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Abstract 

Background This study evaluated a deep learning (DL) algorithm for detecting vessel steno‑occlusions in patients 
with peripheral arterial disease (PAD). It utilised a private dataset, which was acquired and annotated by the authors 
through their institution and subsequently validated by two blinded readers.

Methods A single‑centre retrospective study analysed 105 magnetic resonance angiography (MRA) images using 
an EfficientNet B0 DL model. Initially, inter‑reader variability was assessed using the complete dataset. For a subset 
of these images (29 from the left side and 35 from the right side) where digital subtraction angiography (DSA) data 
was available as the ground truth, the model’s accuracy and the area under the curve at receiver operating character‑
istics analysis (ROC‑AUC) were evaluated.

Results A total of 105 patient examinations (mean age, 75 years ±12 [mean ± standard deviation], 61 men) were 
evaluated. Radiologist‑DL model agreement had a quadratic weighted Cohen κ ≥ 0.72 (left side) and ≥ 0.66 (right 
side). Radiologist inter‑reader agreement was ≥ 0.90 (left side) and ≥ 0.87 (right side). The DL model achieved a 0.897 
accuracy and a 0.913 ROC‑AUC (left side) and 0.743 and 0.830 (right side). Radiologists achieved 0.931 and 0.862 accu‑
racies, with 0.930 and 0.861 ROC‑AUCs (left side), and 0.800 and 0.799 accuracies, with 0.771 ROC‑AUCs (right side).

Conclusion The DL model provided valid results in identifying arterial steno‑occlusion in the superficial femoral 
and popliteal arteries on MRA among PAD patients. However, it did not reach the inter‑reader agreement of two 
radiologists.

Relevance statement The tested DL model is a promising tool for assisting in the detection of arterial steno‑occlu‑
sion in patients with PAD, but further optimisation is necessary to provide radiologists with useful support in their 
daily routine diagnostics.

Key points 

• This study focused on the application of DL for arterial steno‑occlusion detection in lower extremities on MRA.

• A previously developed DL model was tested for accuracy and inter‑reader agreement.

• While the model showed promising results, it does not yet replace human expertise in detecting arterial steno‑
occlusion on MRA.
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Graphical Abstract

Background
Peripheral arterial disease (PAD) of the lower extremities 
is a medical condition characterised by the narrowing or 
steno-occlusions of arteries that supply blood to the legs. 
Globally, the prevalence of this disease among individuals 
aged 25 years and above is approximately 5.6%, albeit with 
regional variations [1]. While femoropopliteal PAD mainly 
affects the arteries above the knee, lower leg PAD involves 
steno-occlusions below the knee. This disease poses a sig-
nificant financial burden on the healthcare sector [2]. 

Magnetic resonance angiography (MRA) and com-
puted tomography angiography (CTA) both offer 
comparable diagnostic capabilities in detecting PAD 
[3]. MRA provides robust results for visualising ves-
sel steno-occlusions and informing clinical decisions, 
such as the choice between surgical bypass and inter-
ventional radiological approaches [4]. One significant 
advantage of MRA over CTA is that it does not involve 
the use of ionising radiation and does not require iodi-
nated contrast material, which can be beneficial for 
certain patient groups. Despite this, digital subtraction 
angiography (DSA) remains the reference standard for 
imaging diagnosis in PAD, although its clinical value has 
been challenged due to potential complications associ-
ated with its invasive nature [5]. In addition to MRA 

and CTA, ultrasound also serves as another noninva-
sive imaging technique [4]. The common method for 
interpreting images from MRA is based on an analy-
sis of maximum intensity projections (MIP) by one or 
more radiologists. However, this type of analysis, which 
includes the description of findings, can be both time-
consuming and error-prone, depending on the quality 
of the diagnostic images.

Artificial intelligence (AI) is a broad field of computer 
science focused on creating machines that can perform 
tasks that typically require human intelligence. Deep 
learning, a subset of AI, uses neural networks, especially 
deep neural networks with many layers, to analyse vari-
ous forms of data, recognise patterns, and make deci-
sions [6]. These AI techniques have shown promising 
results across various medical and nonmedical domains 
and hold the potential to provide valuable support to 
radiologists. In the field of radiology, AI already plays a 
significant role in the detection of breast cancer [7] and 
in screening for lung tumours [8]. AI techniques can 
enhance productivity, reduce radiologists’ workload, and 
increase the objectivity of findings by mitigating inter-
reader variability [9].

However, the application of AI methods to PAD in 
the lower extremities is still in its nascent stages. To our 
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knowledge, only two studies have been published that 
use a deep learning (DL) approach for detecting arterial 
steno-occlusions in the lower limbs [10, 11]. Dai et  al. 
[10] conducted a study on steno-occlusion detection 
using small, segmented areas of axial CTA slices. In a 
preliminary study by our own institution, a neural net-
work was trained to detect arterial steno-occlusions in 
the thigh using MRA images and a private dataset, which 
was acquired by the authors through their institution 
[11], albeit without the foundation of a sufficiently large 
clinical dataset.

Therefore, the aim of this study was to evaluate, as an 
initial experience, whether the DL model published by 
Nguyen et al. [11] for detecting arterial steno-occlusions 
on MRA images would yield valid results in a clini-
cal setting. This evaluation was conducted using a dual 
reader strategy.

Methods
This retrospective, single-centre study was initiated upon 
receipt of ethical approval from the governing institution 
(Ethics Committee of Friedrich-Alexander-Universität 
Erlangen-Nürnberg, application number 21-366-Br).

Dataset
Images for this study were sourced from 105 patient 
examinations conducted between 2017 and 2021 at Klini-
kum Fürth, Fürth, Germany. This timeframe was selected 
to ensure that the data had not been previously used in 
the model’s training process, as described by Nguyen 

et al. [11]. The study included both male and female par-
ticipants aged 18 years and above, all symptomatic of 
PAD. However, patients with previous amputations were 
excluded. The study cohort comprised 61 men and 44 
women, with ages ranging from 18 to 96 years. The mean 
age was approximately 75 years, with a standard devia-
tion of 12 years.

For this research, the focus was on three-dimensional 
radial MIP images of the upper legs, specifically those 
illustrating the superficial femoral and popliteal arteries, 
as shown in Fig. 1. The decision to limit the scope of the 
included image data aimed to achieve an optimal bal-
ance between essential image information and data size, 
thereby minimising hardware requirements. Consistent 
with the constraints of the pretrained model as detailed in 
Nguyen et al. [11], images of the lower legs were excluded 
from this study.

Only significant steno-occlusions, specifically those 
exceeding 50% in the visualised superficial femoral and 
popliteal arteries, were labelled. Radiologists T.N. and 
T.B., with 5 and 18 years of clinical experience, respec-
tively, conducted a blinded assessment of the arteries’ 
steno-occlusion status. The evaluation utilised a 4-point 
scale (0-to-3), where labels ranged from 0 (indicating no 
steno-occlusion) to 3 (indicating long steno-occlusion). 
An additional label, 4, was used to denote unusable data, 
as detailed in Table  1. The thresholds for the different 
classes were determined by the authors based on clinical 
discretion, aiming to provide supplemental information 
on severity that impacts treatment decisions.

Fig. 1 Exemplary view of the radial maximum intensity projection (left) with denoted pathology and according to digital subtraction angiography 
(right)
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Samples that were deemed unusable by either reader 
were subsequently removed from the study. This resulted 
in a reduction to 99 samples for the left side and 97 for 
the right. The reasons for these exclusions were the pres-
ence of stents, bypasses, or significant artefacts caused by 
implants.

Different class scenarios were generated for vari-
ous class separations, including binary class (0 versus 1, 
2 or 3), three class (0 versus 1 or 2 versus 3), and four-
class (0-to-3) cases, to differentiate between the different 
steno-occlusion severity levels. The right and left sides 
were examined separately.

If a patient received a DSA examination within 30 
days after the MRA, as represented in Fig. 1, additional 
labels were recorded using the radiological reports and 
a consensus reading by the radiologists who labelled the 
MRA data. Due to the limited data samples for the labels 
derived from DSA, we applied only a binary class sepa-
ration according to the previously mentioned scheme, 
resulting in 29 samples for the left side and 35 for the 
right side. Since DSA was the reference standard, these 
labels were treated as the ground truth.

Neural network
In this study, an EfficientNet B0 [12] implementation was 
used to perform arterial steno-occlusion detection using 
deep learning techniques. The implementation was car-
ried out using the PyTorch Lightning framework [13], 
which provides a high-level interface for building and 
training deep learning models.

EfficientNet is a convolutional neural network (CNN) 
designed for high accuracy with fewer parameters and 
computational resources. It uses a compound scal-
ing method to balance the trade-off between depth, 
width, and resolution. EfficientNet outperforms pre-
vious models on benchmark datasets while using less 
resources [12].

To train the model, most of the pre-trained mod-
els from Nguyen et  al. [11] were used for the three and 
four-class problems. However, since the current study is 
focused on the binary data split (steno-occlusion versus 
non-steno-occlusion), a new model had to be trained to 
fit the new class separation using the training regime and 

separate dataset from Nguyen et  al. [11]. For each data 
sample, 13 MIP images reconstructed along different 
angles were fed as channels to the CNN.

Analysis
To evaluate the inter-reader agreement on the steno-
occlusion status of the arteries, a quadratic weighted 
Cohen κ was utilised. This metric measures the level of 
agreement between the two readers and the model, con-
sidering both the extent and direction of disagreement 
between the readers [14].

For cases where the ground truth was obtained through 
DSA, the model’s performance was tested. Accuracy, 
which measures the proportion of correct predictions 
in the total predictions made, and the area under the 
curve at receiver operating characteristics analysis (ROC-
AUC), representing the model’s ability to distinguish 
between positive and negative classes, were both calcu-
lated [15].

Beyond the quantitative evaluation metrics, occlu-
sion mapping was performed on a subset of 5 samples to 
visually assess the deep learning model’s performance. 
Occlusion mapping in DL involves selectively blocking 
or masking parts of an input image and observing the 
resulting changes in the network’s predictions. This pro-
cess helps understand which regions or features are most 
influential in the network’s decision-making process [16].

The limitation to a small number of samples was due to 
the need for fine-tuning the occlusion mapping param-
eters individually for different combinations of trained 
CNNs and data samples.

Results
The different number of data samples for each experi-
ment after certain samples were excluded are presented 
in Fig.  2. Distinct representations are provided for both 
the left and right sides.

The results revealed a high level of inter-reader agree-
ment between the two radiologists, as evidenced by the 
quadratic weighted Cohen κ scores of ≥ 0.90 and ≥ 0.87 
for the left and right side, respectively (Table 2), across all 
class separations. Conversely, the agreement between the 
radiologists and the automatic DL model was lower, with 
scores of ≥ 0.72 and ≥ 0.66 for the left and right side, 
respectively (Table 2), across all class separations [17].

The model’s predictions for the data samples, which 
utilised consensus reading labels derived from DSA as 
ground truth, demonstrated high accuracy as depicted 
in Fig.  3. Misclassifications were minimal, evidenced by 
an accuracy of 0.897 and ROC-AUC of 0.913 for the left 
side. These metrics align closely with the labelling done 
by radiologists based on radial MIP reconstructions. 

Table 1 Labelling scheme for assessing steno‑occlusions

Score Description

0 No steno‑occlusion

1 Focal steno‑occlusion < 0.5 cm

2 Mid‑length/multiple focal steno‑occlusions

3 Long steno‑occlusion > 3 cm

4 Not usable (stents, bypass, heavy artifacts)
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Overall, the performance on the left side was slightly 
superior to that on the right side, as detailed in Table 3.

Regarding the exemplary occlusion maps created for 5 
samples, visually evaluated by the radiologists who labelled 
the data to assess the accuracy of the model’s predictions, as 
exemplary shown in Fig.  4, this qualitative evaluation was 
found to be consistent with the quantitative metrics, playing 
in favour that the model was able to detect the correct side 
and the approximate area of the occlusions.

Discussion
This study suggests that the AI, using the tested DL model, 
was effective in detecting arterial steno-occlusions of the 
superficial femoral and popliteal artery on MRA in PAD 
patients within a clinical dataset. The inter-reader agree-
ment between radiologists and the DL model was high. 
However, the agreement did not surpass that observed 
between two radiologists. Despite this relatively lower level 
of agreement, it is still considered to be a good degree of 
concordance [17]. This indicates that while the DL model 
is effective, it has not yet surpassed human expertise in 
this domain.

Additionally, an effort was made to refine class separation 
to differentiate based on the length of stenosis, providing 
valuable information for clinical treatment decisions [18]. 
However, this more refined class separation was not applied 
in the experiments involving the DSA subset due to the 
limited number of data samples. Consequently, an in-depth 
discussion on the impact of the additional information 
from the class separation is not feasible at this stage. There-
fore, further optimisation of the method is recommended 
before considering its routine clinical application.

When applied to the subdataset using DSA as the 
ground truth, the model’s performance was comparable 
to that of radiologists, suggesting it can detect real steno-
occlusions on par with a radiologist. The results for the 
left side in the binary case in this study are consistent with 
the findings reported by Nguyen et al. [11], with an accu-
racy of 0.897 and a ROC-AUC of 0.913, compared to 0.851 
and 0.917 as reported by Nguyen et al. [11]. Notably, the 
results of the subdataset are based on a consensus reading 
using DSA, which is considered the references standard. 
Additionally, their method employed only one reader for 
data labelling, which could introduce potential bias.

Dai et al. [10] reported slightly better results with an accu-
racy of 0.915 and a ROC-AUC of 0.987 [10]. However, their 
methodology depended on segmented areas of axial CT 
slices, which may be less practical in a clinical setting since 
this method requires additional pre-processing steps. More-
over, this technique does not capture information about the 
length of the steno-occlusions when using the CNN, neces-
sitating further pre-processing steps for segmentation. Of 
note, the length of the steno-occlusions is a critical factor in 
determining different treatment approaches.

Calcification, a frequent element in steno-occlusions, 
can create difficulties in CT imaging because of its high 
attenuation values. Such calcified plaques can produce 
blooming artefacts in CT scans, potentially leading to an 
overestimation of steno-occlusion severity. In contrast, 

Fig. 2 Flowchart of the number of data samples for the different steps. ROC-AUC  Area under the curve at receiver operating characteristics analysis

Table 2 Tabular results of the quadratic weighted Cohen κ 
scores for the different readers and the deep learning (DL) model

Different class scenarios were generated for various class separations, including 
binary class (0 versus 1−3), three-class (0 versus 1 or 2 versus 3), and four-class 
(0−3) cases

Side Classes Reader 
1 versus 
Reader 2

Reader 1 versus
DL model

Reader 2 versus
DL model

Left 2 0.90 0.72 0.74

3 0.91 0.78 0.73

4 0.92 0.80 0.73

Right 2 0.87 0.70 0.69

3 0.87 0.69 0.69

4 0.89 0.66 0.68
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MRA is unaffected by these artefacts and can provide a 
clearer depiction of the vessel lumen.

A challenge that DL models encounter in the medi-
cal field is the “black box” design, where the user cannot 

evaluate whether the model is accurately measuring the 
intended target, such as arterial steno-occlusions in our 
study, or if it is relying on some other image feature intro-
duced by bias in the training and testing data [19]. To 

Fig. 3 Confusion matrices representing the predictions of the model using the labels derived from digital subtraction angiography as the ground 
truth. Results for the left side (a) and for the right side (b)
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address this issue, we conducted occlusion mapping on a 
small subsample of data and analysed it qualitatively. The 
results suggest that the neural network correctly identi-
fies the area of arterial steno-occlusion occurrence.

This study has several limitations. We focused solely on 
classifying relevant steno-occlusions based on their length 
and distribution. In clinical settings, however, a more 
nuanced classification is practised, which takes into account 
different degrees of steno-occlusions in percentage terms.

Manual labelling by radiologists, especially for extensive 
datasets, can be both time-intensive and resource-heavy. 
Such a process often results in challenges with class sepa-
ration and might lead to the omission of certain findings. 
Transitioning to structured reporting over prose text could 
alleviate this, as structured reports are more amenable to 

automatic label extraction for DL models [20]. Addition-
ally, labels are often readily accessible through free-form 
radiological reports. The adoption of advanced trans-
former-based models, like ImageBERT [21], which can 
handle both textual and visual data, could streamline this 
process and enable training on more expansive datasets.

Currently, our model is specifically designed for detect-
ing steno-occlusions in the superficial femoral and pop-
liteal arteries, as visualised in radial MIP images. It does 
not yet have the capability to identify other vascular 
structures or pathologies, such as bypass grafts, nor does 
it analyse the pelvic arteries and lower extremities, which 
present more complex challenges and likely require addi-
tional training data. Additionally, the model has not been 
tested with other imaging modalities, such as CTA. These 
limitations present opportunities for further research and 
development.

In conclusion, our findings suggest that, with further 
refinement, the proposed DL model holds promise as 
an effective tool for assisting in the detection of arterial 
steno-occlusions in patients with PAD. Although the 
model demonstrates robust performance in the subset 
using DSA as the benchmark, it has not yet exceeded the 
expertise of human radiologists. This is underscored by 
the increased inter-reader agreement observed among 
radiologists. Moreover, the current applicability of the 
model is restricted to the upper legs and does not include 
certain artefacts. This task is relatively straightforward 

Table 3 Results of the predictions of the deep learning 
(DL) model and readers using the labels derived from digital 
subtraction angiography as the ground truth

ROC-AUC  Area under the curve at receiver operating characteristics analysis

Reader Side Accuracy ROC-AUC 

DL model Left 0.897 0.913

Right 0.743 0.830

Reader 1 Left 0.931 0.930

Right 0.800 0.799

Reader 2 Left 0.862 0.861

Right 0.771 0.771

Fig. 4 Exemplary occlusion map, heatmap overlaid on the input image, depicts a neural network trained to detect arterial steno‑occlusions 
on the left side (a) and the right side (b). The overlaid colour intensity indicates which areas of the image were most important to the neural 
network for its classification task
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for radiologists, who do not require an assistive tool, as 
demonstrated by the high inter-reader agreement. How-
ever, a more advanced version of the tool could poten-
tially reduce the workload for radiologists and improve 
patient outcomes by offering enhanced decision support.

We recommended that further technical enhance-
ments be pursued to meet daily clinical needs. This 
includes classifying various degrees of steno-occlusions 
by percentage and expanding coverage to abdominal, 
pelvic, and below-the-knee arterial regions.
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