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Abstract 

Background To compare image quality, metal artifacts, and diagnostic confidence of conventional computed 
tomography (CT) images of unilateral total hip arthroplasty patients (THA) with deep learning-based metal artifact 
reduction (DL-MAR) to conventional CT and 130-keV monoenergetic images with and without orthopedic metal 
artifact reduction (O-MAR).

Methods Conventional CT and 130-keV monoenergetic images with and without O-MAR and DL-MAR images of 28 
unilateral THA patients were reconstructed. Image quality, metal artifacts, and diagnostic confidence in bone, pelvic 
organs, and soft tissue adjacent to the prosthesis were jointly scored by two experienced musculoskeletal radiologists. 
Contrast-to-noise ratios (CNR) between bladder and fat and muscle and fat were measured. Wilcoxon signed-rank 
tests with Holm-Bonferroni correction were used.

Results Significantly higher image quality, higher diagnostic confidence, and less severe metal artifacts were 
observed on DL-MAR and images with O-MAR compared to images without O-MAR (p < 0.001 for all comparisons). 
Higher image quality, higher diagnostic confidence for bone and soft tissue adjacent to the prosthesis, and less severe 
metal artifacts were observed on DL-MAR when compared to conventional images and 130-keV monoenergetic 
images with O-MAR (p ≤ 0.014). CNRs were higher for DL-MAR and images with O-MAR compared to images with-
out O-MAR (p < 0.001). Higher CNRs were observed on DL-MAR images compared to conventional images and 130-
keV monoenergetic images with O-MAR (p ≤ 0.010).

Conclusions DL-MAR showed higher image quality, diagnostic confidence, and superior metal artifact reduction 
compared to conventional CT images and 130-keV monoenergetic images with and without O-MAR in unilateral THA 
patients.

Relevance statement DL-MAR resulted into improved image quality, stronger reduction of metal artifacts, 
and improved diagnostic confidence compared to conventional and virtual monoenergetic images with and without 
metal artifact reduction, bringing DL-based metal artifact reduction closer to clinical application.
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Key points 

• Metal artifacts introduced by total hip arthroplasty hamper radiologic assessment on CT.

• A deep-learning algorithm (DL-MAR) was compared to dual-layer CT images with O-MAR.

• DL-MAR showed best image quality and diagnostic confidence.

• Highest contrast-to-noise ratios were observed on the DL-MAR images.

Keywords Arthroplasty (replacement, hip), Artificial intelligence, Artifacts, Deep learning, Tomography (x-ray 
computed)

Graphical Abstract

Background
Total hip arthroplasty (THA) is widely used as an effec-
tive treatment for pain in patients with osteoarthritis or 
inflammatory arthritis [1]. More than 1.8 million THA 
procedures are performed annually worldwide, and this 
number is expected to increase in the coming years [2]. 
Computed tomography (CT) is often the imaging modal-
ity of choice for follow-up of these patients because CT 
is fast, relatively inexpensive, and well suited for visual-
izing bone effects [3]. In addition, there is a large group 
of patients with THA who undergo CT scans of the pel-
vis or abdomen for clinical indications other than THA 
follow-up. However, metal hip implants introduce metal 
artifacts in these CT images due to scattering, beam 
hardening, and photon starvation effects which are 
typically observed as dark and bright streaking artifacts 

throughout the image, hampering the assessment of bone 
and soft tissue [4, 5].

Metal artifacts can be reduced by increasing tube volt-
age or by repositioning of the patient but also by more 
advanced reconstruction-based metal artifact reduction 
techniques such as orthopedic metal artifact reduction 
(O-MAR), which rely on the detection and replacement of 
projection data that is affected by metal artifacts. Another 
method for metal artifact reduction is the use of high-
energy virtual monoenergetic images (monoE) that are 
useful for reduction of beam hardening artifacts and can 
be generated by dual energy CT or photon counting CT 
[5–7]. High-energy monoE are useful for the reduction of 
relatively mild artifacts but come at the cost of reduced 
overall image contrast. Although the optimal energy 
is dependent on the implant material, size, and shape, 
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monoE of 130 keV are generally effective in reducing these 
mild metal artifacts in CT images with hip prostheses [8]. 
High-energy monoE are of limited use when dealing with 
more severe metal artifacts. In these cases, reconstruc-
tion-based metal artifact reduction techniques should be 
used [4, 5]. However, these reconstruction-based tech-
niques may introduce secondary artifacts [6, 9–11].

With the emergence of deep learning (DL), numer-
ous DL-based techniques have been developed for detec-
tion, segmentation, classification, and prediction purposes 
within radiology [12]. Deep learning-based metal arti-
fact reduction techniques (DL-MAR) for CT have also 
shown promising results [13–17]. These models are typi-
cally trained using simulated CT data which allows for the 
synthesis of CT images with and without metal artifacts 
[13–17]. However, studies reporting on external evaluation 
of DL-MAR using clinical CT data are limited. Recently, 
a first quantitative evaluation in patients after sacroiliac 
joint fusion showed strong reduction of metal artifacts by a 
generic DL-MAR, outperforming O-MAR [18]. To date, no 
qualitative or quantitative evaluation of DL-MAR has been 
performed in THA patients and the ability of DL-MAR to 
reduce metal artifacts in CT images of THA patients com-
pared to O-MAR, and high-energy monoE is unknown. 
Therefore, the aim of this study was to compare conven-
tional CT with and without O-MAR, 130-keV monoE with 
and without O-MAR, and DL-MAR of patients with uni-
lateral THA in terms of image quality and metal artifacts 
with regard to diagnostic confidence. We hypothesize that 
CT images corrected with DL-MAR will result in less metal 
artifacts, higher image quality and higher diagnostic con-
fidence than conventional CT with and without O-MAR, 
and 130-keV monoE with and without O-MAR.

Methods
Patient population
Thirty-one consecutive patients with a unilateral hip pros-
thesis, scheduled for a CT scan in Isala Hospital Meppel, 
were prospectively included between August 2022 and 
April 2023. One patient had an additional metal implant in 
the arm and was therefore excluded for analysis. The study 
was approved by our institutional review board (number 
20220412). The need for informed consent was waived.

Image acquisition and reconstruction
Patients were scanned on a Philips Spectral CT 7500 sys-
tem (Philips Healthcare, Best, the Netherlands) (Table  1). 
Since patients were consecutively included for varying 
indications, slightly different scan protocols were used. 
Conventional polychromatic images and 130-keV monoE 
of the 30 patients were reconstructed with and without 
O-MAR. In addition, a generic DL-MAR was applied to 
the conventional image without O-MAR. Details about 

the development of this DL-MAR algorithm such as data, 
ground truth, data partitioning, model, training, and evalu-
ations are described in a previous study [18]. In summary, 
the DL-MAR algorithm was developed using simulated 
data, which allowed for the synthesis of paired CT images 
containing metal implants with and without metal artifacts. 
A total of 105,163 paired images were used to train the DL-
MAR algorithm using a deep residual U-NET architecture. 
The network was trained using a combined loss function 
existing in a SSIM loss, L1 loss, and L2 loss.

Subjective evaluation
All conventional images with and without O-MAR, 130-
keV monoE with and without O-MAR, and the DL-MAR 
images were jointly assessed by two radiologists from two 
different hospitals to the one where DL-MAR was devel-
oped (C.F.v.D., 25 years of experience; M.M., 28 years of 
experience) to reach consensus per reconstruction per 
patient on the following questions:

1. How would you rate image quality in general?
2. How would you rate the diagnostic confidence for 

bone structures?
3. How would you rate the diagnostic confidence for 

pelvic organs?
4. How would you rate the diagnostic confidence for 

soft tissue adjacent to the prosthesis?
5. How would you rate the metal artifacts in the image?

For questions 1–4, a 5-point scale with a score from 1 
to 5 was used, including very poor (1), poor (2), fair (3), 
good (4), and excellent (5). For question 5, a 5-point scale 
including severe (1), pronounced (2), moderate (3), mild 
(4), and none (5) was used. The CT images of two patients 
were used for a training session of the radiologists, and 

Table 1 Acquisition and reconstruction parameters

Data of exposure and  CTDIvol are given as mean ± standard deviation. CTDI 
Volumetric computed tomography dose index

Parameter Value

Tube voltage

 120 kVp (number) 26

 140 kVp (number) 4

Exposure (mAs) 10.2 ± 3.9

CTDIvol (mGy) 128.2 ± 54.5

Slice thickness (mm) 1

Increment (mm) 0.5

Rotation time (s) 0.4

Image matrix (pixels) 512 × 512

Collimation (mm) 128 × 0.625

Filter Sharp
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the CT images of the other 28 patients were used for the 
actual qualitative scoring.

MeVisLab (MeVis Medical Solutions AG, Fraunhofer 
MEVIS, Bremen, Germany) was used to develop an 
interface to present the anonymized CT images in ran-
dom order alongside the scoring form. The radiologists 
assessed CT images in axial view in bone window (width 
1,600, level 400 HU) and soft tissue window (400 and 40 
HU, respectively).

Objective evaluation
Three regions of interest (ROIs) were drawn by an expe-
rienced researcher (MS) on the conventional images 
without O-MAR on the axial slice at the middle of the 
prosthesis’ head using the “Fiji” open-source platform 
[19]. One circular ROI with a diameter of 30  mm was 
placed in the bladder at the medial side of the hip pros-
thesis. Another circular ROI with a diameter of 19  mm 
was placed at the lateral side of the hip prosthesis in mus-
cle in the area with most pronounced artifacts. A third 
circular ROI with a diameter of 19  mm was placed in 
gluteal subcutaneous fat at the side of the hip prosthesis. 
Only in patients with a relatively thin gluteal subcutane-
ous fat the diameter of this ROI was carefully resized to 
assure that only fat was measured. Figure  1 shows the 
locations where the ROIs were placed (see supplemental 
materials 1 for specific examples). The ROIs were copied 
to the exact same locations on the other reconstructed 
images for each patient. Mean CT values in Hounsfield 
units (HU) and noise as the standard deviation in HU 
were measured in all ROIs. Contrast-to-noise ratios 
(CNRs) between the bladder and fat and between mus-
cle and fat were calculated by dividing the difference in 
CT values between the tissues by the mean noise values 
of both tissues. To assess interobserver reliability of ROI 
placement, ROIs were also placed in the bladder, muscle, 
and fat on the conventional images without O-MAR of 
15 randomly selected patients by an experienced radiolo-
gist (M.F.B., 14 years of experience).

Statistical methods
The scores on the questionnaire were considered as 
continuous variables and analyzed for each question 
separately. The eyeball test in combination with the Shap-
iro-Wilk test showed that the data was not normally dis-
tributed. Wilcoxon signed-rank tests were used to test for 
differences between conventional images, conventional 
images with O-MAR, 130-keV monoE, 130-keV monoE 
with O-MAR, and DL-MAR. Adjusted p-values were 
calculated using the Holm-Bonferroni method to adjust 
for multiple comparisons. A significance level of 5% was 
used. In addition, the interobserver reliability between 
the two observers was calculated using the intraclass cor-
relation coefficient for absolute agreement using a two-
way mixed model. IBM SPSS software Version 27.0 (IBM 
Corporation, Armonk, NY, USA) was used for all statisti-
cal analyses.

Results
Subjective evaluation
Lowest scores were observed for the conventional images 
without O-MAR and 130-keV monoE images without 
O-MAR on the questions concerning image quality, diag-
nostic confidence for bone, diagnostic confidence for pel-
vic organs, diagnostic confidence for soft tissue adjacent 
to the prosthesis, and metal artifacts (Table 2).

The two radiologists scored image quality; diagnostic 
confidence for bone, pelvic organs, and soft tissue adja-
cent to the prosthesis; and metal artifacts significantly 
higher on conventional images with O-MAR and 130-
keV monoE with O-MAR than on conventional images 
and 130-keV monoE without O-MAR (p ≤ 0.001 for all 
comparisons; see supplemental materials 2 for p-values 
of all pairwise comparisons). DL-MAR was also rated sig-
nificantly higher on image quality, diagnostic confidence 
in all studied areas, and metal artifacts in comparison 
to conventional images without O-MAR and 130-keV 
monoE without O-MAR (p < 0.001).

Fig. 1 Conventional (a), 130-keV monoE (b), conventional with O-MAR (c), 130-keV monoE with O-MAR (d), and DL-MAR (e) images of a patient 
with unilateral total hip arthroplasty at the middle of the prosthesis’ head. Three regions of interest were drawn on the conventional CT image 
and subsequently copied to the other reconstructed images to measure CT values and noise as the standard deviation in HU. Window: width 1,600, 
level 400 HU. CT Computed tomography, O-MAR Orthopedic metal artifact reduction, DL-MAR Deep learning-based metal artifact reduction
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Responses to questions on image quality, diagnostic 
confidence for bone, diagnostic confidence for soft tis-
sue adjacent to the prosthesis, and metal artifacts on 
DL-MAR were significantly higher than on conventional 
images with O-MAR and 130-keV monoE with O-MAR 
(p ≤ 0.014 for all comparisons; Figs.  2, 3 and 4). No sig-
nificant difference was observed when comparing scores 

for diagnostic confidence for pelvic organs on DL-MAR 
to conventional images with O-MAR (p = 0.063; Fig.  5) 
and 130-keV monoE with O-MAR (p = 0.013, but not sig-
nificant after Holm-Bonferroni correction).

No statistical differences between were observed when 
comparing the radiologists’ scores on conventional images 
without O-MAR to 130-keV monoE without O-MAR 

Table 2 Median and interquartile range (IQR) for conventional images, 130-keV monoE, conventional images with O-MAR, 130-keV 
monoE with O-MAR, and DL-MAR images

IQR Interquartile range, O-MAR Orthopedic metal artifact reduction, DL-MAR Deep learning-based metal artifact reduction
a Significant reduction in comparison to conventional images and 130-keV monoE
b Significant reduction in comparison to conventional images, 130-keV monoE, conventional images with O-MAR, and 130-keV monoE with O-MAR

Conventional 
(median, IQR)

130 keV Conventional + O-MAR 130 keV + O-MAR DL-MAR

Image quality 1 (1–2) 1 (1–2) 2 (2–3)a 2 (2–3)a 3 (3–4)b

Diagnostic confidence

 Bone 1 (1–1) 1 (1–2) 2 (2–3)a 2 (2–3)a 4 (3–4)b

 Pelvic organs 1 (1–2) 1 (1–1) 2 (2–3)a 2 (1–3)a 4 (2–4)a

 Soft tissue adjacent to the 
prosthesis

1 (1–2) 1 (1–2) 2 (2–3)a 2 (2–3)a 3 (3–4)b

Metal artifacts 1 (1–1) 1 (1–1) 2 (2–3)a 2 (2–3)a 3 (3–4)b

Fig. 2 Conventional (a), 130-keV monoE (b), conventional with O-MAR (c), 130-keV monoE with O-MAR (d), and DL-MAR (e) images of a patient 
with unilateral total hip arthroplasty at level of the acetabulum. Artifacts on the conventional CT image and 130-keV monoE conceal a bladder cyst 
to the right of the prosthesis cup that is visible on the conventional image O-MAR, 130-keV monoE with O-MAR, and DL-MAR (solid yellow arrow). 
Although not observed in all patients, some artifacts remain between the prosthesis cup and prosthesis head on DL-MAR (open yellow arrow). 
Window: width 400, level 40 HU. CT Computed tomography, O-MAR Orthopedic metal artifact reduction, DL-MAR Deep learning-based metal 
artifact reduction

Fig. 3 Conventional (a), 130-keV monoE (b), conventional with O-MAR (c), 130-keV monoE with O-MAR (d), and DL-MAR (e) images of a patient 
with unilateral total hip arthroplasty at height of the prosthesis’ femoral stem. In this patient, metal artifacts are reduced on the images with O-MAR, 
but secondary artifacts are introduced resulting in degradation of cortical bone anterior to the femoral stem (yellow arrow). DL-MAR reduces 
artifacts without introducing these secondary artifacts. Window: width 1,600, level 400 HU. CT Computed tomography, O-MAR Orthopedic metal 
artifact reduction, DL-MAR Deep learning-based metal artifact reduction
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for image quality, diagnostic confidence for bone, pelvic 
organs and soft tissue adjacent to the prosthesis, and metal 
artifacts. Also, no significant differences were observed 
when comparing conventional images with O-MAR to 
130-keV monoE with O-MAR for image quality, diagnostic 
confidence in all studied areas, and metal artifacts.

Objective evaluation
An intraclass correlation coefficient of 0.841 was calcu-
lated for CT values measured in ROIs placed in the blad-
der, indicating good interobserver reliability [20]. For 
ROIs placed in muscle and fat, intraclass correlation coef-
ficients of 0.960 and 0.944, respectively, were observed 
indicating excellent interobserver agreement [20].

HU values of the bladder and muscle were significantly 
higher on conventional images with O-MAR and 130-keV 
images with O-MAR compared to conventional images 
and 130-keV images without O-MAR (p < 0.002 for all 
comparisons; Fig.  6; see supplemental materials 3 for 
p-values of all pairwise comparisons). DL-MAR images 
showed significantly higher HU values of the bladder and 
muscle compared to all other reconstructions (p < 0.001 
for all comparisons). HU values of fat were highest on 
130-keV monoE with and without O-MAR compared to 
the other reconstructions (p < 0.002 for all comparisons). 
HU values of fat on DL-MAR images were significantly 
higher compared to conventional images with O-MAR 
(p = 0.004).

Noise in the bladder and fat was lower on 130-keV 
monoE without O-MAR compared to conventional 
images without O-MAR (p < 0.001 for all comparisons; 
Fig. 7). Conventional images with O-MAR showed lower 
noise in the bladder and muscle compared to conven-
tional images without O-MAR and 130-keV images 
without O-MAR (p < 0.002 for all comparisons). Noise 
in fat was lower on conventional images with O-MAR 
compared to conventional images without O-MAR 
(p < 0.001), while noise in fat was higher on conven-
tional images with O-MAR compared to 130  keV with-
out O-MAR (p < 0.001). Noise values in the bladder, 
muscle, and fat were lower on 130-keV monoE with 
O-MAR compared to conventional images with and 
without O-MAR and 130-keV monoE without O-MAR 
(p < 0.002 for all comparisons). DL-MAR showed lower 
noise in the bladder compared to conventional images 
without O-MAR and 130-keV monoE without O-MAR 
(p < 0.001 for all comparisons) and lower noise in mus-
cle and fat than all other reconstructions (p < 0.002 for all 
comparisons).

CNR between muscle and fat and CNR between the 
bladder and fat were significantly higher on conven-
tional images with O-MAR than on conventional images 
without O-MAR and 130-keV monoE without O-MAR 
(p < 0.001; Fig.  8). Monochromatic 130-keV images with 
O-MAR showed a significantly higher CNR between 
muscle and fat compared to conventional images without 

Fig. 4 Conventional (a), 130-keV monoE (b), conventional with O-MAR (c), 130-keV monoE with O-MAR (d), and DL-MAR (e) images of a patient 
with unilateral total hip arthroplasty at height of the acetabulum. Severe metal artifacts on the conventional CT image and 130-keV monoE that are 
strongly reduced by O-MAR. Even stronger reduction can be observed on the DL-MAR images. Window: width 400, level 40 HU. CT Computed 
tomography, O-MAR Orthopedic metal artifact reduction, DL-MAR Deep learning-based metal artifact reduction

Fig. 5 Conventional (a), 130-keV monoE (b), conventional with O-MAR (c), 130-keV monoE with O-MAR (d), and DL-MAR (e) images of a patient 
with unilateral total hip arthroplasty at height of the acetabulum. Although not observed in all patients, some artifacts are remaining in the lesser 
pelvis on the DL-MAR image (yellow arrow). O-MAR Orthopedic metal artifact reduction, DL-MAR Deep learning-based metal artifact reduction
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O-MAR (p = 0.003) and 130-keV monoE without O-MAR 
(p = 0.005). Monochromatic 130-keV images with O-MAR 
also showed a significantly higher CNR between the blad-
der and fat compared to conventional images without 
O-MAR (p = 0.016) and 130-keV monoE without O-MAR 
(p = 0.002).

CNR between muscle and fat was significantly higher 
on DL-MAR images compared to all other reconstructed 
images (p < 0.001 for all comparisons). CNR between 
the bladder and fat was also significantly higher on DL-
MAR compared to conventional images without O-MAR 
(p < 0.001), 130-keV monoE without O-MAR (p < 0.001), 
conventional images with O-MAR (p = 0.010), and 130-
keV monoE with O-MAR (p < 0.001). No significant 
difference in CNR was observed when comparing con-
ventional images without O-MAR to 130-keV monoE 
without O-MAR and when comparing conventional 
images with O-MAR to 130-keV monoE with O-MAR.

Discussion
In this study, we compared a novel generic DL-MAR 
algorithm for the reduction of metal artifacts to an estab-
lished metal artifact reduction technique, O-MAR, in 
CT scans with unilateral THA. Strongest reduction of 
metal artifacts, highest image quality, and highest diag-
nostic confidence in bone and soft tissue adjacent to the 
prosthesis were observed on the DL-MAR images com-
pared to conventional images and 130-keV monoE with 
or without O-MAR. This study is the first to perform a 
prospective evaluation of DL-MAR in patients with uni-
lateral THA, thereby moving the field of DL-based MAR 
closer to the clinical application of deep learning-based 
methods for metal artifact reduction.

Although DL-MAR can greatly reduce metal arti-
facts resulting in improved diagnostic confidence and 
image quality, some metal artifacts were still present. 
In particular, metal artifact reduction was not shown 

Fig. 6 Boxplots of HU in the bladder (a), muscle (b), and fat (c) for conventional, 130-keV monoE, conventional with O-MAR, 130-keV monoE 
with O-MAR, and DL-MAR images of patients with unilateral total hip arthroplasty. All comparisons between reconstructions were statistically 
significant (p ≤ 0.05) except for those indicated by n.s. O-MAR Orthopedic metal artifact reduction, DL-MAR Deep learning-based metal artifact 
reduction

Fig. 7 Boxplots of noise as the standard deviation in HU in the bladder (a), muscle (b), and fat (c) for conventional, 130-keV monoE, 
conventional with O-MAR, 130-keV monoE with O-MAR, and DL-MAR images of patients with unilateral total hip arthroplasty. All comparisons 
between reconstructions were statistically significant (p ≤ 0.05) except for those indicated by n.s. O-MAR Orthopedic metal artifact reduction, 
DL-MAR Deep learning-based metal artifact reduction
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consistently in the lesser pelvis on DL-MAR images. 
This may explain why there was no significant dif-
ference in diagnostic confidence for pelvic organs 
between DL-MAR images and conventional images 
with O-MAR and 130-keV monoE with O-MAR. How-
ever, the lack of a significant difference may also be due 
to the relatively small study population. In particular, 
severe metal artifacts sometimes remain present on 
DL-MAR images, for example, between the cup and 
head of the prosthesis. This may be explained by the 
fact that the conventional image is used as the input for 
DL-MAR. When artifacts on the conventional image 
are so severe that they completely obscure anatomical 
structures, then there is no information in the conven-
tional image available that DL-MAR can use to reduce 
metal artifacts. In contrast to DL-MAR, O-MAR is 
able to depict the prosthesis cup accurately, probably 
because O-MAR has access to the projection data. This 
indicates what has already been suggested in simulation 
studies, i.e., that the use of projection data may further 
improve the ability of DL-MAR to reduce metal arti-
facts [13, 14, 21–23]. However, the development and 
clinical application of such an algorithm are challeng-
ing as this requires the cooperation of CT vendors to 
provide access to the projection data.

Conventional images with O-MAR were rated signifi-
cantly higher by two experienced radiologists in terms 

of image quality, diagnostic confidence, and reduction 
of metal artifacts compared to conventional images 
without O-MAR, which is consistent with results of pre-
vious studies [24–29]. Our finding that 130-keV images 
with O-MAR were of higher image quality, diagnostic 
confidence showed stronger reduction of metal arti-
facts in comparison to 130-keV image without O-MAR 
is also in line with previous studies [6, 29, 30]. We did 
not find statistical differences between 130-keV monoE 
with O-MAR and conventional images with O-MAR 
or 130-keV monoE without O-MAR and conventional 
images without O-MAR, while several previous studies 
did report a significant difference between these images 
[27, 29, 30]. Laukamp et al. found stronger reduction of 
metal artifacts and improved visibility of bone, muscle, 
and pelvic organs when monoE of 110, 150, and 200 keV 
were compared to conventional images [27]. Yoo et  al. 
found improved visibility of periprosthetic bone when 
comparing a set of multiple high-energy monoE rang-
ing from 50 to 200 keV to conventional images [29]. Fur-
thermore, Neuhaus et al. observed stronger reduction of 
metal artifacts and improved visibility of pelvic organs 
and bone in 180- and 200-keV monoE images with 
O-MAR compared to conventional images with O-MAR 
[30]. The discrepancy between the results of our study 
and the studies of Laukamp et  al. [27], Yoo et  al. [29], 
and Neuhaus et  al. [30] may be explained by the fact 

Fig. 8 Boxplots of contrast-to-noise ratios (CNR) between muscle and fat and the bladder and fat for conventional, 130-keV monoE, 
conventional with O-MAR, 130-keV monoE with O-MAR, and DL-MAR images of patients with unilateral total hip arthroplasty. All comparisons 
between reconstructions were statistically significant (p ≤ 0.05) except for those indicated by n.s. O-MAR Orthopedic metal artifact reduction, 
DL-MAR Deep learning-based metal artifact reduction
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that they included patients with bilateral prostheses that 
introduce more severe metal artifacts than the unilateral 
prostheses included in our study.

Studies comparing DL-based metal artifact reduction 
with widely used metal artifact reduction techniques are 
scarce. One quantitative study reported stronger reduc-
tion of metal artifacts by DL-MAR compared to O-MAR 
in patients scanned before and after sacroiliac joint fusion 
[18]. Other studies investigating DL-based metal artifact 
reduction focused on development of the algorithm rather 
than clinical evaluation. They typically evaluated one or 
two cases without comparison to commercial metal arti-
fact reduction techniques or high-energy monoE [13, 16, 
17, 22, 31–33]. Further studies are needed to evaluate the 
potential of DL-MAR in clinical practice, preferably using 
paired pre-surgery and post-surgery CT-images with and 
without metal because CT images without metal provide 
the most optimal reference within patients. These studies 
should focus not only on THA or sacroiliac joint fusion 
but also on other implants because DL-MAR was trained 
on a wide variety of metal implants. Furthermore, future 
research focuses on individual pathologies to investigate 
the clinical utility of DL-MAR.

This study has several limitations. First, the shape, size, 
and material of hip prosthesis affects the severity of metal 
artifacts [5, 8]. However, to investigate this further would 
require a much larger cohort of patients and, given our pro-
spective design, a much longer inclusion period. We chose to 
analyze consecutive patients which reflect the presentation 
of hip prosthesis in CT images in clinical practice. Second, 
the images were scored by two radiologists, while scoring by 
more radiologists could be a more comprehensive approach. 
However, the differences in image quality and metal arti-
facts between the reconstructions studied are large, and 
both radiologists were experienced MSK radiologists in the 
assessment of CT images with metal artifacts. Therefore, we 
expect similar results if more radiologists were asked to eval-
uate the images. Finally, the radiologists assessed the images 
in axial view, whereas the coronal and sagittal views are 
also provided in clinical practice. However, we expect simi-
lar results if the other views had been provided because the 
image quality, metal artifacts, and diagnostic confidence for 
bone, pelvic organs, and soft tissue adjacent to the prosthesis 
could be assessed very well on the axial images.

Based on our results, we conclude that DL-MAR yields 
superior image quality and diagnostic confidence, and 
strongest reduction of metal artifacts compared to con-
ventional images and 130-keV monoE with or without 
O-MAR in patients with unilateral THA.
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