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Abstract 

Background Magnetic resonance (MR) imaging of deuterated glucose, termed deuterium metabolic imaging (DMI), 
is emerging as a biomarker of pathway-specific glucose metabolism in tumors. DMI is being studied as a useful 
marker of treatment response in a scan-rescan scenario. This study aims to evaluate the repeatability of brain DMI.

Methods A repeatability study was performed in healthy volunteers from December 2022 to March 2023. The 
participants consumed 75 g of [6,6′ 2H2]glucose. The delivery of 2H-glucose to the brain and its conversion to 2H-glu-
tamine + glutamate, 2H-lactate, and 2H-water DMI was imaged at baseline and at 30, 70, and 120 min. DMI was per-
formed using MR spectroscopic imaging on a 3-T system equipped with a 1H/2H-tuned head coil. Coefficients of vari-
ation (CoV) were computed for estimation of repeatability and between-subject variability. In a set of exploratory 
analyses, the variability effects of region, processing, and normalization were estimated.

Results Six male participants were recruited, aged 34 ± 6.5 years (mean ± standard deviation). There was 42 ± 2.7 days 
between sessions. Whole-brain levels of glutamine + glutamate, lactate, and glucose increased to 3.22 ± 0.4 mM, 
1.55 ± 0.3 mM, and 3 ± 0.7 mM, respectively. The best signal-to-noise ratio and repeatability was obtained at the 120-
min timepoint. Here, the within-subject whole-brain CoVs were -10% for all metabolites, while the between-subject 
CoVs were -20%.

Conclusions DMI of glucose and its downstream metabolites is feasible and repeatable on a clinical 3 T system.

Trial registration ClinicalTrials.gov, NCT05 402566, registered the 25th of May 2022.

Relevance statement Brain deuterium metabolic imaging of healthy volunteers is repeatable and feasible at clinical 
field strengths, enabling the study of shifts in tumor metabolism associated with treatment response.

Key points 

• Deuterium metabolic imaging is an emerging tumor biomarker with unknown repeatability. 

• The repeatability of deuterium metabolic imaging is on par with FDG-PET. 

• The study of deuterium metabolic imaging in clinical populations is feasible.
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Graphical Abstract

Background
Tumors undergo metabolic reprogramming which pro-
mote their growth and spread. Thus, pathway-specific 
metabolic imaging could guide and personalize cancer 
care [1]. Emerging magnetic resonance (MR) technolo-
gies may come to meet this need by enabling imaging of 
metabolic probes and their metabolites through the spec-
tral dimension inherent to MR [2, 3]. Recently, deuterium 
metabolic imaging (DMI) was suggested as a clinically 
feasible tool for imaging of tumor metabolism [4].

DMI allows imaging of peroral 2H-glucose and its con-
version into glutamine + glutamate (2H-Glx) or 2H-lactate. 
The Glx pool represents citric acid cycle flux, while lactate 
represents anaerobic metabolism. Thus, DMI can be used 
to evaluate cancerous reprogramming of two essential 
pathways. Experimental work shows that scan-rescan DMI 
is a prompt marker of therapeutic response [5–8]. DMI is 
viable for clinical trials; however, the initial studies were 
performed on ultra-high field systems [4, 9–11]. Recently, 
DMI was shown feasible on clinical field strengths, greatly 
increasing its availability [12].

This study primarily sought to inform future scan-
rescan trials by investigating DMI repeatability at 3  T. 
To this end, we performed a test–retest DMI study in 
healthy volunteers. We hypothesized that DMI is as 

repeatable as tumors 18F-fluorodeoxyglucose-positron 
emission tomography (FDG-PET) [13], corresponding to 
-10% within-subject coefficients of variation (CoV). Sec-
ondarily, we explored the effects of anatomical region, 
postprocessing, and means of quantification on variabil-
ity to inform simplified DMI protocols that are easier to 
implemented in a clinical workflow.

Methods
Study design
The study was approved by the Ethics Committee of 
Central Denmark (1–10-72–78-22) and preregistered at 
ClinicalTrials.gov (NCT05402566). Healthy volunteers 
were recruited and gave informed consent from Decem-
ber 2022 to March 2023. They were not allowed to have 
diabetes or a history of neurological illness. M.V. and 
R.F.S. are employees of GE Healthcare. The non-industry 
authors were in complete control of the data and infor-
mation presented in the study.

All participants were imaged twice. Each session com-
posed of a baseline scan and blood sample, consumption 
of 75 g [6,6′ 2H2]glucose in 200 mL of water (Cambridge 
Isotope Laboratories, Tewksbury, USA), and repeated 
DMI (30, 75, and 120 min) and blood sampling (15, 60, 
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105, and 150  min). This glucose dose corresponds to a 
standard oral glucose tolerance test. Blood glucose was 
determined using point-of-care equipment.

Deuterium metabolic imaging
MR imaging and DMI were performed using a clini-
cal 3-T system with a modified gradient noise filter (MR 
750, GE Healthcare, Chicago, USA) and a 27-cm dual-
tuned (1H/2H) quadrature Tx/Rx volume coil (PulseTeq, 
Chobham, UK). The anatomical imaging consisted of a 
3D T1-weighted inversion-recovery prepped fast spoiled 
gradient echo sequence (2 × 2 × 2  mm3 resolution, repeti-
tion time 5.5 ms, echo time 1.7 ms, flip angle 12°, inver-
sion time 450 ms, number of excitations 2). Second-order 
shimming was employed, and a  B0 map (IDEAL IQ, 
2 × 2 × 2  mm3, repetition time 6.9  ms, echo train length 
3, echo time 1–5.2 ms) was acquired to ensure its quality.

The deuterium frequency and transmit power were 
calibrated using the Bloch-Siegert approach on base-
line deuterated water [14]. DMI was acquired using 
three-dimensional chemical shift imaging. The exci-
tation was a soft pulse (flip angle 70°, repetition time 
155.8 ms, number of excitations 1678). The readout was 
a density-weighted spiral (matrix size 10 × 10 × 10, field 
of view 24 × 24 × 24  cm3, spectral points 700, bandwidth 
5000 Hz). With four number of excitations, the total scan 
time was 17:25  min:s. External phantoms with 6.4  mM 
and 19.15  mM deuterated water in 1.5% agar were 
included for reference. The coil  B1

+-profile was estimated 
using the double-angle method (flip angle 60/120°, rep-
etition time 1.5 s) on a saline phantom (28 cm, 68 mmol 
NaCl with 0.2 mmol gadolinium-based contrast).

Data processing
Data were processed with two parallel pipelines to assess 
repeatability effects of post-processing. In the simple pipe-
line, the data were fast Fourier transformed without line 
broadening, zero filled twice in the spectral dimension, 
and fitted using a MATLAB-implementation of AMARES 
[15, 16]. In the extended pipeline (Supplemental Fig. S1), 
the data were denoised using a principal component analy-
ses with automatic rank selection [17, 18], partial-volume 
corrected using an iterative Lucy-Richardson method [19], 
and bias field corrected [20]. Fitting was only performed 
in voxels where the pre-processing signal-to-noise ratio 
of water was > 5. Voxels with water linewidth > 30 Hz were 
discarded. Loss of the 2H-label and partial radiofrequency 
saturation were corrected following the procedure of De 
Feyter et  al. [4]. The resulting maps of deuterated water, 
glucose, lactate, and Glx were Fourier interpolated to the 
resolution of the anatomical images.

Image analysis
The metabolite maps were co-registered and normalized 
to MNI152 space using the fsl_anat and flirt commands 
of FSL [21]. Mean metabolite values were calculated 
for the whole brain, cerebral lobes, cerebellum, caudate 
nucleus, putamen, and thalamus based on the MNI prob-
abilistic atlas. Apparent metabolite concentrations were 
estimated from the baseline signal [4]. This was com-
pared to quantification against external phantoms and to 
internal normalization to the cerebellum.

Statistics
The primary statistical analysis was calculation of 
between- and within-subject CoVs estimated by the 
approach of Lodge et al. (Eq. 1), allowing comparison to 
their summary of the FDG-PET literature [13].

The CoVs were calculated as relative measures to allow 
comparison between timepoints with different metabo-
lite concentrations. Effects of time and region of inter-
est were estimated using linear mixed-effect models. The 
analyses were performed with R version 4.2.3 (R Founda-
tion for Statistical Computing, Vienna, Austria).

Results
Participants and metadata
Six male healthy volunteers (age 34 ± 6.5  years 
[mean ± standard deviation], height 181 ± 6.4  cm, weight 
79.6 ± 8.7  kg) were scanned twice 42 ± 2.7  days apart. 
The baseline fasting blood glucose was 4.7 ± 0.4  mM. It 
peaked at 6.3 ± 1.7 mM at 60 min after 2H-glucose inges-
tion (Supplemental Fig. S2).

The  B1
+-profile of the coil varied ± 7% (Supplemental 

Fig. S3). DMI quality parameters are presented in Table 1 
and raw images are shown in Supplemental Fig. S4. Per 
examination, 0.2 (range 0 − 5) voxels were excluded, 
yielding all 48 consecutive examinations of sufficient 
quality to be included in the analysis.

Metabolite changes and repeatability over time
The metabolite dynamics over time are shown in Fig. 1. 
When quantified from the baseline signal [4], the appar-
ent whole-brain concentrations of Glx, lactate, and 
glucose peaked at 3.22 ± 0.4 mM (mean ± standard devia-
tion), 1.55 ± 0.3 mM, and 3.00 ± 0.7 mM, respectively.

(1)between− subject CoV =
SD

mean

(2)within− subject CoV =
SD(Exam2 − Exam1)

√
2

(3)
repeatability coefficient = 1.96×

√
2× within− subject CoV
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Repeatability over time was evaluated to determine 
the optimal imaging timepoint (Table 2 and Supplemen-
tal Figs. S5 and S6). Generally, the within-subject CoV 
between the two sessions decreased from the 30-min 
timepoint to the 75- and 120-min timepoints. The vari-
ation between individuals decreased with time for Glx, 
while it stayed constant for the remaining metabolites. 
Due to better signal-to-noise and repeatability, the 120-
min timepoint was used for the subsequent, explorative 
analyses.

Regional variability
Regional variation was evaluated to guide focal inves-
tigations (Fig.  2). Water and glucose varied -20% 
across the brain; Glx and lactate varied 42% and 60%. 
Regional repeatability and variability are presented in 
Table 3. The within-subject CoV varied from -8 to 10% 
(frontal and parietal cortices) to -15% (putamen and 
caudate).

Variability effects of postprocessing and quantification 
method
When omitting extended postprocessing (Fig.  3), 
the CoVs increased for Glx and water. Normaliza-
tion to external phantoms gave metabolite concentra-
tions similar to baseline normalization (2.8 ± 1.4  mM 

Table 1 Quality control metrics of deuterium metabolic imaging 
over time calculated from the three central slices of the brain

Signal-to-noise ratio Linewidth (Hz) Cramér Rao 
lower bounds 
(%)

Time (min) Water

0 10.3 ± 7 9.1 ± 0.9 6.7 ± 2.1

30 12.8 ± 3.9 9.9 ± 0.6 3.4 ± 0.6

75 11.6 ± 2.6 10.2 ± 0.9 3.7 ± 0.9

120 14.2 ± 4.2 10.6 ± 0.6 3.3 ± 0.7

Glucose

0 – – –

30 4.7 ± 1.5 10.1 ± 0.2 10.7 ± 2.7

75 5.9 ± 2.2 10.1 ± 0.4 8.6 ± 2.9

120 6.1 ± 3 10 ± 0.1 8.5 ± 2

Glutamate + glutamine

0 – – –

30 1.7 ± 0.5 17.8 ± 2.6 173 ± 48.4

75 3.2 ± 0.7 14.5 ± 1.7 43 ± 21.7

120 4.9 ± 1.5 15.2 ± 1.4 44.6 ± 17

Lactate

0 – – –

30 1.8 ± 0.6 29.2 ± 6.5 173 ± 55

75 2.3 ± 0.6 26.7 ± 3.4 63.3 ± 26.2

120 2.8 ± 1 26.3 ± 4.6 85.6 ± 42.5

Fig. 1 Repeatability of deuterium metabolic imaging (DMI) was investigated in six healthy volunteers. Uptake of glucose and its conversion 
into lactate, water, and glutamine + glutamate (Glx) was examined after oral intake of 75 g of [6,6-2H2]-glucose. The imaging was repeated 
four times for two sessions 6 weeks apart (a). Each examination consisted of T1-weighted imaging and 2H chemical shift imaging resulting 
in a 10 × 10 × 10 grid of spectra (b). Each spectrum was fitted to water, glucose, lactate, and Glx peaks. Here, a single spectrum from the cortex 
is shown (c). All peaks increased in amplitude over time (d); the solid line is a second-degree polynomial fit on the individual data points 
from the two sessions pooled. The glucose and lactate peaks reached plateau between 75 and 120 min, while the water and Glx peaks continued 
to increase close to linearly
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[mean ± standard deviation], 3.2 ± 2.2  mM, and 
4.0 ± 2.0 for glucose, Glx, and lactate, respectively). 
However, this approach yielded large CoVs. Normali-
zation to the cerebellum gave the lowest variation 
within and between individuals (Fig. 4 and Table 4).

Discussion
This study shows that DMI is repeatable with within-
subject CoVs below 10% at 120 min after [6,6′ 2H2]glucose 
ingestion, confirming our primary hypothesis. The vari-
ability between subjects was below 20%.

DMI is a new technology, and the optimal imaging pro-
tocol is yet to be defined. We found that the signal-to-
noise ratio of water and Glx continued to increase until at 
least 120 min. Opposed to this, the signal-to-noise ratio 
of lactate and glucose plateaued between 75 and 120 min. 
Thus, timings need to be considered in study design and 
interpretation. Generally, the repeatability increased with 
time. A recent study found good repeatability of indirect 
deuterium detection using specialized proton spectros-
copy at 60  min after administration [22, 23]. Our data 
suggest that waiting two hours might be optimal for 
studies where reliable detection of all metabolites is war-
ranted at clinical field strengths.

We performed an explorative analysis of regional vari-
ability. Despite varying metabolite concentrations across 
the brain, the variation between individuals was not 
decisively larger in regions that are classically considered 
hard to assess with spectroscopy, suggesting that focal 
disease can be imaged with DMI regardless of location. 
We found that normalizing to the cerebellum led to less 
variation than to external phantoms, likely due to the 
relatively small size of the phantoms, field inhomogenei-
ties, and shimming isolated to the brain. Internal nor-
malization has the advantage of just requiring a single 
examination contrary to baseline normalization. Internal 
normalization is valid if the reference tissue is unaffected 
by disease, often considered true for the cerebellum in 

Table 2 Whole-brain repeatability and between-subject coefficient 
of variation (CoV) of deuterium metabolic imaging at 30, 75, and 
120 min after 2H-glucose administration

CoV Coefficient of variation

Within-subject CoV (%) Repeatability 
coefficient (%)

Between-
subject CoV 
(%)

Time (min) Water

30 8.2 22.7 13

75 6.9 19.1 9

120 5.4 15 12.2

Glucose

30 11.2 31.3 19.1

75 15.7 43.5 23.7

120 11.7 32.5 19.3

Glutamate + glutamine

30 15.6 43.3 25.7

75 8.7 24.3 12.7

120 8.9 24.7 17.7

Lactate

30 13.5 37.5 19.9

75 8.5 23.6 16.4

120 8.9 24.7 20.7

Fig. 2 In deuterium metabolic imaging, the water signal is evenly distributed, while metabolite signals display some variation across the brain. 
The signal outside the brain is from the external phantoms (a, a single individual at 120 min is shown, see supplement for grayscale images). 
Quantification revealed significant differences between regions of the brain that were different between metabolites (b). The p-values represent 
a linear-mixed effects model for the effect of region
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FDG-PET. Thus, we suggest using internal normalization 
unless absolute metabolite quantification is needed.

Like FDG-PET, DMI images glucose. But there are 
potentially important differences between the two. First, 
routine PET uses intravenous trace doses, and care is 
taken to ensure that the muscles, the liver, and spe-
cific cortical areas does not steal the glucose. DMI uses 
a large dose of oral glucose. This affects the underlying 
physiology and resembles a tolerance test of the glucose 
homeostasis where the resting brain is presented for 
more glucose than it has capacity to utilize [24]. There-
fore, we speculate that measures to control peripheral 
glucose uptake and insulin sensitivity are less important 
for DMI than in FDG-PET. Additionally, DMI allows 
imaging of the downstream metabolites of glucose, giving 

information on specific metabolic pathways in addition 
to uptake. Here, lactate may be of special interest, as it is 
now considered not only an anaerobic product but also a 
modulator of plasticity, memory consolidation, and excit-
ability, among others [25]. Future studies should elucidate 
how FDG-PET and DMI complements and compares 
considering the spectral dimension and dose differences 
between.

Some limitations of clinical DMI should be 
addressed. The acquired spatial resolution at 3 T is -6 
times coarser than modern FDG-PET, and evaluation 
of smaller brain areas is prone to partial volume effects. 
Furthermore, the acquisition as performed here is long 
and thus sensitive to motion. Considerable improve-
ment can be expected through specialized acquisition 

Table 3 Within- and between-subject coefficient of variation of deuterium metabolic imaging in different regions of the brain

Glx Glutamate + glutamine, CoV Coefficient of variation

Temporal lobe Occipital lobe Frontal lobe Parietal lobe Cerebellum Thalamus Caudate Putamen Brain stem

Resonance Within-subject CoV (%)

 Water 6.3 10.3 4.2 6.2 7.6 4.3 12 6.6 8.7

 Glucose 8.9 12.3 15 11.3 10.6 10.8 11.9 15.1 11.9

 Glx 11.4 13.2 9.2 8.2 11.3 11.2 16.5 12.3 14.4

 Lactate 10.5 13 9.9 7.5 14.9 14.8 19.9 23.6 11.1

Between-subject CoV (%)

 Water 16 18.2 13 14 13.6 8.5 14.7 11.5 16.6

 Glucose 22.1 24.5 23.9 21.6 18.5 20 18.4 23.8 24.6

 Glx 21.3 24.8 18.1 20.5 19.1 14.5 21 17 23.6

 Lactate 24.7 33.7 16.4 28.8 26.8 41.2 37.7 28.6 22.3

Fig. 3 Repeatability effects of post-processing. The deuterium metabolic imaging data were processed using commonly employed techniques (a). 
Coefficients of variation (CoV) within the same individual and between individuals seems to improve with post-processing (b). AMARES, Advanced 
method for accurate, robust, and efficient spectral fitting; Glx, Glutamate + glutamine; tMPPCA, Tensor Marchenko-Pastur principal component 
analysis
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schemes [26, 27] and at ultra-high field strengths. The 
present study raises questions for future investigations. 
First, as also reported by Ruhm et al. [9], the Glx sig-
nal seems to increase linearly up to 120  min. As this 
metabolite is of special interest, the dynamics of Glx 
should be studied after the 2-h timepoint. In addition, 
we find dynamics in the lactate resonance, suggesting 
actual underlying metabolic activity not attributable 
to lipid contamination. This is in contrast to previ-
ous reports [9, 12], and future studies should seek to 
confirm this finding. Lastly, the sample size of the pre-
sent study is rather small, and the variation estimates 
should be interpreted with care. Likewise, we studied 
the healthy brain, and tumors may behave differently 
in terms of repeatability and optimal imaging time 
points.

Our aim was to provide guidance for the design of 
clinical investigations of DMI. We show that a within-
individual change in Glx or lactate larger than ~25% is 
unlikely to occur be chance. Much larger effects have 
been demonstrated in experimental work [5–8], sug-
gesting that test–retest clinical trials in brain tumors are 
viable. Likewise, we show that variation between indi-
viduals is small compared to the differences between 
tumor and healthy brain observed preclinically and 
clinically [4, 5, 8], suggesting the feasibility of cross-
sectional investigations. Lastly, we find that variation is 
further reduced by internal normalization to a reference 
tissue, offering a way to simplify DMI compared to the 
baseline normalization [4, 10, 22, 23].

Collectively, this report shows that DMI is repeatable 
and feasible at 3 T, enabling sizeable trials of metabolism 
in a range of brain diseases.

Fig. 4 Repeatability effects of normalization. Deuterium metabolic imaging was normalized to either a baseline examination acquired 
before 2H-glucose administration, to the cerebellum in the same examination, or to external phantoms (a). Normalization to the baseline allows 
absolute quantification of apparent metabolite concentrations but requires two examinations. In principle, normalization to external phantoms 
does the same in a single examination. Internal normalization to the cerebellum is does not give metabolite concentrations. The whole-brain 
within- and between-subject coefficients of variation (CoV) were lowest with internal normalization to the cerebellum, while normalization 
to a baseline scan or external phantoms yielded higher variation (b, c). Glx Glutamate + glutamine

Table 4 Whole-brain within- and between-subject coefficients of variation of normalization to a baseline examination, internally to 
the cerebellum, or externally to phantoms

Glx Glutamate + glutamine, CoV Coefficient of variation

Within-subject CoV (%) Between-subject CoV (%)

Normalization Normalization

Resonance Baseline Cerebellum Phantoms Baseline Cerebellum Phantoms

Water 5.4 4.2 17.3 12.2 5.7 44.2

Glucose 11.7 6.1 18.8 19.3 9.8 44.7

Glx 8.9 7 13.7 17.7 10 40.1

Lactate 8.9 11 14.4 20.7 14.2 44.9



Page 8 of 9Bøgh et al. European Radiology Experimental            (2024) 8:44 

Abbreviations
CoV  Coefficient of variation
DMI  Deuterium metabolic imaging
FDG-PET  18F-fluorodeoxyglucose-positron emission tomography
Glx  Glutamine + glutamate
MR  Magnetic resonance
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Additional file 1: Figure S1. Illustration of the DMI processing pipeline. 
The spectrum is a single voxel located in the cortex of the middle of the 
brain. Partial volume correction was performed using an iterative Lucy-
Richardson method. The bias field was estimated and corrected for with 
multiplicative intrinsic component. Figure S2. Blood glucose over time 
after intake of [6,6-2H2]glucose (a) and the correlation between the blood 
glucose at 60 minutes (the peak) and the DMI whole-brain glucose signal 
at 120 minutes (b). Figure S3. Transmit profile of the employed 1H/2H 
coil. The transmit field on deuterium was measured across a saline phan-
tom using a double-angle experiment (a). The field varied with ± 7% (b). 
Figure S4. Montage of raw DMI data from a single volunteer at 120 min-
utes after oral [6,6-2H2]glucose. The root-mean square of the 2H-spectrum 
is presented, the data were zero filled twice in all directions. Figure S5. 
Bland-Altman plots of repeatability of DMI at 30, 75, and 120 minutes after 
oral ingestion of [6,6-2H2]glucose. Glx = glutamine+glutamate. Figure 
S6. Correlation plots of repeatability of DMI at 30, 75, and 120 minutes 
after oral ingestion of [6,6-2H2]glucose. Glx = glutamine+glutamate.
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