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Effect of MRI acquisition parameters 
on accuracy and precision of phase-contrast 
measurements in a small-lumen vessel phantom
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Abstract 

Background Phase-contrast magnetic resonance imaging (PC-MRI) quantifies blood flow and velocity noninvasively. 
Challenges arise in neurovascular disorders due to small vessels. We evaluated the impact of voxel size, number of sig-
nal averages (NSA), and velocity encoding (VENC) on PC-MRI measurement accuracy and precision in a small-lumen 
vessel phantom.

Methods We constructed an in vitro model with a constant flow rate using a 2.2-mm inner diameter plastic tube. 
A reservoir with a weight scale and timer was used as standard reference. Gradient-echo T1 weighted PC-MRI 
sequence was performed on a 3-T scanner with varying voxel size (2.5, 5.0, 7.5  mm3), NSA (1, 2, 3), and VENC (200, 
300, 400 cm/s). We repeated measurements nine times per setting, calculating mean flow rate, maximum velocity, 
and least detectable difference (LDD).

Results PC-MRI flow measurements were higher than standard reference values (mean ranging from 7.3 
to 9.5 mL/s compared with 6.6 mL/s). Decreased voxel size improved accuracy, reducing flow rate measurements 
from 9.5 to 7.3 mL/s. The LDD for flow rate and velocity varied between 1 and 5%. The LDD for flow rate decreased 
with increased voxel size and NSA (p = 0.033 and 0.042). The LDD for velocity decreased with increased voxel size 
(p <  10-16). No change was observed when VENC varied.

Conclusions PC-MRI overestimated flow. However, it has high precision in a small-vessel phantom with constant 
flow rate. Improved accuracy was obtained with increasing spatial resolution (smaller voxels). Improved precision 
was obtained with increasing signal-to-noise ratio (larger voxels and/or higher NSA).

Relevance statement Phase-contrast MRI is clinically used in large vessels. To further investigate the possibil-
ity of using phase-contrast MRI for smaller intracranial vessels in neurovascular disorders, we need to understand 
how acquisition parameters affect phase-contrast MRI-measured flow rate and velocity in small vessels.

Key points 

• PC-MRI measures flow and velocity in a small lumen phantom with high precision but overestimates flow rate.

• The precision of PC-MRI measurements matches the precision of standard reference for flow rate measurements.

• Optimizing PC-MRI settings can enhance accuracy and precision in flow rate and velocity measurements.
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Graphical Abstract

Background
Phase-contrast MRI (PC-MRI) is a noninvasive technique 
to quantify blood flow and velocity in the cardiovascular 
system [1]. This technique is used for measuring blood 
flow in a range of clinical applications, most commonly 
for assessment within the heart and great vessels, but 
measurement in small arteries such as intracranial, renal, 
and coronary arteries is also possible [2–6].

When performing flow and velocity measurements 
in the vascular system, both accuracy and precision are 
important properties. Variations in acquisition param-
eters, including voxel size, number of signal averages 
(NSA), and velocity encoding (VENC), have been shown 
to influence both the accuracy and precision of PC-MRI 
measurement [2, 7–9].

The use of PC-MRI in neurovascular diseases is espe-
cially challenging because the vessel lumen mean diame-
ter in the anterior, middle, and posterior cerebral arteries 
is only 1–3  mm [10], which is smaller than the lumen 
used in most previous flow phantom studies. Previous 
studies of pulsatile flow on vessel phantom with a diam-
eter of 2 mm on a 1.5-T scanner, found underestimation 

of flow rate and increased flow rate values with increased 
voxel size, but no assessment was made on the effect of 
NSA or VENC variations [11, 12].

To be able to further investigate the possibility of using 
PC-MRI for neurovascular disorders, we need to gain 
more knowledge on the influence of acquisition param-
eters on PC-MRI-measured flow and velocity in small 
caliber vessels. Therefore, in this study, we assessed the 
effect of spatial resolution, NSA, and VENC on the accu-
racy and precision of PC-MRI measurements at 3  T in 
a vessel phantom with small lumen diameter. We also 
determined the optimal setting for these parameters to 
examine a small-lumen vessel.

Methods
Data acquisition
A 3-T scanner (Achieva 3 T X, Philips Medical Systems, 
Best, The Netherlands) and a 32-channel head coil were 
used for all the PC-MRI measurements. An in vitro flow 
model was constructed to provide a constant flow rate 
(Fig.  1). The phantom consisted of a plastic tube with 
inner diameter of 2.2 mm passing through a plastic box 
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filled with agar gel. A 10-L water reservoir guaranteed a 
constant preload to the pump. Four mM of copper (II) 
sulfate pentahydrate was added to the water to reduce 
T1 relaxation time for improved signal, resulting in a T1 
relaxation time of 422  ms at room temperature. These 
methods were adopted because the differences being 
studied were potentially very small. The flow rate was 
controlled with a reservoir with a weight scale and timer 
placed at one end of the flow model. Pump stability was 
monitored by measuring flow rate at eight different times 
during the entire experiment, and the mean value was 
used as standard reference for flow. No standard refer-
ence was used for velocity.

A gradient-echo T1-weighted PC-MRI sequence was 
performed. The following PC-MRI parameters were 
used as the baseline setting: repetition time/echo time 
20/8 ms, flip angle 15°, bandwidth 217 Hz/pixel, acquired 
voxel size 0.59/0.84/5  mm3, NSA 1 and VENC 200 cm/s. 
As the aim of this study was to determine the optimum 
settings for small vessels, we used retrospective gating 
(artificial gating device) with 70 beats per minute and 
12 phases per cardiac cycle to allow acquisition at multi-
ple time points throughout the cardiac cycle in vivo. The 
acquisition time for the baseline setting was 3:28 min:s. 
Voxel size, NSA, and VENC were changed according to 
the experiment protocol shown in Table  1. The param-
eters and range of values in the experiment protocol 
were chosen because they would be adaptable to clini-
cal PC-MRI measurements in small arteries in patients. 
We examined three different settings for each parameter, 
changing one parameter at a time. We also examined 

the effect of spatial resolution and the highest possible 
signal-to-noise ratio (SNR), changing voxel size com-
bined with the highest NSA and lowest VENC. A power 
analysis was performed in order to determine the num-
ber of repetitions required with the available time at the 
MRI scanner. Based on the result, nine different settings 
were used, and the measurements at each setting were 
repeated nine times without phantom repositioning. All 
images were interpolated to a reconstructed pixel size of 
0.59 × 0.59  mm2.

Data analysis
PC-MRI data were analyzed using commercially available 
software (Extended MR WorkSpace 2.6.3.5, Philips Medi-
cal Systems, Best, The Netherlands). An elliptic region of 
interest (ROI) of 17  mm2 (50 pixels) was drawn by one 

Fig. 1 Schematic drawing of the flow model. A 10-L water reservoir guaranteed a constant preload to the pump. The flow model comprised 
a submersible pump system and plastic tubes. The arrows indicate the flow direction. The flow phantom consisted of a plastic tube with an inner 
diameter of 2.2 mm passing through a plastic box filled with agar gel. The phantom was positioned inside the head coil in the scanner 
with the direction of flow parallel to the long axis of the bore and the scan plane perpendicular to the plastic tube in the flow phantom. The 
flow rate was controlled with a reservoir with a weight scale and timer placed at one end of the flow model and measured at eight different 
times during the entire experiment

Table 1 PC-MRI acquisition parameters

PC-MRI Phase-contrast magnetic resonance imaging

Parameters Baseline setting Test range

Repetition time (ms) 20 Constant

Echo time (ms) 8 Constant

Flip angle (degrees) 15 Constant

Bandwidth (Hz/pixel) 217 Constant

Heart phases 12 Constant

Slice thickness (mm) 5 Constant

Voxel size  (mm3) 2.5 2.5, 5.0, 7.5

Number of signal averages 1 1, 2, 3

Velocity encoding (cm/s) 200 200, 300, 400
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of the authors (M.C.V.) around the vessel in the phase-
difference image (Fig. 2). ROI size was chosen based on 
the signal properties of phase-difference images at the 
baseline setting. Flow rate and maximum velocity were 
calculated for each of the 12 phases during each repeti-
tion, with flow rate defined as mean flow rate over the 
ROI and maximum velocity defined as the highest pixel 
value over the ROI.

The mean values for flow rate and maximum velocity 
were calculated for each repetition. The accuracy of our 
phantom was determined by comparing PC-MRI flow 
rate measurements at the baseline setting with measure-
ments in our standard reference. To illustrate the effect 
of the acquisition parameters on flow rate velocity meas-
urements, graphs of the velocity across the flow phantom 
lumen were drawn.

Statistical analysis
Statistical analysis was performed using R, version 4.1.2, 
2021 (R Foundation for Statistical Computing, Vienna, 
Austria) [13]. To assess accuracy, we calculated the rela-
tive error for PC-MRI flow rate as the difference between 
the PC-MRI flow measurement and the standard refer-
ence, divided by the standard reference. To assess preci-
sion, two methods were used.

1. The coefficient of variation (CoV) was calculated as 
the ratio of the standard deviation (SD) to the mean, mul-
tiplied by 100 to express it as a percentage. Where the SD 
and mean of each setting were used.

2. The reproducibility coefficient was calculated as 1.96 
times the SD. The reproducibility coefficient was used 

to represent the least detectable difference (LDD). The 
LDD was calculated for both absolute and relative values 
(given in % of the mean). Breusch-Pagan tests were used 
to test for differences in the LDD between different set-
tings [14]. The alternative hypothesis was that the LDD 
changed in a pre-specified direction when the settings 
were increased (increased voxel size gives lower LDD, 
increased NSA gives lower LDD and increased VENC 
gives higher LDD), and consequently, one-sided tests 
were used.

The p-values were computed using the permutation 
distribution of the Breusch-Pagan statistic and adjusted 
for multiplicity using the Holm-Bonferroni proce-
dure (adjusted p-values are reported). Values of p < 0.05 
were considered statistically significant. To illustrate 
the results of the Breusch-Pagan test, a graph was made 
using LDD values calculated from the regression model 
that combined all measurements.

Results
The flow rate measurement in our standard reference was 
6.59 mL/s. One of the measurements was considered an 
outlier and excluded from the analysis (range with outlier 
6.25–6.68 mL/s, mean 6.55, median 6.58 and range with-
out outlier 6.50–6.68 mL/s, mean 6.59, median 6.58).

All PC-MRI flow rate measurements were higher than 
our standard reference (mean values ranging from 7.3 to 
9.5 mL/s compared with 6.6 mL/s), see Fig. 3. The meas-
ured flow rate at our baseline setting was 11% higher 
than our standard reference. Flow rate measurements 

Fig. 2 Measurements at the baseline setting. Phase-difference image obtained in one of the 12 phases during the cardiac cycle (a). A region 
of interest surrounds the plastic tube in the flow phantom. Curve representing maximum velocity obtained in all 12 phases (b)
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increased and velocity measurements decreased with 
increased voxel size (Fig. 3).

Graphs of the velocity across the flow phantom lumen 
are illustrated in Fig.  4. The LDD for flow rate was 
0.32 mL/s for PC-MRI at baseline setting and 0.15 mL/s 
for the standard reference. Results from all the measure-
ments are shown in Tables 2 and 3.

We found a decrease in the LDD for flow rate with 
increasing voxel size (p = 0.033) and NSA (p = 0.042), but 
no change when VENC was increased (p = 1.000, Fig. 5). 
We found a decrease in the LDD for maximum velocity 
when voxel size was increased (p <  10-16), but no change 
when NSA or VENC was increased (p = 1.000, Fig. 5).

Discussion
In this study, we examined the accuracy and precision 
of PC-MRI measurements in a vessel phantom with 
small lumen diameter and constant flow rate. We also 

explored the impact of change in spatial resolution, NSA, 
and VENC on PC-MRI measurements. We found that 
flow measured with PC-MRI was higher than that in our 
standard reference. Improved accuracy was obtained 
with decreased voxel size. We found good precision in 
flow rate measurements with PC-MRI; at the baseline 
setting the precision was similar to the precision in our 
standard reference. Improved precision for both flow rate 
and velocity measurements was obtained with increased 
voxel size. Improved precision for flow rate was also 
observed with increased NSA.

Challenges in measuring flow rate in small vessels
In PC-MRI, the intensity of each voxel in the phase 
images is proportional to the mean velocity within the 
volume element. When examining vessels with a small 
lumen, inaccurate measurements due to variation of 
phase and signal amplitude within a voxel will occur 

Fig. 3 PC-MRI measurements in a small-lumen vessel phantom with different MRI acquisition parameters. Mean and standard deviation of flow 
rate and maximum velocity measured with PC-MRI and standard reference for flow rate. PC-MRI Phase-contrast magnetic resonance imaging, NSA 
Number of signal averages, VENC Velocity encoding
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(e.g., partial volume effects at the vessel boundary and 
intraluminal intravoxel phase dispersion in laminar 
flow) [7, 9, 15, 16]. In laminar flow, slower inflowing 
spins closer to the vessel wall will experience more rad-
iofrequency pulses than faster spins closer to the ves-
sel center. As a result, the signal from faster inflowing 
spins will be less saturated, leading to a stronger signal 
in the center (inflow effect) [17].

Partial volume effects
In boundary voxels (which comprise both stationary and 
moving spins), the voxel value will be the moving spins 
velocity integrated over the whole voxel volume, result-
ing in partial volume effects leading to velocity under-
estimation and vessel area overestimation [7, 18]. If the 
signal magnitude is the same in the vessel lumen com-
pared to the vessel wall and surrounding tissue, these 

Fig. 4 PC-MRI measurements in vessel phantom with inner diameter 2.2 mm and with different acquisition parameters. The flow rate velocities 
were binned according to the radial distance from the tube center. The plot shows the mean and standard deviation calculated over all phases 
and repetitions. The velocity scale for individual acquisition parameters is shown separately. Gray horizontal lines represent 0 cm/s for each 
acquisition parameter, with the first gray line at the bottom pertaining to the baseline setting. PC-MRI Phase-contrast magnetic resonance imaging, 
NSA Number of signal averages, VENC Velocity encoding
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Table 2 Results from PC-MRI-measured flow rate with different acquisition parameters

CoV Coefficient of variation, LDD Least detectable difference, in both absolute and in relative values (given as % of the mean), NSA Number of signal averages, PC-MRI 
Phase-contrast magnetic resonance imaging, SD Standard deviation, VENC Velocity encoding

Protocol Flow rate
(mean and range, mL/s)

SD CoV (%) LDD (mL/s)

Voxel  (mm3) NSA VENC (mL/s)

2.5 1 200 7.30 (7.05–7.61) 0.16 2 0.32 (4%)

5.0 1 200 8.74 (8.67–8.83) 0.05 1 0.10 (1%)

7.5 1 200 9.49 (9.20–9.59) 0.12 1 0.24 (3%)

2.5 2 200 7.54 (7.36–7.71) 0.12 2 0.23 (3%)

2.5 3 200 7.73 (7.58–7.90) 0.09 1 0.18 (2%)

2.5 1 300 7.38 (7.08–7.70) 0.21 3 0.41 (5%)

2.5 1 400 7.38 (7.04–7.52) 0.14 2 0.28 (4%)

5.0 3 200 8.41 (8.33–8.50) 0.07 1 0.13 (2%)

7.5 3 200 9.48 (9.33–9.58) 0.08 1 0.15 (2%)

Reference standard 6.59 (6.50–6–70) 0.08 1 0.15 (2%)

Table 3 Results of PC-MRI measured maximum velocity with different acquisition parameters

CoV Coefficient of variation, NSA Number of signal averages, LDD Least detectable difference, in both absolute and in relative values (given as % of the mean), PC-MRI 
Phase-contrast magnetic resonance imaging, SD Standard deviation, VENC Velocity encoding

Protocol Maximum velocity (mean and 
range, cm/s)

SD CoV (%) LDD (cm/s)

Voxel  (mm3) NSA VENC (mL/s)

2.5 1 200 173 (168–177) 2.86 2 5.60 (3%)

5.0 1 200 160 (158–162) 1.13 1 2.21 (1%)

7.5 1 200 150 (149–154) 1.45 1 2.84 (2%)

2.5 2 200 166 (161–174) 3.82 2 7.49 (5%)

2.5 3 200 176 (174–178) 1.23 1 2.42 (1%)

2.5 1 300 170 (164–173) 2.78 2 5.45 (3%)

2.5 1 400 174 (172–177) 1.94 1 3.80 (2%)

5.0 3 200 156 (153–161) 3.12 2 6.12 (4%)

7.5 3 200 153 (151–155) 1.34 1 2.62 (2%)

Fig. 5 PC-MRI measurements in a small-lumen vessel phantom using different acquisition parameters. Least detectable difference at different 
settings, based on a regression model that combined all measurements. PC-MRI Phase-contrast magnetic resonance imaging, NSA Number of signal 
averages, VENC Velocity encoding
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two counteracting effects will cancel each other out, and 
the measured flow rate will be correct. Higher signal in 
the vessel lumen due to inflow effects and differences in 
relaxation time in different tissues will lead to a larger 
contribution from the vessel lumen compared to the ves-
sel wall and surrounding tissue, resulting in overestima-
tion of the mean velocity in the voxel.

Intravoxel phase dispersion
In laminar flow, voxels comprising only moving spins will 
experience intraluminal intravoxel phase dispersion due to 
spins with different velocities within those voxels. Due to 
the inflow effect and stronger signal from faster inflowing 
spins with higher velocity, the mean velocity within a voxel 
will be overestimated, and as the vessel area remains the 
same, the flow rate will also be overestimated.

Accuracy and precision at baseline setting
In our study, the flow rate measured with PC-MRI was 
higher than our standard reference. Greater accuracy 
has been found in studies on larger vessels [12, 19–21]. 
We believe that the overestimation seen in our study was 
caused by a larger contribution of both partial volume 
effects at the vessel boundary and intraluminal intravoxel 
phase dispersion when small vessels with limited spatial 
resolution are examined. Other studies have shown an 
underestimation in flow rate when small vessels were 
examined, but these studies were performed in a phan-
tom with pulsatile flow [11, 12]. In pulsatile flow that 
resembles arterial pulsation with a shorter systolic than 
diastolic phase, inadequate temporal resolution is also a 
source of inaccuracy, and as maximum velocity is under-
estimated, the flow rate will also be underestimated. 
Precision was overall good for PC-MRI measurements, 
but precision was poorer at baseline setting than for our 
standard reference.

Voxel size and spatial resolution
We found an increased overestimation of flow rate 
with increased voxel size. Higher flow rate values with 
decreasing spatial resolution have also been observed in 
previous studies [2, 7, 9, 11, 15]. With increased voxel 
size, the proportion of partially occupied voxels at the 
vessel boundary and different velocities within an intra-
luminal voxel will increase, and as a result, the influence 
from partial volume effects and intravoxel phase disper-
sion will be larger. As a consequence, increased voxel size 
will yield increased overestimation of flow rate. Another 
aspect with decreased spatial resolution is the truncation 
artifact, which arises at the interphase between flowing 
and stationary matter in the vessel wall. This will cause 

the background phase signal to diverge from zero, see 
Fig.  4. With increased voxel size the shape of the curve 
in Fig. 4 changes. The truncation artifact increases as the 
spatial resolution decreases, with increased overestima-
tion of flow rate with increased voxel size [22]. As an 
effect, flow rate measurement will greatly depend on ROI 
size. With increased voxel size we found a decrease in the 
maximum velocity, which was also observed by Lotz et al. 
in an experiment with a 15-mm phantom with constant 
flow rate [2]. As previously mentioned, different veloci-
ties are found within one voxel in laminar flow, which 
causes intravoxel phase dispersion, and an average veloc-
ity rather than the maximum velocity is measured.

Voxel size and signal‑to‑noise ratio
The SNR will also affect flow velocity measurements, and 
small differences in velocity and slow flow might be missed 
if SNR is too low. Both parameters influencing the amount 
of noise in the image and signal from flowing spins will 
influence SNR. Voxel size will, apart from spatial resolu-
tion, also influence SNR. This is due to the fact that the sig-
nal in the image is dependent on both voxel size and total 
sampling time. Sampling time will be determined by the 
NSA, samples of the phase encoding direction, samples of 
the frequency encoding direction, and bandwidth. SNR is 
directly proportional to voxel size if sampling time is held 
constant, and increased voxel size will result in higher SNR 
and decreased random error. In our study, increasing voxel 
size yielded increased precision regarding both flow and 
velocity. Wolf et al. have also shown increased precision in 
flow rate measurements with increased voxel size [16].

Number of signal averages
In our study, no change in accuracy was observed when 
NSA was altered. Increasing NSA improved precision 
regarding flow rate, but we could not see any change in 
precision regarding maximum velocity. Bakker et al. per-
formed PC-MRI measurements on a flow phantom with 
an inner diameter of 5.3 mm using pulsatile flow and also 
found increased precision of flow rate measurements 
when NSA was increased stepwise from 1 to 16 [8]. As 
increasing NSA will increase imaging time, we chose to 
use values that could be applied in a clinical setting in our 
experiment protocol. One possible explanation for the 
finding of improved precision regarding flow rate, but not 
maximum velocity, is that the true variation in maximum 
velocity has the same order of magnitude as the random 
error. Another possible explanation is that there might be 
small movements in the phantom during the measure-
ments (due to the gradients) and that maximum veloc-
ity is more sensitive to the placement of the voxels than 
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is flow. When changing voxel size, we found improve-
ment in both flow rate and maximum velocity, but in our 
experiment protocol, the steps between different voxel 
sizes had a larger impact on SNR than the different NSA 
settings because the SNR is directly proportional to voxel 
size, but to the square root of the NSA.

Velocity encoding
Another parameter with possible influence on PC-MRI 
measurements is VENC. If the VENC is set to high, 
the SNR of the measured velocity will decrease [2, 23, 
24]. In our study, no change in accuracy or precision 
was observed when VENC was increased. Theoreti-
cally, increased VENC (with decreased SNR) would be 
expected to affect the precision of maximum velocity but 
have less influence on flow rate. Since flow is the aver-
aged velocity for a several voxels, noise will have a smaller 
impact on the measurement. Previous studies on both 
pulsatile and constant flow have shown that an increase 
in VENC causes a decrease in precision in flow rate 
and velocity measurements with increased overestima-
tion of maximum velocity [2, 8, 24]. Other studies have 
found no change in accuracy or precision of PC-MRI 
flow rate measurements with changing VENC [9, 25]. 
We believe that the reason for the difference in results 
is that the VENC setting in our study was not altered 
enough to change the outcome. It is possible to compen-
sate for larger VENC by improving SNR with larger voxel 
size, increased imaging time, or imaging at higher field 
strength. We used a 3-T scanner in which the tolerance 
for the choice of VENC is larger compared to a 1.5-T 
scanner [19]. A larger VENC setting is also tolerated if a 
gated PC-MRI sequence is used rather than a non-gated 
sequence [25].

PC‑MRI measurements in intracranial vessels in vivo
It is difficult to assess the accuracy of PC-MRI measure-
ments in vivo because there is no reference standard. 
Blood velocity can be assessed in intracranial vessels 
with transcranial Doppler ultrasound. Doppler ultra-
sound is widely used but has the disadvantage of over-
estimating maximum velocity [26]. Other disadvantages 
of transcranial Doppler ultrasound are that it is an oper-
ator-dependent technique, that there is potential lack 
of acoustic window in the skull, and that measurement 
errors can be caused by misalignment between the ultra-
sound beam and flow direction in the vessel. In previous 
studies comparing ultrasound and PC-MRI in intracra-
nial vessels, PC-MRI has shown lower results for maxi-
mum velocity [27–29]. As discussed above, this might be 
caused by overestimation of the maximum velocity with 
ultrasound but also that the actual peak velocity in a pul-
satile flow is underestimated in cardiac-gated PC-MRI 

because of limited temporal resolution and averaging 
over several cardiac cycles. In other studies examining 
intracranial arteries with PC-MRI, reproducibility is 
lower than in our study [4, 30]. The difference in results 
is probably due to different study conditions (phantom 
with constant flow versus pulsatile flow and physiologi-
cal variations in vivo).

Optimal setting
PC-MRI covers a wide range of clinical applications, and 
the derived measurements could allow differentiation 
between pathological and normal blood flow rate. PC-
MRI has been used to examine patients with intracranial 
arteriovenous malformations, where flow rate has been 
found to be increased in feeding arteries by more than 
50% compared to the contralateral side and decreased by 
approximately 40% after treatment [31, 32]. The reason 
for using this non-invasive technique to gain hemody-
namic information in patients with neurovascular dis-
eases is to increase our knowledge and improve patient 
care. It is therefore important to optimize MRI acquisi-
tion parameters to be able to detect more subtle changes 
in patients with other neurovascular disorders (e.g., 
atherosclerosis, vasculitis, Moya-Moya disease) When 
selecting the optimal setting for PC-MRI examination, 
you must first determine the measurement task, choos-
ing whether the main goal is to achieve optimal accuracy 
or precision. If the goal is optimal accuracy (e.g., diagnos-
ing a disease), then high spatial resolution is required. 
If precision in repeated measurements is desirable (e.g., 
monitoring treatment response), high SNR is preferred 
(e.g., larger voxel size, increasing NSA). In a clinical set-
ting, we need to achieve a balance between accuracy and 
precision. Thus, it is not advisable to measure with high 
precision if we know the value will be highly inaccurate. 
In practice, a result cannot be considered highly accurate 
if the precision of the method is low.

Maximum velocity is less influenced than flow rate by 
artifacts resulting from changes in spatial resolution (e.g., 
partial volume artifacts at the vessel wall and truncation 
artifacts). If the purpose of PC-MRI measurements is to 
assess hemodynamic changes in a patient (in an artery with 
pulsatile flow), the diastolic velocity is likely the most reli-
able parameter because the velocity in the diastolic phase is 
less variable and hence not as affected by temporal resolu-
tion as in the systolic phase. In our study, neither NSA nor 
VENC influenced the LDD for maximum velocity.

When performing PC-MRI in vivo another aspect to 
consider is imaging time, both time for each sequence 
but also total in-bore time. In this study, we chose param-
eters and range of values in the experiment protocol so 
they could be adapted to clinical PC-MRI measurements 
in small arteries in patients. Increased voxel size can 
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reduce sequence time and increasing NSA will increase 
sequence time. If VENC is set to low, aliasing occurs and 
the sequence must either be repeated with corrected 
VENC to produce valid results, which will increase in-
bore time, or the results adjusted with post-processing 
software.

Study limitations
The main limitation when applying our results to a clini-
cal setting is that our study was conducted with only con-
stant flow. Limitations in temporal resolution in pulsatile 
flow will also affect the accuracy and precision of the 
measurements, affecting the systolic measurements more 
than the diastolic measurements as the systolic phase is 
shorter and more influenced by the temporal resolution. 
Another major limitation is that the use of a phantom 
fails to replicate the conditions in vivo (e.g., signal char-
acteristics of tissue, normal physiological variations). 
In our phantom, we used a plastic tube without an MRI 
signal, which probably leads to a larger overestimation 
of flow rate measurements compared to measurements 
done in the clinical setting. We used a fluid with low T1 
to improve signal, but it is possible that if we had used 
a fluid with signal characteristics similar to blood, SNR 
would have a larger impact on our measurements. ROI 
selection is critical for accurate PC-MRI flow rate meas-
urements, especially in small vessels where the propor-
tion of boundary voxels is high. We chose to place the 
ROI based on the signal properties of images obtained in 
the baseline setting. We chose to examine three param-
eters that can influence the quality of measurements, 
but there are several other potential sources of error that 
were not considered in this study, for instance, deviation 
from the ideal imaging plane, flip angle, and bandwidth. 
We found a good precision in PC-MRI measurements, 
and as LDD in the standard reference and the baseline 
PC-MRI setting was similar, it is possible that some of the 
fluctuations seen in the different MRI settings are in fact 
true fluctuations in the flow rate and not effects of the 
precision of PC-MRI methods.

Conclusions
Our results show that it is possible to measure flow rate 
and velocity with PC-MRI in a vessel phantom with a 
small lumen diameter with good precision but overesti-
mation of flow rate measurements. Precision in flow rate 
measurements with PC-MRI at baseline setting was simi-
lar to our standard reference. With adjustments of the 
acquisition parameters, it is possible to achieve improve-
ments in accuracy and/or precision.
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