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Abstract 

Objective This study aimed to develop and evaluate an automatic model using artificial intelligence (AI) for quan-
tifying vascular involvement and classifying tumor resectability stage in patients with pancreatic ductal adenocarci-
noma (PDAC), primarily to support radiologists in referral centers. Resectability of PDAC is determined by the degree 
of vascular involvement on computed tomography scans (CTs), which is associated with considerable inter-observer 
variability.

Methods We developed a semisupervised machine learning segmentation model to segment the PDAC and sur-
rounding vasculature using 613 CTs of 467 patients with pancreatic tumors and 50 control patients. After segment-
ing the relevant structures, our model quantifies vascular involvement by measuring the degree of the vessel wall 
that is in contact with the tumor using AI-segmented CTs. Based on these measurements, the model classifies 
the resectability stage using the Dutch Pancreatic Cancer Group criteria as either resectable, borderline resectable, 
or locally advanced (LA).

Results We evaluated the performance of the model using a test set containing 60 CTs from 60 patients, consist-
ing of 20 resectable, 20 borderline resectable, and 20 locally advanced cases, by comparing the automated analysis 
obtained from the model to expert visual vascular involvement assessments. The model concurred with the radiolo-
gists on 227/300 (76%) vessels for determining vascular involvement. The model’s resectability classification agreed 
with the radiologists on 17/20 (85%) resectable, 16/20 (80%) for borderline resectable, and 15/20 (75%) for locally 
advanced cases.

Conclusions This study demonstrates that an AI model may allow automatic quantification of vascular involvement 
and classification of resectability for PDAC.

Relevance statement This AI model enables automated vascular involvement quantification and resectability classi-
fication for pancreatic cancer, aiding radiologists in treatment decisions, and potentially improving patient outcomes.
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Key points 

• High inter-observer variability exists in determining vascular involvement and resectability for PDAC.

• Artificial intelligence accurately quantifies vascular involvement and classifies resectability for PDAC.

• Artificial intelligence can aid radiologists by automating vascular involvement and resectability assessments.

Keywords Artificial intelligence, Carcinoma (pancreatic ductal), Pancreatic neoplasms, Tomography (x-ray computed), 
Unsupervised machine learning

Graphical Abstract

Background
Pancreatic ductal adenocarcinoma (PDAC) has a poor 
5-year survival rate of less than 8% [1]. Surgical tumor 
removal combined with systemic therapy gives the best 
chances for long-term survival. The possibility of surgi-
cally removing a PDAC tumor depends on the extent of 
its involvement with several central blood vessels. Cur-
rently, radiologists use contrast-enhanced computed 
tomography scans (CTs) to determine the degree of 
vascular involvement. This assessment is subjective and 
prone to significant inter-observer variability, originating 
from difficulties in distinguishing PDAC from surround-
ing non-neoplastic tissue, including vessels and inflam-
matory infiltrates, especially for hypo-dense tumors [2, 
3]. This variability can lead to suboptimal patient selec-
tion for surgery or studies and evaluation of outcomes, 
especially in referral centers with staff less experienced 

in PDAC assessment [2]. Artificial intelligence (AI) tech-
niques may help address these issues and improve the 
variability of resectability assessments by aiding radiolo-
gists with an initial assessment.

Previous research on AI-based analysis of vascular 
involvement in PDAC has derived radiomic features to 
classify tumor resectability or evaluate contact between 
a particular vessel (such as the superior mesenteric 
artery [4], portal vein and superior mesenteric vein [5], 
superior mesenteric vein [6]) and the primary tumor [7]. 
However, these methods require manual segmentation 
of the tumor and surrounding vasculature, making them 
resource-intensive and impractical for clinical use. Addi-
tionally, since these models rely on hundreds of hand-
crafted radiomic features, the final decision of the model 
and its decision-making process is difficult to inter-
pret, reproduce, and align with the current radiological 



Page 3 of 10Bereska et al. European Radiology Experimental            (2024) 8:18  

workflow. Importantly, locally advanced PDAC (LAPC), 
i.e., PDAC with extensive vascular involvement deem-
ing it unresectable, has not been included in previous 
computational approaches determining vascular involve-
ment. Moreover, despite the increasing prevalence, no 
studies investigated patients treated with pre-operative 
systemic therapy. To address the limitations of these pre-
vious approaches, an automated and interpretable quan-
titative assessment of vascular involvement in patients 
with PDAC is needed. Deep learning techniques may 
meet this need.

In this study, we introduce an automatic UNet segmen-
tation model for quantitatively assessing vascular involve-
ment on CT. Our objectives are twofold: first to quantify 
vessel involvement in AI-generated segmentations of vas-
culature and tumor and second to leverage this quanti-
fication to determine PDAC resectability. Deep learning 
techniques are particularly suitable for this task due to 
their proficiency in handling complex patterns and large 
datasets, thereby potentially improving the reproducibil-
ity and efficiency of radiological assessments for vascular 
involvement and PDAC resectability.

Methods
The Medical Ethics Review Committee of the Amster-
dam UMC approved this study protocol and waived the 
need for informed consent. All patients were managed 
per institutional practices.

Datasets
We used four datasets for this retrospective study con-
taining 563 CTs of 467 patients with resectable, border-
line resectable, and locally advanced PDAC, as well as 
CTs of control patients. The dataset characteristics are 
described in Table 1. The PREOPANC set is the Amster-
dam UMC subset of the PREOPANC trials, randomized 
controlled trials performed by the Dutch Pancreatic 
Cancer Group (DPCG) [8, 9]. The LAPC set is a subset 
of patients from the DPCG LAPC registration [10]. The 
CONTROL set is a set of patients who received CTs prior 

to transcatheter aortic valve implantation and presented 
without pancreatic abnormalities. The primary purpose 
of the CONTROL set was to increase the volume of 
training data that depicts the entire pancreatic anatomy. 
By training the model on a more extensive and diverse set 
of pancreatic scans, we aimed to better capture the vari-
abilities that naturally occur in the organ, thus enhancing 
the model’s accuracy and generalizability specifically for 
PDAC assessment. The MSKCC set is a publicly available 
dataset collected by the Memorial Sloan Kettering Can-
cer Center [11]. We selected late arterial phase CT scans 
(CT-LAPs) from patients in the PREOPANC, LAPC, and 
CONTROL datasets due to increased tumor visibility in 
this phase. Patients in these datasets received an intra-
venous injection of iodinated contrast agent (Xenetix®, 
300 mg/mL, Guerbet, France, V08AB11). For patients in 
the MSKCC dataset, we used the portal-venous phase CT 

Table 1 Characteristics for all datasets

Characteristic PREOPANC dataset LAPC dataset CONTROL dataset MSKCC dataset

Number of scans 232 50 50 281

Number of patients 136 50 50 281

Timeframe 2013–2020 2019–2021 2013–2017 Not available

CT phase Late arterial phase Late arterial phase Late arterial phase Portal venous phase

Pancreatic abnormalities Resectable and bor-
derline resectable 
PDAC

Locally advanced PDAC No pancreatic abnormalities PDAC, intraductal mucinous neoplasms, 
pancreatic neuroendocrine tumors

Medical center Amsterdam UMC Amsterdam UMC Amsterdam UMC Memorial Sloan Kettering Cancer Center

Table 2 Patient demographics for the PREOPANC and LAPC 
datasets

dev, deviation; R0, radical resection; R1, non-radical resection; FOLFIRINOX, 
bolus and infusional 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin; 
Gemcitabine, 2′-deoxy-2′,2′-difluorocytidine monohydrochloride (β isomer)

Characteristic PREOPANC dataset
N = 232

LAPC dataset
N = 50

Sex, n (%), female, male 57 (42), 79 (58) 76 (50.7), 74 (49.3)

Median age at diagnosis, years 66.1 64.4

Median tumor size, cm (dev) 3.02 (1.0) 4.3 (1.63)

Tumor location, n (%)

 Head 87 (68.5) 61 (48.8)

 Uncinate 15 (11.8) 23 (18.4)

 Body 11 (8.7) 29 (23.2)

 Tail 14 (11) 12 (9.6)

Resection margin, n (%), R0, 
R1

65 (47.8), 33 (24.3) 13 (8.6), 7 (4.6)

Neoadjuvant therapy, n (%)

 None 35 (26.7) 125 (83.7)

 FOLFIRINOX 32 (24.4) 25 (16.3)

 Gemcitabine + radiation 64 (48.9) 0 (0)
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scans (CT-PVP), as this was the only available phase. The 
demographics and PDAC characteristics for the PREO-
PANC and LAPC datasets are presented in Table 2. Gen-
eral informed consent was obtained from all patients in 
the PREOPANC, LAPC, and CONTROL. Table 3 details 
the reconstruction and acquisition parameters used to 
obtain the CTs from all four datasets.

Data preparation
Seven trained observers independently manually seg-
mented anatomical structures in 105 CT-LAPs of 50 
patients with (borderline) resectable PDAC (PREOPANC 
dataset), five patients with LAPC (LAPC dataset), and 
50 control patients (CONTROL dataset) using 3D slicer 
version 4.11.20210226 [12]. The observers segmented 
the primary PDAC tumors and all five relevant vessels 
for determining PDAC resectability: celiac trunk (CeTr), 
hepatic artery (HA), portal vein (PV), superior mesen-
teric artery (SMA), and superior mesenteric vein (SMV) 
[12]. Including surrounding abdominal structures has 
been shown to increase model performance; therefore, 
they also segmented the pancreas, duodenum, liver, gall-
bladder, bile duct (and, if present, bile duct stents), aorta, 
splenic artery, splenic vein, and inferior vena cava [13]. 
The PDAC tumors were segmented by one of a team of 
three abdominal radiologists (C.Y.N., 27  years’ experi-
ence; F.S., 3  years’ experience; and M.P.M.K., 6  years’ 
experience) subspecialized in PDAC at the Amsterdam 
UMC. Subsequently, one of the three abdominal radi-
ologists independently assessed the degree of vascular 
involvement by the tumor for the five relevant vessels. 
After the PDAC tumor was segmented, the remaining 
structures were segmented by one Ph.D. researcher (J.B.) 
and three Master researchers under the supervision of a 

radiology resident (I.V.) who also checked and, if needed, 
corrected the segmentations. Detailed information on 
the segmentation techniques used in 3D Slicer is pro-
vided in the Supplemental material.

Model implementation
The overall workflow of our model consists of three auto-
mated steps: (1) segmenting the PDAC and vessels; (2) 
quantifying vascular involvement for CeTr, HA, SMA, 
SMV, and PV; and (3) classifying resectability.

Segmenting PDAC and vessels
We used a self-learning-based segmentation model for 
the PDAC and vessel segmentation; see Fig. 2 for a sche-
matic representation. Self-learning is a two-stage learn-
ing paradigm in which a so-called teacher segmentation 
model is first trained on a small number of manually seg-
mented training data. Subsequently, this teacher segmen-
tation model is used to generate segmentations of the 
PDAC and vessels for the remaining training data. These 
segmentations are then used to train the student segmen-
tation model. This student segmentation model consti-
tutes the final segmentation model. This setup assumes 
that a student segmentation model trained on weak and 
noisy segmentations created by the teacher segmentation 
model can eventually surpass the teacher segmentation 
model’s performance by leveraging the additional data 
available for training [14]. In this manner, training with 
a self-learning paradigm can reduce the required manual 
segmentations and increase the segmentation model’s 
robustness and generalizability.

We trained the teacher segmentation model using 105 
CT-LAPs of 50 patients with (borderline) resectable 
PDAC (PREOPANC dataset), five CT-LAPs of patients 

Table 3 Reconstruction and acquisition parameters used to obtain the CTs

Parameter PREOPANC dataset
N = 232

LAPC dataset
N = 50

CONTROL dataset
N = 50

MSKCC dataset
N = 281

Pitch/table speed 0.6–0.938/15.64–61.4 mm 0.5–1.356/19.2–185 mm 0.914–1.9/134.3–437.6 mm 0.98–1.375/39.37–27.5 mm

x-ray tube current 50–484 mA 50–479 mA 77–2,551 mA 220–380 mA

kVp 100–120 kVp 80–120 kVp 70–120 kVp 120 kVp

Tube rotation speed 0.5–0.6 ms 0.4–0.5 ms 0.4 ms 0.7–0.8 ms

Slice thickness 1.0–5.0 mm 0.625–5.0 mm 1.0–3.0 mm 2.5 mm

Width × height 512–1,189
 × 
512–1,228

512–1,043
 × 
512–1,067

512
 × 
512

512
 × 
512

Machine manufacturer 
and type

SIEMENS: SOMATOM Force/
Definition AS + /Edge/Flash,
Aquilion ONE, iCT 256, 
Sensation64, Brilliance64
GE Healthcare: Light-
Speed16, BrightSpeed
Philips: Optima CT660

SIEMENS: SOMATOM Force/
Definition AS + /Definition 
Edge, Aquilion ONE, iCT 256, 
Biograph64, Brilliance40/64,
Philips: Ingenuity Core, 
Optima CT660

SIEMENS: SOMATOM Force/
Definition AS + , iCT 256, 
Brilliance64

GE Healthcare
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with LAPC (LAPC dataset), and 50 CT-LAPs of control 
patients (CONTROL dataset) with manual segmenta-
tions of the PDAC tumor, CeTr, HA, SMA, PV, SMV, 
pancreas, duodenum, liver, gallbladder, bile duct (and, 
if present, bile duct stents), aorta, splenic artery, splenic 
vein, and inferior vena cava. Subsequently, we used the 

teacher segmentation model to segment the remaining 
dataset of 508 CTs of controls and patients with PDAC. 
We then trained the student segmentation model using 
the resulting 508 AI-segmented scans generated by the 
teacher segmentation model and the 105 manually seg-
mented scans. Lastly, we used the student segmentation 

Fig. 1 Example of a manual segmentation of anatomical structures within a late-arterial phase computed tomography scan. Turquoise = PDAC 
tumor; red = arteries (aorta, celiac trunk, hepatic artery, splenic artery, and superior mesenteric artery); dark blue = veins (inferior vena cava, portal 
vein, splenic vein, and superior mesenteric vein); pink = pancreas; yellow = duodenum; green = liver; orange = gallbladder. PDAC, Pancreatic ductal 
adenocarcinoma

Fig. 2 The proposed learning framework for PDAC, abdominal organ, and vasculature segmentation on contrast-enhanced CT scans. The teacher 
segmentation model was trained with 55 manually segmented CT-LAPs of patients with (borderline) resectable and locally advanced PDAC and 50 
manually segmented CT-LAPs of control patients. The teacher segmentation model segments the remaining 458 CT-LAPs and CT-PVPs, which 
together with the 105 manually segmented CT-LAPs, were used to train the student segmentation model. The student segmentation model 
produced the final segmentations needed to determine vascular involvement and local tumor resectability. CT, Computed tomography; CT-LAP, 
Late arterial phase CT scan; CT-PVP, Portal venous phase CT scan; PDAC, Pancreatic ductal adenocarcinoma
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model to segment the structures in the test dataset con-
taining 60 randomly selected CT-LAPs from 60 patients 
from the PREOPANC and LAPC datasets that were not 
used to train the teacher segmentation model.

We selected a nnUNet network setup consisting of a 
two-stage 3D U-Net cascade for both the student and the 
teacher segmentation model [15, 16]. The first U-Net was 
trained on down-sampled images and generated low-res-
olution segmentations, which serve as an auxiliary input 
for training the full-resolution U-Net. We used fivefold 
cross-validation with 1,000 steps per fold to train both 
the low-resolution and full-resolution U-Net. We trained 
all models on an NVIDIA A100 GPU, requiring approxi-
mately one day per fold. Figure 1 depicts an example of 
segmented CT-LAP from the training data. Figure 2 illus-
trates the training sets used for the teacher and student 
segmentation model.

Quantifying vascular involvement
To quantify the degree of involvement of a specific vessel 
by the PDAC tumor using the AI-generated 3D segmen-
tations, we evaluated all x, y, and z planes containing both 
the vessel and PDAC. For each vessel, we determined the 
circumference of the vessel segment as well as the length 
of its connection with the PDAC tumor on every plane. 
The degree of involvement for each plane is defined as 
the following:

where V is the circumference of the vessel segment and 
TV is the length of its connection with the PDAC tumor. 
We finally selected the maximum degree of involvement 
over all planes for each vessel. The model quantified the 
degree of vascular involvement as a continuous variable 
with values ranging from 0 to 360.

Determining resectability stage
We followed the national guidelines provided by the 
Dutch Pancreatic Cancer Group (DPCG) in the defini-
tion of PDAC resectability [17]. The DPCG proposes 
four categories: resectable, borderline resectable, locally 
advanced, and metastasized PDAC. Metastasized PDAC 
is considered locally advanced regardless of vascular 
involvement. Patients with metastasized PDAC were 
excluded from this study as, in these cases, vascular 
involvement is not relevant to determine resectability. 
Additional file 1: Table S1 outlines the DPCG definitions 
for the remaining three categories. With these guide-
lines and the degrees of involvement obtained by the 
vessel involvement quantification measure, our model 
classifies tumors as resectable, borderline resectable, or 

TV /(TV + (TV − V ))× 360

locally advanced PDAC based on the measured degree of 
involvement.

Performance assessment and statistical analysis
We compared the model’s assessment of vascular 
involvement with the assessment provided by one of 
three radiologists (C.Y.N., F.S., and M.P.M.K.). The radi-
ologists’ categorized the degree of vascular involvement 
using five groups: 0, 0–90, 90–180, 180–270, and 270–
360°. To align our model’s continuous output (ranging 
from 0 to 360°) with these categories, we transformed its 
assessments into the same categorical format. We then 
employed “agreement” as the primary metric for evalu-
ating model performance, which signifies the number of 
vessels where the model’s categorization concurred with 
the radiologists.

For a more comprehensive understanding, we provided 
a visual representation of the distribution of vascular 
involvement assessed by the model per group. We fur-
ther conducted a one-way analysis of variance (ANOVA) 
test to determine if there is a statistically significant dif-
ference between two or more of the groups with regard 
to the quantification provided by the model. A p-value of 
less than 0.05 was considered statistically significant.

We used agreement as a metric to evaluate the mod-
el’s performance for classifying resectability. Agreement 
measures the number of cases in which the model and 
the radiologist reached the same conclusion.

Results
Patient characteristics
The test set contained 60 CT-LAPs from 60 patients 
with resectable (20 CT-LAPs), borderline resectable (20 
CT-LAPs), and locally advanced PDAC (20 CT-LAPs) 
of the PREOPANC and LAPC datasets. The test set 
comprised 28 females (47%) and 32 males (53%) with a 
median tumor diameter of 3.0 cm (standard deviation of 
1.7 cm). Additional file 1: Table S2 details the distribution 

Table 4 Median assessment of vascular involvement by the 
model for each group assessed by the radiologist

IQR, Interquartile range; Q1, Median of the lower half of the data; Q3, Median of 
the upper half of the data

Radiologist’s assessment 
of vascular involvement

Model’s median 
assessment of vascular 
involvement

IQR (Q1–Q3)

0 0 0 (0–0)

0–90 49 123 (0–43)

90–180 134 128 (40–167)

180–270 202 39 (179–218)

270–360 239 202 (104–307)
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of vascular involvement in the test set for each of the five 
vessels considered.

Quantifying vascular involvement
Our model demonstrated an overall agreement of 
227/300 (76%) with the radiologist in quantifying vascu-
lar involvement from AI-generated CT segmentations in 
the 300 vessels of the 60 patients of the test set. When 
examining specific vessel types, the model achieved an 
agreement of 156/180 (87%) for arteries and 71/120 (59%) 
for veins. The vessel involvement quantified by the model 
increased with increasing involvement assessment by the 
radiologist. Specifically, the model’s median assessments 
for each group closely matched the expected values given 

the radiologists’ assessments. This relationship between 
the model’s assessment and the radiologist’s assessment 
of vascular involvement is described in Table  4. These 
results are further illustrated in Fig.  3. The one-way 
ANOVA revealed that there was a statistically significant 
difference in the degree of involvement between at least 
two groups (p =  10−35 <  < 0.05).

Figure  4 gives an example of an AI-segmented scan 
with the PDAC tumor and an SMA and the model’s vas-
cular involvement assessment, along with the manually 
segmented scan and vascular involvement assessment 
provided by the radiologist.

Fig. 3 AI assessment of vascular involvement compared to radiologist’s assessment. The median is shown by the line that divides the box into two 
parts. The box represents the middle 50% of scores for that group. The upper and lower whiskers represent scores outside the middle 50%. Outliers 
with a score below or above 1.5 times the upper quartile are represented by the diamond mark

Fig. 4 Example of a manually and an artificial intelligence (AI)-segmented computed tomography late arterial phase scan with the PDAC 
and superior mesenteric artery. Green = PDAC tumor; red = superior mesenteric artery. Using the AI-generated segmentation, our model quantifies 
the vascular involvement of the superior mesenteric artery by the PDAC tumor at 89°, which is in line with the radiologist’s assessment (0–90°). 
PDAC, Pancreatic ductal adenocarcinoma
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Classifying resectability
Our model obtained an overall agreement of 48/60 (80%) 
with the radiologist in classifying resectability. Our model 
classified resectable PDAC with an agreement of 17/20 
(85%). For borderline resectable and locally advanced 
PDAC, similar scores of 16/20 (80%) and 15/20 (75%), 
respectively, were achieved. Figure  5 illustrates model 
performance by showing how often the model correctly 
classified resectability compared to the radiologist.

Discussion
This is the first study to present a fully automated AI-
based model for segmenting PDAC, quantifying vas-
cular involvement, and determining resectability. The 
model achieved good agreement with the radiologists 
for assessing vascular involvement. Specifically, the mean 
value of vascular involvement, as measured by the model, 
demonstrated a strong relationship with the assessment 
provided by the radiologist. Additionally, the model clas-
sified tumor resectability with a strong agreement with 
the radiologist. These findings suggest that the proposed 
model has the potential to provide reliable and consist-
ent measurements of vascular involvement and tumor 
resectability in PDAC patients.

Three previous studies have described models for clas-
sifying vascular involvement in patients with PDAC. 
While our model is capable of assessing vascular involve-
ment for all five relevant vessels, previous studies have 
only examined single vessel segments (e.g., SMA [4], 
SMV-PV [5], SMV [6]). Importantly, unlike our model, 

these earlier studies have been limited to detecting the 
presence or absence of tumor-vessel contact without 
quantifying the extent of vascular involvement. However, 
simply detecting tumor-vessel contact is insufficient for 
determining PDAC resectability, which limits the clinical 
relevance of these methods. Additionally, previous stud-
ies have only included patients with (borderline) resect-
able PDAC, whereas especially locally advanced PDAC is 
most challenging in daily clinical practice. Furthermore, 
these previous studies have often restricted the location 
of the tumors included in their analysis (e.g., excluding 
tumors in the tail [4], including only tumors in the head 
[6], or head and uncinate process [5]). Our study con-
sidered PDAC tumors regardless of location, resectabil-
ity, and preoperative systemic therapy. The size of our 
training set (613 CTs) is significantly larger than the data 
sets used in the previous four studies, which included 
107 CTs [7], 194 CTs [4], 181 CTs [6], and 146 CTs [5]. 
Another key difference between this and previous studies 
is the reliance of these previous methods on manual seg-
mentations to extract radiomic features. Besides manual 
segmentations being labor-intensive and prone to inter-
observer variability, radiomic features are also more dif-
ficult to interpret than degree quantification, especially 
since degree quantification is part of the currently estab-
lished radiological workflow and the primary determi-
nant for tumor resectability. Quantification of degrees of 
vascular involvement is easier to interpret than radiomic 
features, especially given that any method trained on 
radiomic features for determining PDAC resectability is 
tied to the specific resection guidelines used for the train-
ing cases and becomes invalid if these guidelines change. 
In this case, the entire model would need to be retrained 
to adapt to the new guidelines, including the reevaluation 
of all training cases. In contrast, our model can easily be 
adapted to fit any resection guideline by simply changing 
the rules during the second step of our model and does 
not require any reevaluation of training cases.

There are several limitations to consider when inter-
preting our research. First, the ground-truth labels pro-
vided by the radiologist are labeled in categories (e.g., 
0–90°), which can complicate comparison with the pre-
cise calculations provided by our model. Second, radi-
ologists will also consider additional anatomical factors, 
such as stenosis and occlusion of the vessel (part of the 
NCCN PDAC resectability guidelines [18]), which are 
currently not (yet) included in our model. Both steno-
sis and occlusion of a vessel should result in an auto-
matic assessment of 360-degree involvement, even if 
the tumor-vessel contact appears to be less when ana-
lyzed geometrically using a CT scan. Third, we utilized 
resectability assessments from one of three radiologists 
as the ground truth, rather than a consensus among 

Fig. 5 Agreement of our model with radiologist’s judgment 
for classifying tumor resectability. RE, Resectable pancreatic ductal 
adenocarcinoma (PDAC); BR, Borderline resectable PDAC; LA, Locally 
advanced PDAC
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all three, which could introduce a level of subjectivity 
and potential bias in our findings. This approach may 
limit the generalizability and robustness of our results, 
as it does not account for inter-rater variability. Fourth, 
the method we used to quantify tumor-vessel contact 
relies on the vessel’s circumference rather than follow-
ing a centerline approach, which can result in inac-
curate results in cases of vascular deformation. Fifth, 
while our model performed well for arterial involve-
ment, it performed worse for venous involvement. 
Upon further investigation, we discovered that the per-
formance discrepancy was due to the quality of our AI 
segmentations. Specifically, our teacher segmentation 
model, which was only trained on CT-LAPs, demon-
strated poorer performance on venous segmentations 
(SMV and PV) than arterial segmentations (CeTr, HA, 
SMA). In some cases, our teacher segmentation model 
failed to accurately identify the SMV, particularly in the 
tumor’s proximity, resulting in reduced accuracy for 
quantifying the tumor-vessel relationship. The main 
strength of our study is that the assessment of vascu-
lar involvement and tumor resectability is automatic 
and explainable, as it follows the existing radiological 
workflow, which can facilitate the integration of the 
model into routine clinical practice. Future research 
should incorporate CT-PVPs in their segmentation 
models to facilitate more accurate venous segmenta-
tions and, subsequently, improved assessment of vein-
tumor interactions. Additionally, incorporating more 
cases of locally advanced PDAC during the training of 
the teacher segmentation model could also improve 
SMV segmentations, given the critical role of these 
veins in locally advanced PDAC and their tendency to 
be poorly visible, particularly in the arterial phase due 
to decreased blood flow. Furthermore, future work 
should incorporate stenosis and occlusion detection as 
additional factors for evaluating vascular involvement 
and adopt a more complex centerline approach for the 
geometric analysis of tumor-vessel contact. In addition, 
developing pathology-validated ground truth labels 
for vascular involvement, particularly in distinguish-
ing fibrosis from tumor tissue, would be valuable for 
future research. Similarly, it is paramount for clinical 
implementation to evaluate the model against multiple 
raters, as this would provide a more rigorous and com-
prehensive measure of the system’s accuracy and reli-
ability. Finally, a prospective study is needed to validate 
the performance of our model.

In conclusion, we developed a fully automatic AI-
based model for segmenting PDAC tumors and sur-
rounding vasculature, quantifying vascular involvement, 
and classifying resectability. Our results suggest that our 

model may allow automatic quantification of vascular 
involvement and classification of resectability for PDAC.
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