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Abstract 

An increasingly strong connection between artificial intelligence and medicine has enabled the development of pre-
dictive models capable of supporting physicians’ decision-making. Artificial intelligence encompasses much more 
than machine learning, which nevertheless is its most cited and used sub-branch in the last decade. Since most clini-
cal problems can be modeled through machine learning classifiers, it is essential to discuss their main elements. This 
review aims to give primary educational insights on the most accessible and widely employed classifiers in radiology 
field, distinguishing between “shallow” learning (i.e., traditional machine learning) algorithms, including support vec-
tor machines, random forest and XGBoost, and “deep” learning architectures including convolutional neural networks 
and vision transformers. In addition, the paper outlines the key steps for classifiers training and highlights the dif-
ferences between the most common algorithms and architectures. Although the choice of an algorithm depends 
on the task and dataset dealing with, general guidelines for classifier selection are proposed in relation to task analysis, 
dataset size, explainability requirements, and available computing resources. Considering the enormous interest 
in these innovative models and architectures, the problem of machine learning algorithms interpretability is finally 
discussed, providing a future perspective on trustworthy artificial intelligence.

Relevance statement The growing synergy between artificial intelligence and medicine fosters predictive models 
aiding physicians. Machine learning classifiers, from shallow learning to deep learning, are offering crucial insights 
for the development of clinical decision support systems in healthcare. Explainability is a key feature of models 
that leads systems toward integration into clinical practice.

Key points
• Training a shallow classifier requires extracting disease-related features from region of interests (e.g., radiomics).

• Deep classifiers implement automatic feature extraction and classification.

• The classifier selection is based on data and computational resources availability, task, and explanation needs.
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Graphical Abstract

Background
A large part of the main machine learning (ML) applica-
tions in medicine concerns the analysis of radiological 
images. Remarkable applications include breast cancer 
detection [1], cardiac disease diagnosis [2], prognostica-
tion of treatment responses [3], and numerous other sce-
narios [4, 5]. ML is a subfield of artificial intelligence (AI) 
that includes the concepts of “shallow learning” (SL) and 
“deep learning” (DL).

The term SL is employed to categorize all algo-
rithms that do not fall within the realm of deep learn-
ing architectures. Specifically, it encompasses traditional 
approaches and excludes advanced architectures that 
have the multilayer and hierarchical structure of deep 
networks. It was recently said that SL refers to most ML 
models proposed prior to 2006, including the so-called 
shallow neural networks (neural networks with only one 
hidden layer), linear regression, logistic regression (LR), 
support vector machines (SVM), decision trees (DT), and 
k-nearest neighbors [6]. For this reason, when we men-
tion SL, we are referring to the previously mentioned 
methods (SVM, DT, LR, etc.), with the exclusion of deep 
architectures such as convolutional neural networks 
(CNNs) and transformers. DL methods are defined as all 
deep architectures, such as neural networks (NN) with 

many layers, including CNNs, vision transformers (ViTs), 
recurrent NNs, restricted Boltzmann machines, deep 
belief networks, and many other architectures [7].

Classification problems aim to predict the category 
(class) to which a given input belongs and typically fall 
within the domain of supervised learning. The input 
could be a normal or abnormal tissue, a vessel, a tumor, 
etc. In addition, training a classifier necessitates a ref-
erence standard (also called “ground truth”), such as a 
histological examination, the response to a particular 
treatment, or a well-established event that represent the 
class required for supervised learning. In the analysis of 
radiological images, the regions of interest (ROI), i.e., 
the inputs to be classified, need to be represented in sali-
ent and informative form. This crucial step is performed 
through a process called feature extraction, which can be 
executed by means of two distinct methodologies: “hand-
crafted” [8, 9] and “deep” [10] feature extraction.

The decision between these approaches strongly influ-
ences the selection of a classifier, determining whether a 
deep or shallow classifier is more appropriate. Despite the 
proven ability to develop high-performance models to 
support the physician’s decision-making process, training 
these algorithms is overly complex and hides many pit-
falls. Feature extraction, feature selection, training, and 
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model validation are all steps that need to be addressed 
with high accuracy and robustness [11].

This review aims to give primary educational insights 
on the most accessible and widely employed classifiers in 
radiology field discussing the following:

• The main concepts related to the most widely used 
ML classifiers in the literature and their training

• The main differences between shallow and deep 
learning classifiers, including the methods and the 
related feature extraction processes involved

• Some practical guidelines on how to choose a clas-
sifier, focusing mainly on data and computational 
resource availability, the task, and explainability 
requirements

• The importance of explainable AI for the actual inte-
gration of ML models in clinical practice

Classifiers: main concepts
Classification tasks aim to assign a class label to instances 
described by their respective features. These numerical 
features serve as the input data and encapsulate informa-
tion about the object being classified, such as the tumor’s 
shape, margins, density, the extent of vessel occlusion, 
vital parameter values, or the texture within a ROI, 
among other attributes. In certain DL architectures, the 
input can encompass only the ROI or the whole image.

The output variable corresponds to the label or class 
associated with each input data point. When this label 
represents a binary outcome, such as the presence or 
absence of a disease, the effectiveness or ineffective-
ness of a therapy, or the benign or malignant nature of a 
lesion, the process is referred to as binary classification. 
Traditionally, this outcome is encoded or tokenized as 0 
to indicate the negative class (representing the absence 
of disease, ineffectiveness of therapy, or benign nature of 
the lesion) or as 1 to denote the positive class (indicating 
the presence of disease, effectiveness of therapy, or malig-
nancy of the lesion). When it has more than two classes, 
it is called multiclass classification. The presence of the 
target variable for each sample makes the classification 
algorithms belong to supervised learning algorithms, in 
which the target information guides training. The model 
is properly trained only when it makes correct predic-
tions, or rather generalizes, on unknown data (i.e., data 
that it has never seen during the training phase) [12].

To evaluate this generalization capability, the dataset is 
divided into training, validation, and test sets. The three 
sets are distinct, meaning that each data point can only 
be a part of one of the three subsets. While historically 
the terms validation and test set, particularly in medi-
cal literature, have been erroneously used interchange-
ably, the introduction of the CLEAR [13] and CLAIM 

[14] guidelines has provided clear definitions. In fact, the 
terms training set and validation set are used for the data 
partitions with which the algorithm is trained and tuned, 
respectively. The term test set is used for the data with 
which the model is verified internally or externally.

Training, validation, and test steps
Training data are employed to learn a separating hyper-
plane or, in a broader sense, a function to make predic-
tions about the class of unseen data points. This function 
has to be able to associate to each unseen input, the 
related label. Validation data are used to set the algo-
rithm’s hyperparameters. The algorithm’s hyperparam-
eters are the arguments required by the algorithms to 
improve the training process. Conversely, the param-
eters are the variables defining the function to separate 
the class. For example, for a NN, the parameters are the 
weights that identify the classification hyperplane; the 
hyperparameters, as an example, are the number of hid-
den layers, the number of neurons per layer, the activa-
tion functions, and the learning rate. The validation set is 
used to select the best model during the training process 
and choose the algorithm hyperparameters: the algo-
rithm is trained with different hyperparameter configura-
tions and “tested” with the validation data. In the end, the 
hyperparameters that provide the highest performance 
on the validation data are selected. This process is com-
monly called hyperparameters tuning. There are several 
methods for automatic hyperparameter tuning, recently 
accessible to nonprofessional users with limited comput-
ing expertise [15, 16]. After training the model with the 
best hyperparameters, it must be tested on the test set, 
i.e., data not used during training and validation steps 
(unknown data). The purpose of this step is to evalu-
ate the actual generalization capabilities of the trained 
model. If the model is unable to generalize to unseen 
data, i.e., test data, then the model could be underfit-
ting (a model is excessively simplistic and fails to capture 
complex patterns) or overfitting (a model fits training 
data too closely, resulting in poor generalization to new, 
unseen data) [17].

For applications involving datasets with several thou-
sand samples, it is usual to partition the dataset into 
training, validation, and test subsets. The specific ratio 
for this division may vary, with common percentage 
splits being 70-10-20 or 70-15-15. However, there is no 
strict rule dictating the exact proportions. For classifica-
tion problems, it is common to generate these subsets 
in a stratified manner, that is, to have in each subset a 
balanced/representative number of samples for each 
class. In scenarios where the dataset is composed of 
only a few hundred samples, a standard practice is to 
split it only into training and test sets. Subsequently, a 
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cross-validation strategy is often employed exclusively 
in the training set. This cross-validation approach, con-
sisting of dividing the training set into subsets (called 
folds), and in each round select one of these folds as 
the validation set and the others as the training set, is 
used for both training and fine-tuning the model, and, 
ultimately, the model’s performance is assessed on the 
dedicated test set [18]. In the case of very small data-
sets (about less than 100 samples), the leave-one-out 
method is typically employed [19, 20]. However, the 
leave-one-out is more susceptible to overfitting than 
k-fold cross-validation [21]. For this reason, a k-fold 
cross-validation is mainly adopted when more than 100 
samples are available [22, 23].

Shallow learning classifiers
Shallow learning, also known as “traditional ML,” refers 
to a class of algorithms that typically involve a limited 
number of layers or levels of abstraction in their models. 
To train the SL methods discussed in the next subsec-
tions, it is necessary to provide a feature vector as input. 
When dealing with medical images, this entails convert-
ing the image or the ROIs into features. This conver-
sion can be achieved through either manual techniques, 
such as the radiomics workflow for handcrafted features 
extraction [24, 25] or by using deep architectures to 
extract learned features (or “deep features”).

Logistic regression
Logistic regression is a technique used to identify the 
relationship between the dependent and independent 
variables. The dependent variable is the target class to 
be predicted. The independent variables are the attrib-
utes or features used to predict the target class [26]. 
Like other classifiers, it returns the probability that an 
instance belongs to a particular class. In LR, the separat-
ing function is commonly referred to as the logistic func-
tion (or sigmoid function). This function fits the curve to 
a group of points to minimize the error and compresses 
the output of a linear equation between 0 and 1. For the 
training process, a loss function called “maximum likeli-
hood estimation” is used to estimate the error between 
the predicted and true output. If the estimated output for 
an instance is greater than 50%, it means the model pre-
dicts the positive class, otherwise the negative class. This 
makes it a binary classifier. Moreover, it can be imple-
mented very easily and does not have critical hyperpa-
rameters to fine-tune. For this reason, it is widely used in 
clinical settings [27–29].

Support vector machine
The SVM [30] algorithm operates under the assumption 
that infinite hyperplanes can effectively separate data 

points. The primary objective of SVM is to identify the 
optimal hyperplane among this infinite set. The SVM 
algorithm considers some data more important than oth-
ers for finding the best hyperplane: the support vectors. 
They are the samples (data points) most important to 
define the position and orientation of the best decision 
boundary (i.e., the separating hyperplane). The distance 
between the separating hyperplane and the support vec-
tors is called “margin.” The decision boundary that maxi-
mizes the margin is called “hard margin.” Sometimes, it 
is necessary to allow some classification error (misclas-
sification) to improve the generalization capability: this is 
the main idea of the “soft margin”. All these elements can 
be seen in Fig. 1.

To manage the trade-off between hard margin and soft 
margin, it is possible to use the regularization hyper-
parameter C. A small value of C causes greater mis-
classifications in training, resulting in a lower training 
performance but a higher generalization. Conversely, a 
high value of C minimizes the number of misclassified 
samples resulting in a high training performance but a 
lower generalization. In addition, in real scenarios, the 
data are not linearly separable as shown in the left panel 
of Fig.  2. In this case, the SVM algorithm uses kernels. 
Kernels are special functions applied to the original data, 
transforming it into a separable space. For example, as 
shown in the right panel of Fig. 2, a second-degree poly-
nomial function can be applied to make the data separa-
ble. There are several types of kernels, and their choice 
can radically change the data distribution [31].

Tree ensembles (TEs)
Ensemble learning, in general, employs a combination 
of various models to yield superior results compared to 
individual models [32]. It assumes that the combination 
of multiple weak learners results in a more robust and 
powerful learner. In the case of TE, the weak learners are 
the decision tree models [33, 34]. In this case, several DTs 
must be trained to build the TE. Despite the longer train-
ing time, the ensemble techniques result in improving 
overall accuracy. For this reason, random forest (RF) and 
gradient boosting (GB) are two of the most widely used 
SL algorithms for classification.

Random forest
The RF algorithm trains n DTs by considering a different 
random subset of the entire dataset for each DT [35]. For 
the generation of all subsets, RF uses a particular tech-
nique called bagging. Bagging is a meta-algorithm that 
allows training each DT considering only a random por-
tion of the dataset (data and features) [36], creating vastly 
different results for each individual DT. This means that in 
a RF, there are DTs trained on different data and features, 
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and each individual tree calculates its own prediction. The 
strength of RF lies in aggregating the predictions of all DTs 
through a voting mechanism, improving the stability and 
accuracy of the algorithm. An important hyperparameter 
to set is the number of estimators, i.e., the number of DTs 
in the forest. There is no general rule for fixing the num-
ber of estimators [37]. Another parameter to manage is the 
maximum number of features used for training each DT. 
Typically, this value can be set as the square root of the total 
number of features. RF is a good choice in the case of miss-
ing data and noise data [38]. An example is shown in Fig. 3.

Gradient boosting
The GB algorithm uses DTs added sequentially to create 
the final model [39]. The main distinction between the RF 
and GB algorithms lies in the generation and aggregation 
of DTs. Specifically, in the GB algorithm, DTs are sequen-
tially built to enhance the shortcomings of previously 
trained DTs. The primary goal of the training process 
in GB is to minimize a model’s loss function by itera-
tively introducing weak DT learners, thereby improv-
ing the subsequent DTs. This method is called boosting 
ensemble method. During the training process, more 

Fig. 1 Graphical representation of hard and soft margin of a support vector machine. With the soft margin, some misclassifications (double circles) 
are allowed

Fig. 2 a The data on the x-axis are the original non-separable data. b Application of a second-degree polynomial function to make the two classes 
separable
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importance is provided to misclassified examples, and 
then, intuitively, new weak learners are added to focus on 
areas where existing learners perform poorly. At the end 
of the training, the result is a model that has exploited the 
weaknesses of the previous ones improving the generali-
zation capabilities. An efficient and flexible implementa-
tion of the GB algorithm is provided by XGBoost [40], in 
which the training process is particularly fast [41].

K‑nearest neighbors
K-nearest neighbors are one of the simplest classifica-
tion methods in which the algorithm finds the k-near-
est examples in the training set to assign the class of the 
new data. Figure 4 illustrates how this algorithm works. 
Specifically, a new data point denoted by the symbol 
“?” is classified as a “triangle” based on its five nearest 
neighbors (k = 5). The training process involves calcu-
lating distances between data points, and when new 

data are introduced, these distances need to be recal-
culated. The k-nearest neighbors algorithm requires the 
setting of three main hyperparameters: the neighbor-
hood cardinality (k) which defines how many neighbors 
will be checked for class assignment, the metric to esti-
mate the distance between neighboring points, and the 
weight function to assign a weight according to the dis-
tance [42]. The core of this classifier depends mainly on 
the choice of metric to calculate the distance between 
the tested examples and the training examples [43].

Deep learning classifiers
DL algorithms are considered a specialization of ML [44], 
in which a substantial architectural difference is present: 
the depth. Deep NNs are composed of many layers of 
neurons allowing for the discovery of patterns on mul-
tiple levels of representation, implementing the concept 
of “feature hierarchies” or “features of features.” CNNs 

Fig. 3 Application of the random forest algorithm. Each decision tree in the forest calculates its own prediction: 250 trees predicted the analyzed 
sample as benign and 36 as malignant. It is shown that the result is the most frequent prediction made by the entire forest (benign tumor)
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and transformers are nowadays the main choices for 
medical image analysis, as they simultaneously address 
the extraction of highly informative features and their 
classification.

Deep neural networks fundamentals
The upper-right box in Fig.  5 depicts the perceptron 
model proposed by McCulloch-Pitts in 1943 [45]. It can 
only handle linearly separable data and includes only an 

input layer and an output layer. To overcome this limita-
tion, the concept of “depth” was introduced, giving rise to 
the multilayer perceptron (MLP) by adding several hid-
den layers. MLP is used for tabular data classification and 
is composed of fully connected layers, where each neu-
ron calculates a weighted sum of inputs and applies an 
activation function to the result. During training, errors 
are computed through a loss function and propagated 
backward through a back-propagation mechanism. The 

Fig. 4 Representation of how the k-nearest neighbors algorithm works. Considering the new point to classify (?), the category is assigned based 
on the five nearest neighbors (k = 5). In this case, three triangles versus one circle versus one rectangle

Fig. 5 Representation of the multilayer perceptron, composed of one input layer, one hidden layer, and one output layer. Each individual unit 
of the hidden layer and output layer is a single perceptron, represented in the box
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optimizer is used for network weights updating. Setting 
the network hyperparameters [46, 47], such as number of 
layers, neurons, epochs, and learning rate, can be chal-
lenging and varies based on the specific task and data-
set characteristics. There is no general rule for setting 
these hyperparameters. An interesting aspect lies in the 
depth of the architecture. Implementing very deep archi-
tectures may seem an excellent choice because it would 
improve the feature hierarchy extraction process. How-
ever, according to the universal approximation theorem, 
with only one hidden layer, NNs are universal approxima-
tors [48, 49].

Convolutional neural networks
In the case of image analysis, the classifiers discussed 
in the previous section require that images or ROIs are 
described through features: these can be handcrafted fea-
tures and represent the relationships between the gray 
levels, texture, or shape of a ROI [8, 9]. It is also possible 
to extract higher-level handcrafted features such as wave-
let features, which showed remarkably interesting results 
in several tasks [50]. CNNs, conversely, include feature 
extraction in their workflow: given an input image or 
ROI, they extract the most informative features and then 
exploit these features for classification using the above-
mentioned MLP (often referred as “dense layers”) [10]. 
For this reason, CNNs are widely used in medical image 
analysis [51–53].

CNNs are a hot topic in research, leading to many 
complex architectures. They vary based on factors such 
as layer quantity, activation functions, and layer arrange-
ment, leading to extensive discussions in the literature 
about CNN architecture. For this reason, we discuss only 
the general fundamentals behind the most popular CNN 
architectures (e.g., Visual Geometry Group, ResNet, 
Inception [54]).

A CNN is composed of sequential layers, starting with 
the input layer representing an image as a matrix of pixels 
width × height × channels or in the case of three-dimen-
sional images width × height × depth × channels. This is 
followed by the alternating of convolutional layers, pool-
ing layers, or many other layers. Convolution involves 
applying a kernel (or filter) to the input image. In CNNs, 
these filter values are learned during training, allow-
ing the network to determine their roles automatically 
(e.g., filters for edge detection, blurring, noise reduction 
[55]). Figure 6 shows the result of convolution operation 
between the image and an edge detection filter. The ker-
nel size is a hyperparameter to define a priori, as well as 
the activation function to apply after each convolutional 
layer. Images convolved with kernels return the so-called 
feature maps. To improve CNN performance and speed 
up training while reducing the number of learnable 
parameters, pooling layers are often used.

There are several types of pooling layers, as discussed 
by Nirthika et  al. [56]. The alternating of convolutional 
and pooling layers aids the network to focus on both low-
level and high-level features. Early layers extract low-level 
features, while deeper layers capture more abstract high-
level features, which are crucial for image classification. 
These extracted features are referred to as deep features 
or learned features. Finally, a MLP (dense layers) uses 
the resulting feature vector for the classification. Figure 7 
shows an example of CNN, composed by a two-dimen-
sional input image, several convolutional and pooling 
layer, a flattened layer to convert the feature maps into a 
feature vector, and eventually the MLP for classification.

Vision transformers
A new frontier for image analysis lies in ViTs [57]. Trans-
formers have been successfully applied to several com-
puter vision problems, achieving state-of-the-art results 
and prompting researchers to reconsider the supremacy 

Fig. 6 Example of convolutional operation between an input image (a T1-weighted magnetic resonance image of the brain) and the Sobel filter 
for edge detection
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of CNNs as de facto operators [58]. In contrast to CNNs, 
ViTs are able to model the relationships among vari-
ous small patches in the image. The transformer block 
assumes the image is divided into a sequence of patches, 
where each patch is flattened to a vector. These flattened 
image patches are used to create lower-dimensional lin-
ear embeddings and fed into a transformer encoder, com-
posed by a multi-head attention to find local and global 
dependencies in the image. ViTs and CNNs have advan-
tages and disadvantages, and it remains unclear which 
architecture is better. Therefore, much of the research is 
focusing on developing models combining transformer 
and CNN [59]. It has been shown that the introduction 
of a transformer block to convolutional networks can 
improve efficiency and overall accuracy [60].

Transfer learning
The efficacy of NNs is intrinsically related to the avail-
ability of large databases. However, especially in medical 
scenarios, obtaining such datasets represents a challenge 
primarily due to the invasive and onerous nature of data 
annotation procedures. Transfer learning (TL) allows 
the use of existing large available databases (source data-
set), enabling model tuning on very small proprietary 
databases (target dataset) [61]. The model trained on the 
source database can be used as a feature extractor and 
after is fine-tuned only the classification layers (the dis-
cussed MLP). It is also possible to retraining all network 
weights, taking advantage of the weights already optimized 
on the source dataset and achieving better convergence. 
TL shows considerable effectiveness, especially when the 
source and target datasets describe the same phenomenon 
and have similar data distributions. TL on a target data-
base typically yields improved classification results, faster 
learning, and enhanced final classification [62].

How to choose a classifier
The famous “no free lunch” theorem [63], in essence, 
states that the average performance of any pair of algo-
rithms across all possible problems is identical. The 
implication is that the performance of some algorithms is 
identical to a completely naive algorithm, and it would be 
impossible to establish one algorithm better than another 
one. However, depending on the task, some algorithms 
are more recommendable than others under certain con-
ditions [64].

Task analysis
The first choice is driven by the intrinsic structure of the 
classification task and the features involved. All the algo-
rithms presented in the previous section are not designed 
for both binary and multiclass classification. SVM, for 
example, is only used for binary classification, and there-
fore, it requires ad hoc strategies to implement multiclass 
classification (one-versus-rest or one-versus-one [65, 66]). 
The algorithms discussed previously are versatile and can 
handle both continuous and discrete features. However, 
in some cases, specific configurations may be necessary, 
such as using the Hamming distance for binary variables 
when a k-nearest neighbors algorithm is employed.

Dataset size
As discussed in previous sections, the development of 
ML techniques is driven by the exponential growth of 
available data. Although there is no threshold establish-
ing a minimum number of instances to train a ML algo-
rithm, working with less than 50 instances makes the 
results highly questionable [25]. Some statistical analyses 
calculated the relationship between the number of fea-
tures and training samples: for example, it was seen that 

Fig. 7 Example of convolutional neural network architecture. The input images are fed into the convolutional and pooling layers for feature 
extraction. In the end, the resulting flattened feature vector is fed into the dense layer to perform the classification task
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for LR, a minimum of 10 to 15 samples per feature will 
produce reasonably stable estimates [67].

In general, when small datasets are available, it is prefer-
able to use simple algorithms, such as LR or linear SVM. 
TE have proven also their worth for classification in small 
datasets [33, 68–70] and are the most used along with SVM 
[24, 71]. There is no established and recognized general 
rule that establishes the minimum size of a dataset for deep 
training. Generally, one refers to a “small” dataset with-
out quantifying this definition [72]. For example, Sarker 
[73] states that when data volume is small, DL algorithms 
often perform poorly, while standard ML algorithms lie to 
improved performance. Many works deal with deep train-
ing even with a few hundred samples [74]. In general, this 
represents a challenge in training deep models using small 
datasets [75]. Training with a few hundred samples (e.g., 
about 100) is also addressed without the use of TL [76]. In 
fact, in the last case, a cross-validation strategy is employed. 
In general, DL solutions are preferred when a lot of data are 
available [77]. Their use with small datasets is only justified 
if a large dataset is exploited for TL [78]. Alwosheel et al. 
[79] proposed a rule of thumb in which a minimum sam-
ple size of 50 times the number of weights in the network 
is required for training while a more conservative advises 
using at least ten times the number of weights.

Explainability requirements
The significant insufficient transparency of ML algo-
rithms represents a pivotal challenge for the integra-
tion of these systems into clinical practice. Usually, ML 
algorithms are denoted as black box, meaning that the 
inner workings of the models and their decision-making 
processes are not readily transparent or directly under-
standable. Fortunately, in recent years, explainable AI has 
emerged to address the problem of poor interpretabil-
ity, to make the learned logic accessible and the process 
understandable by humans [80–83].

Algorithms such as DTs, and LR, are inherently inter-
pretable, i.e., it is possible to understand their decision-
making process without the use of explainable AI methods. 
For this reason, these methods are preferred when few 
data are available, and simple and linear models are suffi-
cient. Other SL algorithms such as TE are not inherently 
explainable, but several explainable AI methods can be 
employed for their global and local explanation [84].

A global explanation is important to understand the 
most important features that globally affect the predic-
tions. Conversely, a local explanation focuses on elucidat-
ing the system’s decision for a particular instance, such as 
a patient. This approach allows for a detailed examination 
of the model’s findings and facilitates clinical validation 
and comparisons with existing medical literature [18]. 
These considerations carry significant ethical, legal, and 

trust-related implications. When intelligible inputs such 
as clinical, laboratory, or radiomic features are used, an 
explanation results to be straightforward. Conversely, 
learned features (for example, extracted via CNNs) are 
unintelligible. In the last case, explanations frequently 
are addressed considering the saliency maps computa-
tion. These maps highlight the regions within images that 
are most significant in the prediction process, thereby 
offering a form of local explanation [78]. Despite their 
widespread use, it has been demonstrated that sali-
ency maps can yield inconsistent explanations [85, 86]. 
Consequently, SL solutions are often favored over DL 
approaches when explainability is mandatory.

Available computing resources
The computing resources provided by current mid-range 
computers are suitable for training the discussed SL algo-
rithms. For DL models, on the other hand, a high-perfor-
mance graphics processing unit is required. In addition 
to performance, the graphics processing units must have 
a high amount of memory, especially when implementing 
architectures with several million of parameters. Some 
cloud computing services (e.g., Google Colaboratory, 
https:// colab. resea rch. google. com/) are a good solution, 
especially for DL training for small/medium applications.

Conclusions and future perspectives
This review discussed the main ML-based classifiers with 
educational purpose. SL models necessitate the presence 
of comprehensive disease-related features. In the context 
of medical images, these features may encompass radi-
omics (radiomic features) or be derived through NNs 
(deep or learned features). Following this feature extrac-
tion, the classification task is executed. DL architectures 
such as CNNs and ViTs integrate both feature extraction 
and classification within a unified pipeline. It is not pos-
sible to establish one algorithm or hyperparameter con-
figuration better than others. However, some guidelines 
such as the task to be solved, the dataset size, the avail-
able computing resources, and the explainability require-
ments are important aspects to consider. While radiomic 
features provide a higher degree of interpretability, deep 
features are inherently more informative, thus enabling 
the creation of highly accurate models.

The model explanation is part of a more comprehen-
sive concept, assuming central importance: trustworthy 
AI [87]. In sight of this, the conventional ML pipeline 
should be expanded with explainable methods to focus 
on ethical perspectives [88] and implement bias detec-
tion, fairness, and systems security, to comply with 
regulations such as the European General Data Protec-
tion Regulation (GDPR) [89], and, finally, to increase 
human-machine trust [90, 91].

https://colab.research.google.com/
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