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Abstract 

This narrative review focuses on clinical applications of artificial intelligence (AI) in musculoskeletal imaging. A range 
of musculoskeletal disorders are discussed using a clinical-based approach, including trauma, bone age estimation, 
osteoarthritis, bone and soft-tissue tumors, and orthopedic implant-related pathology. Several AI algorithms have 
been applied to fracture detection and classification, which are potentially helpful tools for radiologists and clinicians. 
In bone age assessment, AI methods have been applied to assist radiologists by automatizing workflow, thus reduc-
ing workload and inter-observer variability. AI may potentially aid radiologists in identifying and grading abnormal 
findings of osteoarthritis as well as predicting the onset or progression of this disease. Either alone or combined 
with radiomics, AI algorithms may potentially improve diagnosis and outcome prediction of bone and soft-tissue 
tumors. Finally, information regarding appropriate positioning of orthopedic implants and related complications may 
be obtained using AI algorithms. In conclusion, rather than replacing radiologists, the use of AI should instead help 
them to optimize workflow, augment diagnostic performance, and keep up with ever-increasing workload.

Relevance statement This narrative review provides an overview of AI applications in musculoskeletal imaging. As 
the number of AI technologies continues to increase, it will be crucial for radiologists to play a role in their selection 
and application as well as to fully understand their potential value in clinical practice.

Key points
• AI may potentially assist musculoskeletal radiologists in several interpretative tasks.

• AI applications to trauma, age estimation, osteoarthritis, tumors, and orthopedic implants are discussed.

• AI should help radiologists to optimize workflow and augment diagnostic performance.
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Graphical Abstract

Introduction
The term “artificial intelligence” (AI) refers to a field 
of computer science focused on allowing computers 
to mimic human cognitive functions [1]. This includes 
machine learning, which is a domain of AI enabling 
computers to learn and detect patterns in data without 
being explicitly programmed [2]. In turn, deep learn-
ing is a domain of machine learning (and therefore of 
AI) which can perform superior classification tasks 
[3]. In musculoskeletal imaging, AI, machine learn-
ing, and deep learning may assist radiologists in every 
step of the workflow, including both interpretative—
such as detection and characterization of abnormali-
ties—and non-interpretative tasks. The latter group 
includes (but is not limited to) the management of 
radiologic requests [4], protocoling [5], and produc-
tion of images [6], similarly to what happens in any 
other imaging subspecialty. As they are not specific for 
musculoskeletal imaging, a detailed discussion on non-
interpretative tasks is beyond the scope of this review. 
Thus, this narrative review mainly focuses on interpre-
tative tasks and provides the reader with an up-to-date 
overview of AI applications in musculoskeletal imag-
ing. A range of musculoskeletal disorders are discussed 
using a clinical-based approach, including those most 

often addressed in AI literature, such as trauma, bone 
age estimation, osteoarthritis, tumors, and orthope-
dic implants. A general overview of the clinical tasks 
achieved through AI in these fields of musculoskeletal 
imaging is offered in Table 1.

Musculoskeletal trauma
Trauma is one of the most common reasons for patients 
presenting to emergency department. It represents a 
high cost for health care systems and missed or delayed 
diagnosis may lead to increased mortality and morbid-
ity [36]. With the increasing growth of imaging utiliza-
tion in the emergency setting, radiologists are constantly 
under pressure. It is estimated that there is approximately 
4% error rate in imaging interpretation by a trained radi-
ologist [37]. The risk of misinterpretation is higher when 
radiological exams are interpreted by non-radiology cli-
nicians [38], which often occurs at night, when a consult-
ing radiologist is not always available in every hospital. AI 
has the potential to reduce workload and improve diag-
nosis in the emergency settings [36].

AI has been applied to different imaging modalities, such 
as radiography, computed tomography (CT), and mag-
netic resonance imaging (MRI), with a special focus on 
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radiography. To improve case collection and development 
of algorithms, deidentified radiography datasets have been 
created, for example MURA (musculoskeletal radiographs). 
MURA includes close to 41,000 radiographs of the upper 
extremity, which are all labeled as “normal” or “abnormal” 
by expert radiologists [39]. Several AI algorithms have been 
applied to fracture detection and classification. Lindsey 
et al. developed a deep neural network to detect and local-
ize fractures on radiographs, which resulted in an improved 
diagnostic accuracy in fracture identification by emergency 
medicine clinicians with the assistance of AI [40]. Krogue 
et al. developed a deep learning-based hip fracture detec-
tion and classification model, which improved residents’ 
performance approximating that of unaided fellowship-
trained attendings [41]. Gale et  al. developed a DenseNet 
based architecture to detect hip fractures from frontal pel-
vic radiographs, which achieved equivalent performance 
compared to a human radiologist [7]. Chen et al. developed 
a ResNeXt architecture which was transferred to abdomi-
nal radiographs to identify vertebral fractures, with only 
slightly inferior performance compared to physicians such 
as radiologists and orthopedic surgeons (average accu-
racy of 76.8% for the physicians versus accuracy of 73% for 
the model) [8]. Thus, this model could be useful to assist 
physicians in the identification of vertebral fractures as 
incidental findings. Overall, in the mentioned studies, radi-
ography-based algorithms had comparable performance to 
trained musculoskeletal radiologists. Thus, healthcare pro-
fessionals without radiology training or residents in train-
ing may benefit the most in fracture detection, especially in 

centers with limited access to specialized musculoskeletal 
radiologists.

Most of these algorithms are specific to a single ana-
tomic area or body part. However, to be useful in prac-
tice, they will need to be combined in one interconnected 
software module that is capable to detect a fracture in any 
anatomic region. In a multicenter study, Jones et al. used 
715,343 radiographs across 16 anatomic regions and an 
ensemble of 10 convolutional neural networks for fracture 
detection, with a mean area under the curve (AUC) above 
0.98 in half of the anatomic sites [9]. Ma et al. developed 
a two-step approach to first detect the anatomic region 
among 20 different bones and thereafter to classify frac-
tures, with an accuracy of 90% [42]. Regarding fracture 
classification, Chung et al. developed a proximal humerus 
fracture classification model based on Neer criteria using 
antero-posterior radiographs [12]. Tanzi et  al. and Lind 
et al. developed deep learning models to classify proximal 
femur fractures [11] and fractures around the knee [14], 
respectively, based on the AO-OTA (Arbeitsgemeinschaft 
für Osteosynthesefragen-Orthopaedic Trauma Asso-
ciation) classification system. Olczak et al. trained a deep 
learning model to classify ankle fractures over a dataset 
of 4,941 patients achieving an average AUC of 0.90 [15]. 
Li et al. developed a deep learning model to classify ver-
tebral fractures based on the Genant classification using 
plain lateral radiographs from 941 patients and achieved 
an AUC of 0.919−0.99 [13]. An example of fracture detec-
tion/classification method based on deep learning is 
shown in Fig. 1.

Table 1 Overview of the clinical tasks achieved through artificial intelligence (AI) systems in five fields of musculoskeletal imaging

Clinical setting Main clinical tasks Imaging modalities Examples from literature

Trauma Fracture detection Radiography/CT Fractures around the hip [7], spine [8], multiple anatomic 
sites [9]

Fracture classification Radiography/CT Fractures of the calcaneus [10], femur [11], humerus [12], 
spine [13], around the knee [14], and ankle [15]

Detection of ligament or meniscal tears MRI Anterior cruciate ligament and meniscal tears [16]

Bone age Bone age estimation Radiography BoneXpert [17] and VUNO Med-BoneAge [18] for hand 
radiographs

Osteoarthritis Grading Radiography Grading of knee osteoarthritis [19]

Cartilage lesion detection MRI Detection of knee cartilage lesions [20]

Prediction of progression Radiography Progression of knee osteoarthritis [21]

Bone and soft-tissue tumors Benign/malignant discrimination Radiography/CT/MRI Primary bone tumors [22]

Grading CT/MRI Bone chondrosarcoma [23–25] and soft-tissue sarcomas 
[26]

Prediction of outcomes (recurrence, 
survival, therapy response)

CT/MRI Osteosarcoma [27–29] and soft-tissue sarcomas [30]

Orthopedic implants Identification and classification Radiography Spinal hardware [31], knee [32] and shoulder [33] 
arthroplasty

Implant positioning and measurements Radiography Acetabular component positioning after hip arthro-
plasty [34]

Implant-related complications Radiography/MRI Knee or hip arthroplasty loosening [35]
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Fig. 1 Example of fracture detection and classification method based on neural networks. Image areas where the network focuses on are shown 
as colored dots. Colored dots seem to cluster close to fracture lines, suggesting that the network appropriately finds these areas to contain relevant 
information. Adapted from: Lind A et al. [14] [open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)]
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In CT, Jin et  al. developed a deep learning model to 
identify rib fractures with a sensitivity of 92.9% [43]. 
Zhou et  al. developed a convolutional neural network 
model which combined clinical information with CT to 
detect and classify rib fractures into recent, healing, and 
old fractures [44]. Pranata et al. built a model to identify 
and precisely localize calcaneal fractures [45]. Farda et al. 
built a convolutional neural network model to classify 
calcaneal fractures into the four Sanders categories with 
72% accuracy [10]. Other models based on CT images 
focused on classification of osteoporotic vertebral com-
pression and femoral neck fractures [46, 47].

Regarding MRI, Bien et  al. showed a deep learning 
model which could perform multiple functions, such 
as detection of anterior cruciate ligament and meniscal 
tears, with however lower sensitivity for anterior cruci-
ate ligament tears and lower specificity for meniscal tears 
compared to radiologists, respectively [16]. Liu et  al. 
developed a deep learning model to improve sensitivity 
for anterior cruciate ligament tear detection [48], without 
significant difference compared to radiologists. Liu et al. 
developed a deep learning-based cartilage lesion model, 
with a high diagnostic performance and good intra-
observer agreement for detecting cartilage degeneration 
and acute cartilage injury [20]. Kim et  al. developed a 
deep learning algorithm to detect rotator cuff tear with 
87% accuracy [49]. Hong et al. developed an AI model to 
analyze the efficacy of knee ligament trauma repair [50].

Ultrasound-based AI algorithms have been only mildly 
investigated compared to other imaging modalities. AI in 
ultrasound is mainly linked to classification, segmenta-
tion and diagnosis [51].

Beyond pure imaging interpretation, AI offers other 
applications in musculoskeletal trauma that can impact the 
management of patients. For example, it helps to predict 
the probability for occult posterior malleolar fracture in 
patients with known tibial shaft fracture [52] or to identify 
patients with tibial shaft fracture at risk for infection after 
operative treatment [53]. Despite the great potential of AI, 
further studies are needed to implement the use of AI in 
clinical practice, considering it as a diagnostic support for 
radiologists and clinicians and not a substitute of them.

Bone age estimation
Correct assessment of bone age is important for differ-
ent clinical fields, such as pediatric endocrinology, ortho-
dontics, and orthopedics, as well as for legal medicine 
issues [54]. Bone age assessment is currently based on 
two main different methods: the Greulich-Pyle and the 
Tanner-Whitehouse methods, both focused on the analy-
sis of the epiphyses and diaphysis morphology on hands 
radiographs. The Greulich-Pyle method is an atlas that 
contains reference images from hand radiographs, which 

were collected from 1931 to 1942 from upper-middle 
class Caucasian children in Ohio, USA [54, 55]. Bone 
age attribution is made by comparing a child hand radi-
ographs with reference images in the atlas. The Tanner-
Whitehouse method is based on data collected between 
1950 and 1960 from children of average socioeconomic 
class in the UK, with further update in 2001 [56]. It eval-
uates maturity scores from the radius, ulna, carpals, and 
13 hand short bones. Some of these bones are evaluated 
and categorized into stages ranging from A to I; then, a 
total score is calculated and converted into bone age [54, 
56]. However, these conventional methods are time-con-
suming and prone to intra- and inter-observer variability.

Bone age assessments have become a major target of 
the machine learning community. The task is a typical 
object detection and classification problem of deep learn-
ing, with promising results [57]. Most of the studies are 
focused on left hand and wrist radiographs, with very 
few papers dealing with MRI, CT, and ultrasound. Radio-
graphs in fact are faster, and radiation exposure is rela-
tively low and considered safe [58]. In the history of bone 
age assessment, the first radiography-based automated 
techniques were introduced without the support of AI 
algorithms, such as HANDX system [59] and computer-
based skeletal aging scoring system (CASAS) [60] intro-
duced in 1989 and 1994, respectively. More recently, with 
the advancements of AI, many studies were conducted 
on AI-based bone age assessment solutions. BoneXpert 
(2008) is an automatic AI system which is widely used 
in Europe [17]. It uses feature extraction techniques and 
calculates bone age by analyzing the left-hand radiograph 
based on 13 bones, with improvement of time efficiency 
in daily clinical practice. Similarly, VUNO Med-BoneAge 
[18] and HH-boneage.io solution [61] are respectively 
semi-automatic and fully automatic AI systems to assess 
bone age on hand radiographs. MediAI-BA solution ana-
lyzes seven epiphysis-metaphysis growth regions [62].

Although different AI methods exist, the assessment of 
bone age in different ethnicities still represent a limit in 
most cases. In fact, different populations show different 
rates of skeletal maturation [63]. Therefore, most AI bone 
age assessment methods, particularly those based on 
Greulich-Pyle method, might be inaccurate with popula-
tion of different ethnicity [57]. In addition, patients with 
congenital or acquired bone abnormalities or with previ-
ous surgery still necessitate manual assessment.

In conclusion, AI in bone age assessment is a useful 
tool that can assist radiologists, reducing workload and 
inter- and intra-observer variability. AI-assisted inter-
pretation of bone age can also improve accuracy among 
junior readers [64]. However, multi-center and multi-
national clinical trials are warranted to overcome the lim-
itations of currently available AI methods.
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Osteoarthritis
AI research studies have been mainly focused on classi-
fication and prediction tasks in osteoarthritis [65]. Auto-
mated classification tasks may be highly beneficial to 
perform quantitative or semiquantitative analysis, which 
are essential to clinical routine but time-consuming for 
radiologists and subject to interobserver variability. How-
ever, the main challenge lies in creating individualized 
prediction models for osteoarthritis progression or devel-
opment. Particularly, treatment plans may be targeted to 
the needs of individual patients prior to irreversible mor-
phologic joint degeneration, including lifestyle changes 
(such as weight loss) at a timeframe during which disease 
progression may still be reversible [65].

These prediction models are multifactorial, and AI 
may help combining clinical risk factors for osteoarthri-
tis with imaging biomarkers. The workflow for building 
AI models includes several steps. First, the clinical prob-
lem must be defined, including the definition of predic-
tors (such as imaging biomarkers and clinical risk factors) 
and outcomes. Second, data are extracted and prepared 
for AI analysis, including dataset partition into training 
and test cohorts for model tuning and testing, respec-
tively, as well as dimensionality reduction and class bal-
ancing in the training cohort to reduce the number of 
predictors and compensate for unbalanced datasets, 
respectively. Third, model training and hyperparameter 
optimization are performed to obtain AI models which 
predict the associations between predictor variables and 
outcomes. Finally, model performance is evaluated on the 
test cohort, which can be either internal if a single data-
set is split into training and test cohorts or independent if 
two separate datasets are available for analysis. The latter 
approach is preferred as it improves the generalizability 
of the model [65].

In research studies dealing with osteoarthritis, AI-
based classifications and predictions have been per-
formed using deep learning, conventional machine 
learning, or ensemble machine learning approaches. 
Deep learning has been employed to analyze imaging 
data not only for binary classifications but also for quan-
titative or semiquantitative grading. Particularly, radio-
graph-based convolutional neural networks were used to 
automatically determine knee osteoarthritis grade with 
the Kellgren-Lawrence system, achieving an AUC of 0.93 
[19]. On MRI, an automated method for cartilage lesion 
detection using convolutional neural networks showed 
sensitivity and specificity of 84% and 85%, respectively 
[20]. Conventional machine learning models have been 
built upon preidentified imaging data and demographics 
to predict future development or progression of osteoar-
thritis. For instance, radiographic and pain progression of 
knee osteoarthritis could be predicted with high accuracy 

(AUC of 0.86 and 0.95, respectively) when clustering 
subjects based on radiographic and pain progressive 
abnormalities and then using clinical variables to build 
machine learning models for predicting the probabilities 
of belonging to each cluster [66]. Finally, ensemble mod-
els incorporating both deep learning and conventional 
machine learning approaches based on imaging data have 
been employed for prediction purposes. Particularly, 
convolutional neural networks were used to evaluate the 
probability of knee osteoarthritis progression according 
to the Kellgren-Lawrence grade on radiographs [21]. In 
the same study, prognosis estimation was improved by 
combining deep learning prediction with clinical infor-
mation using a gradient boosting machine, resulting in an 
AUC of 0.79 [21].

In conclusion, AI may potentially aid radiologists in 
identifying and grading abnormal findings of osteoarthri-
tis more quickly and efficiently, also resulting in higher 
reproducibility. Additionally, by integrating clinical and 
imaging data, AI may help radiologists to predict the 
onset of osteoarthritis and its progression, thus enabling 
the implementation of preventive treatment strategies at 
early stages of the disease and resulting in decreased dis-
ability [65].

Bone and soft‑tissue tumors
Computer-aided diagnosis of bone tumors has been 
of interest for more than 50 years [67]. The first studies 
described a probabilistic approach based on patients’ 
demographics and imaging findings [67]. Recently, 
research studies have shifted away from radiologists 
entering imaging findings into computers, and towards 
direct presentation of medical images to AI models. The 
use of AI has been investigated for several applications 
in musculoskeletal tumor imaging, including primary or 
metastatic bone and soft-tissue lesions, although it is still 
at research stage [68]. Particularly, while skeletal metasta-
ses are relatively common, bone and soft-tissue sarcomas 
or primary malignant tumors are rare and highly het-
erogeneous, thus representing a challenge for AI model 
development.

Unsurprisingly, a recent systematic review focused 
on AI applied to musculoskeletal oncology showed that 
machine learning papers rapidly increased over the years 
[68]. Conventional machine learning and deep learn-
ing accounted for 77% and 23% of the included stud-
ies, respectively [68]. The bulk of conventional machine 
learning papers was related to radiomics applied to CT 
and MRI [68]. Nowadays, attention is focused on AI and 
radiomics as emerging tools to noninvasively provide 
information regarding diagnosis and outcome [69, 70].

Radiomics refers to the extraction and analysis of 
quantitative features from medical images, known 
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as radiomic features, which may be used to support 
decision-making algorithms [71]. In musculoskeletal 
oncology, most AI-based radiomic studies focused on 
prediction of diagnosis—such as benign versus malig-
nant tumor discrimination [72] or tumor grading 
[73]—and outcome—such as therapy response [27, 74], 
recurrence [28, 75], and survival [29]. In particular, sev-
eral diagnosis-related studies dealt with benign versus 
malignant (or intermediate, like atypical cartilaginous 
or lipomatous tumors) discrimination and grading in 
skeletal cartilaginous tumors [23–25, 76], lipomatous 

soft-tissue tumors [77, 78] and soft-tissue sarcomas 
[26]. Most outcome-related studies dealt with therapy 
response, recurrence, or survival prediction in osteosar-
coma [27–29] and soft-tissue sarcomas [30].

Radiomics involves a series of discrete steps, from 
image collection and segmentation to radiomic feature 
extraction and selection and, finally, classification model 
development, as summarized in Fig.  2. First, collected 
images are segmented using manual, semiautomated, or 
automated methods. In most studies, segmentation was 
manually performed by expert radiologists/clinicians or 

Fig. 2 Example of machine learning radiomic workflow. A machine learning classifier can be employed to perform classification tasks based 
on radiomic features. Reproduced from: Fanciullo C et al. [69] [open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY)]
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trainees under experts’ supervision [79]. Although the 
influence of interobserver variability on image segmen-
tation can be evaluated as part of every radiomic work-
flow [80], semiautomated and automated approaches 
would ideally achieve higher reliability than manual seg-
mentation. Second, several first-order, shape, and tex-
ture features are extracted and possibly combined with 
clinical information. Next, as most radiomic features are 
redundant and not informative [81], radiomic features 
are selected to create datasets which can be later mined. 
Finally, machine learning is used to perform classifica-
tion tasks. Ideally, machine learning models are trained 
and validated using cross-validation on training datasets 
and then tested on independent datasets from different 
institutions. A clinical validation of the models against 
completely independent datasets is highly desirable to 
achieve clinical transferability. However, this independ-
ent or external validation is lacking in most radiomic 
studies dealing with musculoskeletal tumors [79], thus 
hampering generalizability of results. As musculoskeletal 
tumors are relatively rare entities, in particular sarco-
mas, free public repositories such as The Cancer Imag-
ing Archive (https:// www. cance rimag ingar chive. net) may 
grant opportunities for research groups around the world 
to access data from different institutions and validate 
their models against independent datasets.

Deep learning can perform superior classification tasks 
compared to conventional machine learning. Particu-
larly, deep learning models consist of neural network 
architectures which enable automated feature extrac-
tion (instead of manual extraction as in conventional 
machine learning), thus improving the efficiency of image 
analysis and providing assistance for nonexpert users 
[82]. However, deep learning models need to be trained 
using larger sets of labeled data compared to conven-
tional machine learning, which is why their application 
to uncommon musculoskeletal tumors is still limited. 
First, images are preprocessed to obtain suitable quality 
annotated data and then split into training, validation, 
and test datasets with appropriate proportions. Second, 
the model is trained on the training dataset. Third, the 
model performance is evaluated on the test dataset [82]. 
In musculoskeletal oncology, most imaging-based deep 
learning models were developed using radiographs, CT, 
and MRI for diagnosis-related tasks, such as tumor clas-
sification—benign versus malignant discrimination [22, 
83] or grading [84]—and segmentation [85]. In particu-
lar, deep learning showed similar and better accuracy 
compared to musculoskeletal fellowship-trained radiolo-
gists and radiology residents, respectively, in classifying 
primary bone tumors on radiographs [22]. In another 
study dealing with MRI of bone lesions, deep learning 
could differentiate benign from malignant tumors on 

a par with experts [83]. Deep learning was also used in 
combination with radiomics, for instance to differentiate 
lung from non-lung spine bone metastases on dynamic 
contrast-enhanced MRI [86] or benign from malignant 
sacral tumors on CT [87]. In addition to studies dealing 
with classification of lesions, deep learning was applied to 
musculoskeletal tumors like osteosarcoma for automated 
segmentation purposes [85]. Finally, a very few stud-
ies applied deep learning to musculoskeletal tumors for 
outcome-related tasks, such as recurrence prediction in 
giant cell tumor of the bone after curettage based on pre-
operative MRI [88]. Overall, although promising results 
have been published, insufficient training data prevent 
most deep learning models from being implemented into 
clinical practice.

In conclusion, radiologists are asked to play a key role 
in moving AI—including both conventional machine 
learning and deep learning methods—and radiomics of 
bone and soft-tissue tumors from theory to clinical prac-
tice. The main limitations of current research studies, 
such as the relatively low number of patients and the lack 
of external/independent validation, need to be addressed 
in future investigations. Public repositories and institu-
tional infrastructures for multi-center collaboration may 
allow to overcome these limitations and accelerate the 
process of clinical implementation.

Orthopedic implants and implant‑related 
complication
Musculoskeletal radiologists routinely evaluate ortho-
pedic implants for appropriate positioning and potential 
complications. With the increasing number of orthope-
dic implant surgeries being performed [89], AI-aided 
postoperative image analysis has the potential to reduce 
workload, minimize fatigue-related errors, increase 
speed, and improve efficiency.

A theoretical AI pipeline for implant evaluation may 
include several steps, from body part identification to 
implant assessment [90], as follows.

First, the body part of interest, laterality and radio-
graphic views are identified. Deep learning showed up to 
100% accuracy in classifying anatomic region based on 
musculoskeletal radiographs [91]. Similarly, deep learn-
ing algorithms had almost perfect accuracy in determin-
ing laterality on radiographs [92] as well as radiograph 
position [93].

Second, the orthopedic implant is identified. Deep 
learning models demonstrated the ability to detect the 
presence of implants with up to 100% accuracy, including 
knee [32] and shoulder [33] arthroplasties, spinal hard-
ware [31], and fracture fixation devices [93].

Third, the orthopedic implant is characterized into 
design types and models. The task of design typing 

https://www.cancerimagingarchive.net
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includes differentiating between anatomic types of ortho-
pedic implants. Particularly, deep learning models were 
developed to differentiate total from unicompartmen-
tal knee arthroplasty [32] as well as total from reverse 
total shoulder arthroplasty [33]. The task of identifying 
specific implant models is less relevant for post-opera-
tive radiological evaluation but crucial for revision sur-
gery planning, as implant-specific tool kits are required. 
Orthopedic surgeons often spend time and efforts to 
identify implant models before revision surgery, for 
instance using orthopedic implant atlases of post-oper-
ative radiographs, with the risk of failure and potential 
negative impacts on outcome. A recent systematic review 
reported good to excellent performance of deep learning 
in classifying orthopedic implant models on radiographs 
[94], and one study demonstrated better performance of 
deep learning compared to non-deep learning AI algo-
rithms [95].

Fourth, the orthopedic implant position is evaluated. 
Deep learning algorithms could measure inclination and 
version of the acetabular component after total hip arthro-
plasty, and little difference in measurements was found 
between human reader and AI [34]. Other orthopedic 
measurements such as lumbar lordosis [96] and lower limb 
length [97] could be obtained from radiographs automati-
cally using AI, while saving time compared to manual cal-
culations. Additionally, some AI algorithms for implant 
position assessment are already incorporated into com-
mercially available orthopedic software [98].

Fifth, implant-related complications are identified. An 
important consideration is the relative rarity of complica-
tions after orthopedic implant surgery, which is (luckily) 
observed in clinical practice and results in unbalanced 
classes, thus limiting AI analysis. Deep learning models 
achieved 70% accuracy in detecting loosening after total 
knee or total hip arthroplasty on radiographs, which was 
improved when combining imaging and clinical infor-
mation [35]. AI may potentially help predicting other 
implant-related complications, such as periprosthetic 
fractures, dislocation, periprosthetic infection, and com-
ponent wear, which would be beyond human perception. 
AI-aided prediction of post-operative complications is in 
its early stage of development, and, given their tremen-
dous implications for surgical outcome, it deserves future 
investigation.

Further research is also needed to compare AI alone 
and as an adjunct with human experts in evaluating 
orthopedic implants [99].

Conclusion and future perspectives
This narrative review provided an overview of AI clini-
cal applications in musculoskeletal imaging. Most studies 
evaluated the performance of AI algorithms compared to 

expert radiologists. Experts usually have very high accu-
racies, but many years of training and experience are 
required to achieve expert-level [100].

Thus, studies emulating real-life practice settings, includ-
ing readers with different levels of expertise, are needed to 
fully understand the added value of AI in musculoskeletal 
diseases and bridge the gap between research and clinical 
application. It is important to mention that some AI tech-
nologies in musculoskeletal radiology are already commer-
cially available, such as algorithms for fracture detection, 
bone age estimation, and osteoarthritis quantification [101].

As the number of AI products continues to increase, it 
will be crucial for radiologists to play a role in the selec-
tion and application of these technologies. Hence, rather 
than replacing radiologists, the use of AI may instead 
help them to optimize workflow, augment diagnostic per-
formance, and keep up with ever-increasing workload. 
This also entails that legal liability is ultimately assigned 
to a human authority, namely the radiologist, who should 
take the responsibility [102].
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