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Abstract 

Background We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, 
speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical 
bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI).

Methods SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nomi-
nal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens 
were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) 
as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM). Specimens were 
also scanned using microcomputed tomography (μCT) at 9-μm isometric voxel size to measure bone mineral density 
(BMD), porosity, and pore size. The elastic modulus (E) of each specimen was measured using a 4-point bending test.

Results α demonstrated significant positive Spearman correlations with E (R = 0.69) and BMD (R = 0.44) while show-
ing significant negative correlations with porosity (R = -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD (R = -0.67), 
and PWPD (R = -0.45).

Conclusions The negative correlation between α and T2-MM is likely indicating the relationship between QUS 
and collagen matrix organization. The higher correlations of α with BWPD than with PWPD may indicate that water 
organized in finer structure (bound to matrix) provides lower acoustic impedance than water in larger pores, which 
is yet to be investigated thoroughly.

Relevance statement This study highlights the importance of future investigations exploring the relationship between QUS 
measures and all major components of the bone, including the collagenous matrix and water. Investigating the full potential 
of QUS and its validation facilitates a more affordable and accessible tool for bone health monitoring in clinics.

Key points 

• Ultrasound attenuation demonstrated significant positive correlations with bone mechanics and mineral density.

• Ultrasound attenuation demonstrated significant negative correlations with porosity and bone water contents.

• This study highlights the importance of future investigations exploring the relationship between QUS measures 
and all major components of the bone.
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Background
Cortical bone plays an integral role in bone resistance to 
fracture [1, 2]. Therefore, an accurate evaluation of corti-
cal bone in critical sites, such as the proximal femur, may 
improve diagnosis and treatment monitoring in patients 
with primary or secondary osteoporosis. Cortical bone is 
mainly comprised of a mineral matrix (~40% by volume), 
an organic matrix (~30%), water (~20%), and fat (< 5%) 
[3, 4]. In healthy bone, most of the water is bound to the 
organic and mineral matrices, called “bound water” (BW) 
[5–11]. A smaller portion of bone water, called “pore 
water” (PW), resides in different pores such as Haversian 
canals (10–200 μm), lacunae (1–10 μm), and canaliculi 
(0.1–1 μm) [3, 5].

Bone mineral density (BMD), as measured by dual-
energy x-ray absorptiometry (DXA) at the spine or hip, 
is the standard clinical measure to diagnose osteoporo-
sis and estimate bone fracture risk [12–15]. Despite the 
widespread use of BMD in clinics, a diagnosis of osteo-
porosis (based on DXA T-score of -2.5 or less) often fails 
to predict fracture risk accurately [16–23]. Notably, the 
DXA-based BMD measurement cannot detect accurate 

local changes in bone structure due to its two-dimen-
sional nature. Notably, the recently developed trabecu-
lar bone score [24] and bone strain index [25] provide 
a localized bone assessment by employing textural and 
morphological processing of the DXA images; however, 
they cannot detect three-dimensional bone changes. 
Moreover, all x-ray-based bone assessment techniques 
focus on the mineral component of the bone while miss-
ing the other critical components, such as collagenous 
matrix and water.

Magnetic resonance imaging (MRI) has been increas-
ingly used for cortical bone assessment [26–28], first 
to avoid exposure to ionizing radiation associated with 
x-ray-based techniques and second to provide an oppor-
tunity for simultaneous evaluation of the surround-
ing soft tissues [29]. Notably, clinical MRI is not able to 
detect a considerable signal from cortical bone due to its 
short apparent transverse relaxation time (T2* ≈ 0.4 ms). 
However, ultrashort echo time (UTE) MRI can image 
cortical bone, consequently enabling quantitative assess-
ment of cortical bone [11, 26–28, 30–34]. Typically, UTE 
MRI techniques can acquire the bone signal in less than 
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50 μs after radiofrequency excitation and before a sig-
nificant decay in transverse magnetization. Quantitative 
UTE MRI has been reported to evaluate water contents 
(i.e., PW, BW, and total water [TW]) and macromo-
lecular proton fraction (MMF) in cortical bone using a 
combination of basic UTE, inversion recovery UTE, and 
magnetization transfer UTE (UTE-MT) modeling [34, 
35]. Nevertheless, UTE-MRI-based evaluation of bone 
is underutilized partly due to the high cost and time 
demands of MRI in general.

Quantitative ultrasound (QUS) techniques have also 
been developed to assess cortical bone, motivated by the 
need to provide portable, easily accessible, and affordable 
techniques for osteoporosis assessment without exposure 
to ionizing radiation [36, 37]. QUS-based parameters for 
bone assessment have been mainly focused on estimat-
ing the ultrasound (US) wave velocity (or speed of sound 
[SoS]), US attenuation, normalized US attenuation over 
frequency ranges, and US backscatter [38]. Such meas-
urements can be performed through US pulse-echo [39, 
40], transverse transmission [41], or axial transmission 
[42, 43] techniques targeting different skeletal sites such 
as the finger, spine, hip, femur, tibia, and heel [37, 39–49]. 
The main perspective of these studies has been the search 
for a QUS measure with a significant correlation with 
BMD [37, 42, 43, 45, 47, 50].

Most of the reported QUS studies missed exploring the 
relationship with other major components of the cortical 
bone, such as water and macromolecular contents that 
comprise up to 60% of the bone volume [3, 4, 51, 52].

The goal of this study was to investigate the relation-
ship of two widely used QUS measures, SoS and attenu-
ation coefficient (α), with water and macromolecular 
contents of bovine cortical bone strips as measured with 
UTE-MRI-based methods. We also aimed to explore cor-
relations of SoS and α with microstructural and mechani-
cal properties of bone strips.

Methods
Sample preparation
Four fresh bovine femoral midshafts were obtained, and 
the central portions of the shafts were cut into 40-mm 
segments using a commercial band saw (B16, Butcher 
Boy, TN, USA). In total, 36 rectangular bone strips were 
excised from the bone shafts using a low-speed diamond 
saw (Isomet 1000, Buehler, IL, USA). The final dimen-
sions of the rectangular bone strips were approximately 
6 × 3 × 40 mm. The 3-mm dimension of the specimens 
was in the radial direction of the original femoral shafts. 
Bone strips were immersed in phosphate-buffered saline 
for one hour at room temperature before each scanning 
process described in the following sections.

Quantitative ultrasound
A single-element US transducer (ULTRAN, State College, 
PA, USA) with a 2.3-MHz center frequency (5 MHz nomi-
nal center frequency, half bandwidth of 1.4–4.1 MHz) was 
used to measure SoS and α coefficients along the ~3 mm 
thickness of the bone strips. A commercial pulser/amplifier 
(model 5052PR, Panametrics, MA, USA) was used to trig-
ger the transducer pulses, connected to the transducer by a 
waterproof BNC (Bayonet Neill–Concelman) to microdot 
wire (BCM-74-6W, Olympus, Center Valley, PA, USA). A 
commercial digital oscilloscope (model TBS1202B, Tektro-
nix, CA, USA) was used to record the received pulse.

The specimens were kept hydrated by the operator 
using a dropper filled with phosphate-buffered saline 
during the five-minute QUS assessment. Each specimen 
was evaluated three times, and the average results were 
used for the correlational investigation. Figure 1a shows 
the experimental setup for the QUS measurement where 
bone specimens were placed on top of the transducer, 
and the wet surface provided a consistent acoustic cou-
pling. As depicted in the scheme in Fig.  1b, the trigger 
pulse by the piezoelectric element (A0 amplitude) trans-
mits through the polyethylene buffer rod, and reflected 
echoes are received from the bone-buffer interface (A1 
amplitude) and bone-air interface (A2 amplitude). A rep-
resentative received pulse echo series in the time domain 
is illustrated in Fig.  1c, where the amplitude of the first 
two echoes and the time of flight (TOF) differences are 
labeled as A1, A2, and Δt, respectively.

Equations  1 and 2 were used to measure SoS and α 
coefficients, respectively, where R refers to the reflection 
ratio in the bone-buffer interface. Details of the equation 
derivations are provided by Lees et al. [53]. d represents 
specimen thickness, measured using microcomputed 
tomography (μCT), as described below:

UTE‑MRI protocol
For MRI scans, specimens were placed in a plastic con-
tainer filled with perfluoropolyether (Fomblin, Ausimont, 
NJ, USA) to minimize dehydration and susceptibility arti-
facts. The UTE-MRI scans were performed on a 3-T clin-
ical scanner (MR750, General Electric Healthcare, WI, 
USA) using a single channel transmit/receive birdcage 
coil (BC-10, Mayo Clinic, MN, USA).

(1)SoS [km/s] =
2d

�t

(2)
R =

A1
A0

α [dB/mm] = 20×
log (1−R)2× A0

A2

2d
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Absolute water proton density measurements (TWPD, 
BWPD, and PWPD) in bone strips were performed 
through signal comparison between bone and a reference 
rubber phantom of known proton density (equivalent to 
22 mol/L H1, T2 ≈ 1.5 ms, T1 ≈ 250 ms). The required 
equations to calculate the proton densities are given in 
previous studies [11, 54]. The following imaging protocol 
was performed to estimate water proton densities:

• A proton-density (PD)-weighted 3D UTE sequence 
(repetition time [TR] 100 ms, echo time [TE] 0.032 
ms, and flip angle [FA] 10°) for TWPD measurement

• A 3D inversion-recovery UTE sequence (TR 150 ms, 
TI 64 ms, TE 0.032 ms, and FA 20°) with a T1 BW of 
135 ms for BWPD measurement [55]

PWPD was calculated by subtracting BWPD from 
TWPD.

For evaluation of macromolecular properties, a set of 
3D UTE-MT sequences was performed with three differ-
ent saturation pulse powers (400°, 600°, and 800°) at five 
different frequency offsets (2, 5, 10, 20, 50 kHz) (TR 100 
ms, FA 7°). For UTE-MT modeling, the acquired data 
with the set of MT saturation pulse powers were fitted 
by a modified rectangular pulse approximation approach, 
previously described [56–58]. A Gaussian lineshape 
function was used to model the macromolecular proton 
spectrum and the loss of the longitudinal magnetization 
of the macromolecular pool [57]. Macromolecular frac-
tion (MMF) and T2 (T2-MM) were the main two out-
comes of the UTE-MT modeling. As a prerequisite for 
UTE-MT modeling, T1 measurement was performed 

using a UTE-based actual FA imaging-variable TR (UTE-
AFI-VTR) sequence (AFI: TE 0.032 ms, TRs 20 ms and 
100 ms; VTR: TE 0.032 ms, TRs 20, 40, 100, and 150 ms, 
FA 45°) [59]. T1 was measured based on a single-compo-
nent exponential fitting (S(TR) ∝ 1 − exp(−TR/T1) + con-
stant) of the acquired data [59]. The MT ratio (MTR) was 
defined as  (MTOFF -  MTON)/MTOFF in percentage.

Microcomputed tomography (μCT)
Bone strips were scanned using a μCT scanner (Skyscan 
1076, Skyscan, Kontich, Belgium) at 9-μm isotropic voxel 
size. Specimens were scanned in the presence of two 
hydroxyapatite phantoms (0.25 and 0.5 g/cm3) for meas-
uring BMD. Other scanning parameters were 100 kVp 
voltage, 100 mA current, 0.3° rotation step, and 5-frame 
averaging. A 0.05-mm aluminum and a 0.038-mm copper 
filter were used.

The μCT image segmentation was performed by gray-
level thresholding. The gray level threshold was selected 
for each set of μCT data using the gray level histograms 
and visual investigation of the bone-pore interface in raw 
μCT images. Specimen thickness, width, and microstruc-
tural properties of each bone strip were calculated in a 
stack of slices covering 6 mm of the middle section of the 
strips’ length, corresponding to three MRI slices and the 
region placed on the US transducer.

Bone porosity was estimated as the ratio of the number 
of voxels in pores to the total number of voxels included 
in each bone strip. Pore size was also calculated as the 
diameter of the largest covering sphere within the pores 
[31]. Local BMD at each voxel was calculated using a lin-
ear function of the voxel’s gray level, which is determined 

Fig. 1 a Experimental setup for QUS measurement using a single-element transducer at a nominal 5-MHz center frequency (2.3 MHz actual 
center frequency). Bone specimens were placed on top of the transducer, and the wet surface provided an adequate acoustic coupling. b 
Schematics of the generated trigger pulse by the piezoelectric element (A0 amplitude) transmitting through the buffer and echoes reflected 
from the bone-buffer interface (A1 amplitude) and bone-air interface (A2 amplitude). Bone thickness and width are referred to as d and w, 
respectively. c A representative received an echo series in the time domain. The time of flight difference is referred to as Δt 
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based on the obtained gray levels of the two known BMD 
phantoms. Average pore size and BMD were calculated 
for each bone strip over the abovementioned 6-mm 
sections.

Mechanical properties measurement
The dynamic tensile elastic modulus of each bone strip 
was measured using a 4-point bending setup [60]. The 
experimental setup is illustrated in Fig. 2a, which consists 
of four tungsten carbide pins (3-mm diameter) mounted 
on two aluminum holders. The upper holder was con-
nected to the hydraulic actuator of a mechanical testing 
machine (model 8511.20, Instron, MA, USA). The lower 
aluminum holder was connected to a 4500-N load cell 
(model 41, Sensotec, OH, USA). Each bone strip was 
positioned on the lower pins. The contact between the 
loading pins and the bone strip was achieved by manu-
ally lowering the actuator. The dynamic mechanical test 
was performed below the yielding point according to 
the authors’ experience at 10 Hz using a sinusoidal func-
tion with a maximum strain of 0.5% for 5 s (Fig. 2b). The 
maximum measured force and displacement averaged for 
the 50 loading cycles (5 s at 10 Hz) were used to calculate 
the maximum stress (σ) and strain (ε) on the beam’s sur-
face based on American Society for Testing and Materials 
standards. Young’s modulus of elasticity (E) was defined 
as the slope of the linear section of the stress-strain curve 
schematically demonstrated in Fig. 2c [60].

Statistical analyses
The Kolmogorov-Smirnov test was used to examine the 
normality of the variable distributions. Since the vari-
ables were not normally distributed, Spearman’s rank 
correlations were calculated between the QUS, UTE-
MRI, microstructural parameters (BMD, porosity, pore 
size), and Young’s modulus. Correlations with p-values 

below 0.05 were considered significant. Holm-Bonfer-
roni method was used to correct the significance level 
for multiple comparisons. All measurements and mod-
els were performed using MATLAB (version 2021, The 
Mathworks Inc., MA, USA) codes developed in-house.

Results
Figure 3a shows the examined 36 bone strips and the rub-
ber phantoms placed into a plastic container filled with 
Fomblin. Figure 3b, c shows the UTE-MRI and inversion-
recovery UTE MRI images of the specimens in the axial 
plane, respectively, showing the 6 × 3 mm cross-sectional 
area of the specimens. The μCT images of the specimens 
are shown in Fig. 3d.

The median, interquartile, and total ranges of QUS, 
mechanics, μCT, and UTE-MRI measures of the bone 
strips are presented in Table  1. Spearman correlations 
of QUS-based measures (SoS and α) with mechanical 
(E), microstructural, and UTE-MRI-based measures are 
presented in Table 2. α demonstrated significant positive 
correlations with E (R = 0.69) and BMD (R = 0.44) while 
showing significant negative correlations with porosity (R 
= -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD 
(R = -0.67), and PWPD (R = -0.45). SoS did not show sig-
nificant correlations with any of the measures.

Table  3 presents Spearman correlations of UTE-MRI-
based measures with E, BMD, porosity, and pore size. E 
significantly correlated with TWPD, BWPD, and PWPD. 
BMD showed significant correlations with T1, TWPD, 
and PWPD. Porosity significantly correlated with T1, 
MMF, TWPD, PWPD, MTR-800, and MTR-600. Pore 
size significantly correlated with TWPD.

The scatter plots and the linear trendlines of the α 
versus E, BMD, porosity, T2-MM, TWPD, BWPD, 
and PWPD are illustrated in Fig.  4, with significant 
correlations.

Fig. 2 a Prepared bone strips mounted on the fabricated four-point bending jigs (aluminum holders and tungsten carbide pins) mounted 
on an Instron 8511.20 machine. The experiments were displacement-controlled at 10 Hz using a sinusoidal function with a maximum strain 
of 0.5% for 5 s. b Schematics stress-time curve shown for three loading cycles. c Schematics stress-strain curve which only the linear portion of it 
was acquired in this study for calculating Young’s modulus (E)
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Discussion
This study is the first to investigate the correlations of 
QUS measures with cortical bone water and macromo-
lecular contents (estimated with UTE-MRI techniques) 
and with mechanical and microstructural parameters. 
The attenuation coefficient α demonstrated significant 
positive correlations with E and BMD while showing 
significant negative correlations with porosity, T2-MM, 
TWPD, BWPD, and PWPD. Remarkably, elastic modulus 
E showed higher correlations with α than with UTE-MRI 
measures. That is likely due to the mechanical nature 
of the US waves incorporated in the QUS assessment. 
Moreover, α correlations with BMD and porosity corre-
lations were lower than correlations with water contents 
estimated by UTE-MRI.

The negative significant correlation between α and 
T2-MM is likely indicating the relationship between 
QUS and collagen matrix organization. Specifically, the 
mechanical properties of the bone collagenous matrix 
may add a source of US attenuation [61]. A shorter trans-
verse relaxation time can be hypothesized to represent 
a higher order of organization of the fibers and a denser 
collagenous matrix. The significant negative α/PWPD 
and α/TWPD correlations agree with the positive cor-
relations of α with BMD as more water is expected in 
regions with lower BMD in bone. Higher α correlations 
with BWPD than PWPD may indicate that water organ-
ized in finer structure (bound to matrix) provides lower 
acoustic impedance than water in larger pores. However, 
such conclusions require comprehensive investigations 
using ground truth histology, scanning electron micro-
scope, and biochemical evaluations of bone specimens. 
Nevertheless, this study highlights the importance of 
future investigations exploring the relationship between 
QUS measures and all major components of the bone, 
particularly the collagenous matrix and water distributed 
as BW and PW.

The calculated attenuation coefficients in this study were 
in the range of the previously reported values employing 
transducers with nominal 5-MHz center frequencies [50, 
53, 62]. The correlation between the attenuation coeffi-
cient and BMD in cortical bone has not been reported in 
the literature to the authors’ knowledge. In this study, we 
were not able to measure the frequency-dependent atten-
uation coefficient (slope of α against frequency, normal-
ized broadband ultrasound attenuation [nBUA]). While 
nBUA is a commonly investigated QUS measure corre-
lated with BMD in the literature, it is mostly examined 
in trabecular bones. The nBUA measurement often takes 
place using the US transverse transmission technique by 
comparing the received US signal with a reference phan-
tom. The correlation between nBUA and BMD has been 
reported for bovine bone cortical bone in the radial direc-
tion using the US transverse transmission technique (R 
= -0.75) [50]. Such correlations were lower in axial and 
tangential directions (R = -0.62 and -0.66, respectively) 
[50]. Remarkably, correlations between nBUA and BMD 
in the literature were negative in cortical bone [50] while 
positive in trabecular bone [38, 50, 63]. Such controver-
sial patterns were described due to the range of the BMD, 
such that for high BMD values in cortical bone and some 
trabecular bone specimens, the nBUA/BMD correlation 
may become negative [45, 50, 64].

SoS did not show significant correlations with 
mechanical, μCT- and MRI-based results in the current 
study. This was likely due to a very limited range of SoS 
in our specimens [2.70–3.40 km/s] as a result of simi-
larly dense bone strips, which makes it difficult to draw 
any correlations. Our SoS measures were in the range of 
previously reported values between 3.0 and 4.5 km/s in 
cortical bone, depending on the experiment direction 
(radial, axial, or tangential) [45, 65–68]. On the other 
hand, the pulse-echo TOF method used in the current 
study is sensitive to specimen positioning, which might 
cause undesired experimental variations. Moreover, 

Fig. 3 a Bone specimens (n = 36) placed in a plastic container filled with Fomblin. Ultrashort echo time magnetic resonance imaging (UTE MRI) (b) 
and inversion recovery UTE MRI (IR-UTE MRI) c images of the specimens in the axial plane (6 × 3 mm cross sections). d Microcomputed tomography 
(μCT) of the same cortical bone strips performed in two separate packages



Page 7 of 13Jerban et al. European Radiology Experimental            (2024) 8:21  

Ta
bl

e 
1 

M
ed

ia
n,

 in
te

rq
ua

rt
ile

, a
nd

 to
ta

l r
an

ge
s 

of
 Q

U
S,

 m
ec

ha
ni

cs
, μ

C
T,

 a
nd

 U
TE

-M
RI

 m
ea

su
re

s 
of

 th
e 

bo
ne

 s
tr

ip
s

α 
A

tt
en

ua
tio

n 
co

effi
ci

en
t, 

BM
D

 B
on

e 
m

in
er

al
 d

en
si

ty
, B

W
PD

 B
ou

nd
 w

at
er

 p
ro

to
n 

de
ns

ity
, E

 E
la

st
ic

 m
od

ul
us

, μ
CT

 M
ic

ro
co

m
pu

te
d 

to
m

og
ra

ph
y,

 M
M

F 
M

ac
ro

m
ol

ec
ul

ar
 fr

ac
tio

n,
 M

RI
 M

ag
ne

tic
 re

so
na

nc
e 

im
ag

in
g,

 M
TR

 
M

ag
ne

tiz
at

io
n 

tr
an

sf
er

 ra
tio

 (M
TR

-8
00

, M
TR

-6
00

, a
nd

 M
TR

-4
00

 re
fe

r t
o 

M
TR

 a
t 2

KH
z 

fo
r 8

00
°, 

60
0°

, a
nd

 4
00

° p
ul

se
 p

ow
er

 le
ve

l),
 P

W
PD

 P
or

e 
w

at
er

 p
ro

to
n 

de
ns

ity
, Q

U
S 

Q
ua

nt
ita

tiv
e 

ul
tr

as
ou

nd
, S

oS
 S

pe
ed

 o
f s

ou
nd

, T
2-

M
M

 
M

ac
ro

m
ol

ec
ul

ar
 T

2,
 T

W
PD

 To
ta

l w
at

er
 p

ro
to

n 
de

ns
ity

, U
TE

 U
ltr

as
ho

rt
 e

ch
o 

tim
e

Q
U

S
M

ec
ha

ni
cs

μC
T

U
TE

‑M
RI

So
S 

(k
m

/s
)

α 
(d

b/
m

m
)

E 
(G

Pa
)

BM
D

 (g
/

cm
3 )

Po
ro

si
ty

 
(%

)
Po

re
 s

iz
e 

(μ
m

)
T1

 (m
s)

M
M

F 
(%

)
T2

‑M
M

 
(μ

s)
TW

PD
 

(m
ol

/L
)

BW
PD

 
(m

ol
/L

)
PW

PD
 

(m
ol

/L
)

M
TR

‑8
00

 
(%

)
M

TR
‑6

00
 

(%
)

M
TR

‑4
00

 
(%

)

3.
20

 ±
 0

.2
0 

[2
.7

0–
3.

40
]

7.
30

 ±
 3

.9
5 

[0
.7

0–
12

.4
0]

18
.8

 ±
 2

.4
 

[1
5.

1–
23

.7
]

1.
30

 ±
 0

.1
4 

[1
.1

0–
1.

46
]

3.
5 

±
 4

.3
 

[0
.5

–1
3.

2]
71

 ±
 4

3 
[4

3–
14

7]
25

8 
±

 1
0 

[2
42

–2
76

]
34

.8
 ±

 4
.2

 
[2

9.
2–

38
.5

]
11

.3
 ±

 0
.3

 
[1

0.
9–

11
.8

]
11

.2
 ±

 1
.0

 
[1

0.
0–

14
.6

]
6.

4 
±

 0
.8

5 
[5

.4
–7

.4
]

4.
8 

±
 0

.8
 

[4
.2

–8
.0

]
42

.7
 ±

 2
.5

 
[3

8.
2–

44
.4

]
31

.3
±

1.
6 

[2
7.

6–
32

.5
]

17
.1

±
1.

2 
[1

4.
8–

18
.1

]



Page 8 of 13Jerban et al. European Radiology Experimental            (2024) 8:21 

Ta
bl

e 
2 

Sp
ea

rm
an

 c
or

re
la

tio
n 

co
effi

ci
en

ts
 o

f Q
U

S-
ba

se
d 

m
ea

su
re

s 
w

ith
 m

ec
ha

ni
ca

l, 
m

ic
ro

st
ru

ct
ur

al
, a

nd
 U

TE
-M

RI
-b

as
ed

 p
ro

pe
rt

ie
s 

of
 th

e 
co

rt
ic

al
 b

on
e 

st
rip

s

α 
A

tt
en

ua
tio

n 
co

effi
ci

en
t, 

BM
D

 B
on

e 
m

in
er

al
 d

en
si

ty
, B

W
PD

 B
ou

nd
 w

at
er

 p
ro

to
n 

de
ns

ity
, E

 E
la

st
ic

 m
od

ul
us

, μ
CT

 M
ic

ro
co

m
pu

te
d 

to
m

og
ra

ph
y,

 M
M

F 
M

ac
ro

m
ol

ec
ul

ar
 fr

ac
tio

n,
 M

RI
 M

ag
ne

tic
 re

so
na

nc
e 

im
ag

in
g,

 M
TR

 
M

ag
ne

tiz
at

io
n 

tr
an

sf
er

 ra
tio

 (M
TR

-8
00

, M
TR

-6
00

, a
nd

 M
TR

-4
00

 re
fe

r t
o 

M
TR

 a
t 2

 k
H

z 
fo

r 8
00

°, 
60

0°
, a

nd
 4

00
° p

ul
se

 p
ow

er
 le

ve
l),

 P
W

PD
 P

or
e 

w
at

er
 p

ro
to

n 
de

ns
ity

, Q
U

S 
Q

ua
nt

ita
tiv

e 
ul

tr
as

ou
nd

, S
oS

 S
pe

ed
 o

f s
ou

nd
, T

2-
M

M
 

M
ac

ro
m

ol
ec

ul
ar

 T
2,

 T
W

PD
 To

ta
l w

at
er

 p
ro

to
n 

de
ns

ity
, U

TE
 U

ltr
as

ho
rt

 e
ch

o 
tim

e

E
BM

D
Po

ro
si

ty
Po

re
 s

iz
e

T1
M

M
F

T2
‑M

M
TW

PD
BW

PD
PW

PD
M

TR
‑8

00
M

TR
‑6

00
M

TR
‑4

00

So
S

0.
01

 (p
 =

 0
.9

89
)

0.
23

 (p
 =

 0
.1

77
)

-0
.1

8 
(p

 =
 0

.2
95

)
0.

23
 (p

 =
 0

.1
90

)
0.

07
 (p

 =
 0

.6
71

)
-0

.1
9 

(p
 =

 0
.2

78
)

-0
.2

3 
(p

 =
 0

.1
93

)
-0

.1
4 

(p
 =

 0
.4

19
)

-0
.3

4 
(p

 =
 0

.0
46

)
-0

.0
3 

(p
 =

 0
.8

62
)

0.
02

 (p
 =

 0
.9

27
)

0.
09

 (p
 =

 0
.6

02
)

0.
01

 (p
 =

 0
.9

65
)

α
0.

69
 (p

 <
 0

.0
01

)
0.

44
 (p

 =
 0

.0
08

)
-0

.4
1 

(p
 =

 0
.0

10
)

-0
.2

4 
(p

 =
 0

.1
65

)
-0

.0
3 

(p
 =

 0
.8

68
)

0.
20

 (p
 =

 0
.2

58
)

-0
.4

7 
(p

 =
 0

.0
05

)
-0

.6
8 

(p
 <

 0
.0

01
)

-0
.6

7 
(p

 <
 0

.0
01

)
-0

.4
5 

(p
 =

 0
.0

06
)

0.
31

 (p
 =

 0
.0

73
)

0.
28

 (p
 =

 0
.1

09
)

0.
30

 (p
 =

 0
.0

85
)



Page 9 of 13Jerban et al. European Radiology Experimental            (2024) 8:21  

TOF measurement for SoS calculation may suffer from 
low reproducibility where detecting the same peaks in 
the triggered and reflected pulses is difficult.

Notably, previous investigations using US transmis-
sion techniques have reported significant correlations 
between SoS and BMD. For example, Yamato et  al. 
reported a strong correlation between SoS in the axial 
direction of bovine cortical bone and BMD (R = 0.71) 
using the US transverse transmission technique at 10 
MHz [68]. SoS correlation with BMD has been widely 
investigated in trabecular bone assessment, which 
resulted in slightly higher correlations with BMD (R = 
0.66–0.87 in [45, 63]).

The UTE-MRI correlations with mechanical and 
microstructural properties in this study were slightly 
lower than those previously reported on human bone 
specimens [35, 51, 69–71]. This was likely due to the 
higher porosity and BMD ranges in previously investi-
gated human specimens, which reduced the UTE-MRI 
sensitivity to compositional and ultrastructural differ-
ences in the specimens.

The accessibility and affordability of QUS techniques 
are attracting an increasing number of research groups 
to explore the capabilities of such techniques in bone 
assessment [36, 37]. Although different QUS methods 
have been developed and examined in the literature, 
the transverse transmission techniques have received 
more attention, potentially due to their simpler setup, 
and they are currently being translated into clinical 
trials [37, 41, 43, 46, 72]. Nevertheless, despite a few 
decades of research in QUS application for bone assess-
ment, more validation and translational investigation 
are required to introduce such techniques to clinics for 
patient monitoring.

This study had a number of limitations. First, we per-
formed the study on a number of bovine bone speci-
mens with a low dynamic range of parameter values, 
which are likely different from the human bone ranges. 
The age and sex were not recorded, which might affect 
the final results of this study. To enable future in vivo 
studies, similar investigations should be performed on 
human bone specimens with larger sample sizes. Second, 
this study was performed ex vivo on bone specimens of 
unknown age cut from pure cortical bone layers. The 
presence of fat, muscles, and other soft tissues; a higher 
body temperature [33]; and subject motion will all con-
tribute to differences in the performance of all QUS and 
UTE-MRI-based techniques in vivo compared with ex 
vivo studies. Third, exploring the QUS correlations with 
ground truth compositional and ultrastructural evalua-
tions using histology or SEM would be advantageous in 
future studies. This connection would be crucial to pos-
tulate the role of QUS in clinical practice and to define its 
usefulness in evaluating human bone properties. Fourth, 
the QUS method in this study was based on pulse-echo 
and TOF methods that are repeatable, but corrections to 
the measurements might be required [73]. Investigating 
other QUS techniques, particularly the transverse trans-
mission techniques currently translated into clinical trials 
[37, 41, 43, 46, 72], and their relationship with MRI-based 
compositional methods is an appropriate future study 
before promoting any specific QUS technique. Fifth, 
ultrasound generally suffers from lower reproducibility 
compared with other medical imaging modalities, which 
use volumetric acquisition, particularly for vivo applica-
tions. Although QUS methods are developed to improve 
the reproducibility of such measurements, future studies 
should be performed to investigate the reproducibility of 
these techniques in clinical settings.

Table 3 Spearman correlation coefficients of UTE-MRI-based properties with mechanical and microstructural measures of the cortical 
bone strips

BMD Bone mineral density, BWPD Bound water proton density, E Elastic modulus, μCT Microcomputed tomography, MMF Macromolecular fraction, MRI Magnetic 
resonance imaging, MTR Magnetization transfer ratio (MTR-800, MTR-600, and MTR-400 refer to MTR at 2KHz for 800°, 600°, and 400° pulse power level), PWPD Pore 
water proton density, T2-MM Macromolecular T2, TWPD Total water proton density, UTE Ultrashort echo time

E BMD Porosity Pore size

T1 -0.41 (p = 0.014) 0.46 (p = 0.006) 0.63 (p < 0.001) -0.06 (p = 0.774)

MMF 0.31 (p = 0.070) -0.37 (p = 0.026) -0.50 (p = 0.002) 0.31 (p = 0.150)

T2‑MM -0.39 (p = 0.022) 0.32 (p = 0.065) 0.18 (p = 0.287) -0.17 (p = 0.435)

TWPD -0.62 (p < 0.001) 0.59 (p < 0.001) 0.42 (p = 0.013) -0.57 (p = 0.004)
BWPD -0.46 (p = 0.005) 0.39 (p = 0.021) -0.01 (p = 0.962) -0.47 (p = 0.023)

PWPD -0.59 (p < 0.001) 0.61 (p < 0.001) 0.75 (p < 0.001) -0.47 (p = 0.023)

MTR‑800 0.42 (p = 0.013) -0.43 (p = 0.010) -0.56 (p = 0.001) 0.41 (p = 0.054)

MTR‑600 0.40 (p = 0.019) -0.41 (p = 0.013) -0.50 (p = 0.002) 0.42 (p = 0.048)

MTR‑400 0.29 (p = 0.094) -0.30 (p = 0.082) -0.41 (p = 0.015) 0.57 (p = 0.005)
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In conclusion, correlations of QUS measures with 
cortical bone water and macromolecular contents and 
mechanical and microstructural parameters were inves-
tigated. The US attenuation demonstrated significant 
positive correlations with E and BMD while showing 
significant negative correlations with porosity, T2-MM, 
TWPD, BWPD, and PWPD. Remarkably, elastic modu-
lus E showed higher correlations with α than with UTE-
MRI measures. That is likely due to the mechanical 
nature of the US waves incorporated in the QUS assess-
ment. The negative significant correlation between α 
and T2-MM is likely indicating the relationship between 
QUS and collagen matrix organization. This study high-
lights the importance of future investigations exploring 
the relationship between QUS measures and all major 
components of the bone, particularly the collagenous 
matrix and water distributed as BW and PW. This study 
is preliminary to further studies investigating more con-
cretely the possible clinical application of QUS in corti-
cal bone evaluation.

Abbreviations
α  Attenuation coefficient
μCT  Microcomputed tomography
3D  Three-dimensional
BMD  Bone mineral density
BW  Bound water
BWPD  Bound water proton density
DXA  Dual-energy x-ray absorptiometry
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MRI  Magnetic resonance imaging
MT  Magnetization transfer
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Fig. 4 Scatterplots and linear trendlines of the α coefficient versus 
(a) elastic modulus (E), (b) bone mineral density (BMD), (c) porosity, 
(d) total water proton density (TWPD), (e) bound water proton 
density (BWPD), (f) pore water proton density (PWPD), and (g) 
macromolecular T2 (T2-MM). R values are Spearman correlation 
coefficients
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