evident necroptosis was observed. These findings align 
with expectations, as it is well-known that apoptosis can 
be triggered with a CEM43 of between 30 and 60 min, 
whereas necrotic changes usually require a CEM43 
of ≥ 240  min [15]. Apart from inducing cell death, 
hyperthermia can also enhance the sensitivity of cancer  
cells to both chemo and radiation therapy [16]. This 
increased sensitivity may allow for the administration 

Fig. 7 a The thickness of epithelial layer. b The thickness of submucosal layer. c The level of inflammatory cell infiltration. d The percentage 
of HSP70-positive cells. *p < 0.05 versus other groups. e The percentage of TUNEL-positive cells. HSP70, Heat shock protein 70; TUNEL, Terminal 
deoxynucleotidyl transferase-mediated dUTP nick end labeling. *p < 0.05 versus other groups
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of these therapies at lower doses, potentially reducing 
side effects and improving the patient’s quality of life. 
Additionally, hyperthermia can stimulate systemic anti-
cancer immune responses, potentially improving the 
efficacy of immunotherapy [17]. Theoretically, employing  
the AuNP-integrated silicone-covered SEMS for local 
hyperthermia can confer these benefits.

Covered SEMS placement has been the most widely 
used method for the palliative treatment of malignant 
dysphagia caused by esophageal and gastric cardia cancer 
[1]. However, conventional covered SEMSs only allevi-
ate dysphagia and do not address the underlying cancer 
[2]. Additionally, combing external radiotherapy with 
SEMS placement increases the risk of severe AEs [18]. 
The AuNP-integrated silicone-covered SEMS, capable 
of mediating local hyperthermia, may simultaneously 
alleviate dysphagia and induce irreversible damage to 
cancer cells through its cell-killing effect. This approach 
also holds promise for use in conjunction with other 
anti-cancer therapies (e.g., targeted and immunother-
apy), as hyperthermia can enhance the delivery of anti-
cancer drugs, improve the sensitivity of cancer cells to 
treatments, and trigger systemic anticancer immune 
responses [8].

Radio frequency ablation (Barrx; Medtronic, Minne-
apolis, MN, USA) has been widely utilized for eradicat-
ing Barrett’s esophagus. AEs following this procedure 
include stenosis, laceration, pain, hemorrhage, perfora-
tion, ulceration, dysphagia, odynophagia, and fever [19]. 
These AEs were reported shortly after the procedure, 
typically ranging from immediately to a few days later, 
except for stenosis, which was reported weeks to months 
post-procedure. Similar AEs may also arise from using 
the AuNP-integrated silicone-covered SEMS for local 
hyperthermia in the esophagus. However, the risk of 
these adverse events would likely be lower with the SEMS 
approach, which utilizes hyperthermia-range tempera-
tures, compared to radiofrequency ablation.

Stent migration is a frequent complication of SEMS 
placement, occurring in approximately 23% of patients 
treated for malignant esophageal strictures [20]. This 
complication is of particular concern for patients 
undergoing concurrent cancer therapy, as a positive 
tumor response could increase the risk of stent migra-
tion [21]. It is also particularly concerning for patients 
receiving local cancer therapy with radioactive SEMSs, 
as stent migration could expose nontargeted areas 
to substantial radiation doses. This limitation pre-
sents a notable barrier to the broader acceptance and 
application of radioactive SEMSs in clinical practice. 
When not exposed to NIR laser, the AuNP-integrated 
silicone-covered SEMS acts as a conventional silicone-
covered SEMS, thereby eliminating the risk of heating 

in non-targeted areas due to stent migration. In our 
study, none of the rats experiencing stent migration 
showed any related AEs.

This study has several notable limitations. First, 
we used a rat model instead of larger animal models 
because of the high number of animals required for this 
study. While rat models are commonly used in esopha-
geal stent research for their physiological and genetic 
similarities to humans and ease of handling, their signifi-
cant size difference from humans could pose limitations 
in translating these findings directly to clinical applica-
tions [22–24]. Second, we employed healthy rats rather 
than cancer models, which is a limitation given that can-
cer cells generally exhibit higher thermal sensitivity than 
noncancerous cells [25]. However, choosing healthy rats 
over cancer models was a decision driven by ethical con-
siderations. Given hyperthermia’s established effective-
ness in cancer treatment, our goal was to reduce animal 
distress. This is an important factor in research with the 
potential for clinical translation. Third, the measure-
ments were limited to the surface temperature, which 
may not accurately depict the temperature within the 
esophageal tissue.

In conclusion, this study presented a simple and repro-
ducible method for fabricating AuNP-integrated silicone-
covered SEMSs. When exposed to 808  nm NIR laser, 
these SEMSs can induce local hyperthermia, thereby 
leading to full circumferential cell death through apop-
tosis in a rat esophageal model. Future studies should  
be oriented towards assessing this technique in larger 
animal models.
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