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Abstract 

Background The growing prevalence of musculoskeletal diseases increases radiologic workload, highlighting 
the need for optimized workflow management and automated metadata classification systems. We developed 
a large-scale, well-characterized dataset of musculoskeletal radiographs and trained deep learning neural networks 
to classify radiographic projection and body side.

Methods In this IRB-approved retrospective single-center study, a dataset of musculoskeletal radiographs from 2011 
to 2019 was retrieved and manually labeled for one of 45 possible radiographic projections and the depicted body 
side. Two classification networks were trained for the respective tasks using the Xception architecture with a custom 
network top and pretrained weights. Performance was evaluated on a hold-out test sample, and gradient-weighted 
class activation mapping (Grad-CAM) heatmaps were computed to visualize the influential image regions for network 
predictions.

Results A total of 13,098 studies comprising 23,663 radiographs were included with a patient-level dataset split, 
resulting in 19,183 training, 2,145 validation, and 2,335 test images. Focusing on paired body regions, training for side 
detection included 16,319 radiographs (13,284 training, 1,443 validation, and 1,592 test images). The models achieved 
an overall accuracy of 0.975 for projection and 0.976 for body-side classification on the respective hold-out test sam-
ple. Errors were primarily observed in projections with seamless anatomical transitions or non-orthograde adjustment 
techniques.

Conclusions The deep learning neural networks demonstrated excellent performance in classifying radiographic 
projection and body side across a wide range of musculoskeletal radiographs. These networks have the potential 
to serve as presorting algorithms, optimizing radiologic workflow and enhancing patient care.

Relevance statement The developed networks excel at classifying musculoskeletal radiographs, providing valuable 
tools for research data extraction, standardized image sorting, and minimizing misclassifications in artificial intelli-
gence systems, ultimately enhancing radiology workflow efficiency and patient care.

Key points 

• A large-scale, well-characterized dataset was developed, covering a broad spectrum of musculoskeletal radiographs.

• Deep learning neural networks achieved high accuracy in classifying radiographic projection and body side.
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• Grad-CAM heatmaps provided insight into network decisions, contributing to their interpretability 
and trustworthiness.

• The trained models can help optimize radiologic workflow and manage large amounts of data.

Keywords Artificial intelligence, Bone and bones, Deep learning, Musculoskeletal diseases, Radiography

Graphical Abstract

Background
Musculoskeletal diseases impose a high burden on 
healthcare systems worldwide. The high prevalence of 
these conditions, combined with the long-term impact 
of chronic pain and disability after acute treatment, not 
only diminishes patient well-being but also places a sub-
stantial financial load on societies [1]. Customized and 
appropriate therapy relies on accurate diagnoses and is 
crucial for the prevention of chronic conditions. Despite 
the increasing number of cross-sectional computed 
tomography and magnetic resonance examinations, con-
ventional radiographs still play an indispensable role in 
the workup of musculoskeletal diseases [2].

Given the rapidly aging population, the prevalence of 
musculoskeletal conditions is on the rise, leading to a 
surge in radiological examinations [1, 3]. Consequently, 
optimizing radiologic workflows becomes paramount, 
paving the way for supporting artificial intelligence (AI) 
systems. Numerous models have been developed for the 

automated identification of pathologies in radiographs, 
including fracture detection [4, 5], osteoarthritis grading 
[6], or skeletal maturity assessment [7, 8].

The performance of automated algorithms in pathol-
ogy detection is significantly enhanced by utilizing larger 
training datasets [9]. While the Digital Imaging and 
Communications in Medicine (DICOM) format offers 
the opportunity to store metadata such as image modal-
ity, projection, or side, this information is often inconsist-
ent or missing altogether [10].

To address these constraints and harness image data 
more effectively, automated metadata classification sys-
tems have been proposed. However, existing algorithms 
primarily focus on classifying body regions [11, 12] or 
differentiating two singular projections [10, 13].

Operating a multi-classification task, these networks 
require a substantial amount of training data. While pub-
licly available musculoskeletal datasets exist for singular 
body regions such as hands [14], knees [15], or upper 
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[16] and lower extremities [17], an open-access dataset 
encompassing a broad spectrum of all relevant musculo-
skeletal projections and body regions is currently lacking.

We therefore sought to create a large-scale, well-char-
acterized musculoskeletal radiograph dataset and utilize 
this training foundation to develop neural networks for 
the automatic classification of radiographic projection 
and body side.

Methods
Dataset
This retrospective, monocentric study was approved 
by the local institutional review board (Ethics Commit-
tee University of Freiburg: EK:570/19). Informed written 
consent was waived due to the retrospective study design 
and patient pseudonymization.

We retrieved all musculoskeletal radiographic stud-
ies performed on adult patients between 2018 and 2019 
from our institution’s Picture Archiving and Communi-
cation System (PACS). To ensure an adequate amount of 
data for each class, radiographs of rarely examined body 
regions were also included from the period of 2011 to 
2017. These additional body regions comprised the nasal 
bone, dens, thoracic spine, clavicle, acromioclavicular 
joint, elbow (radial head), hand, hip, patella, and foot 
(forefoot, calcaneus, toe). Images of particularly poor 
quality (not attributable to a radiographic projection, 
joints destroyed beyond recognition, and incorrectly 
transferred images) were manually marked and excluded 
from the dataset.

As a result, a total of 13,098 studies encompassing 23,663 
radiographs were included, covering a wide range of 

musculoskeletal radiology fields with diverse body regions 
and pathologies as well as radiographs with and without 
orthopedic implants. The project workflow is depicted in 
Fig. 1. Figure 2 illustrates a sample selection of the dataset.

To prevent data leakage between training, validation, 
and test datasets, we only used the first obtained study 
for each patient within the period of 2011–2019. As some 
patient studies consisted of multiple individual radio-
graphic projections, a randomized split was performed at 
the patient level. This resulted in three independent data-
sets, comprising 19,183 training, 2,145 validation, and 
2,335 test images. For side detection, we only included 
images of paired body regions, leaving a total of 16,319 
radiographs and a division into 13,284 training, 1,443 val-
idation, and 1,592 test images.

Data annotation
Annotation for both network tasks was initially per-
formed by a junior resident (first year of training, A.F.), 
followed by a consensus reading of uncertain cases with 
a senior resident (last year of training, H.T.) and a board-
certified radiologist (M.F.R.), employing a local instance 
of the imaging platform Nora [18].

Each x-ray was manually classified according to the 
represented projection, allocating one of 45 possible 
machine-readable text labels, a list of which can be found 
in the supplementary materials (Suppl. 1). Additionally, 
two labels were assigned to indicate the body side (left or 
right) on radiographs of paired body regions only. Later-
ality ground truth was established based on examination 
notes. This manual classification process, involving initial 
labeling by a resident followed by a joint evaluation of 

Fig. 1 Project workflow from dataset composition, annotation, and network training to final evaluation
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indeterminate cases with an experienced and a subspe-
cialized trained radiologist, ensured accurate labeling for 
the subsequent network training.

Table 1 presents an overview of the final dataset for the 
classification of radiographic projection, displaying the 
unbalanced label distribution within the dataset with a 
range from 189 images (toe anterior–posterior [AP]) to 
1,267 images (patella tangential). For body-side classifica-
tion, the dataset was split up into 9,028 images for the left 
and 7,291 images for the right side, utilizing all available 
radiographs despite the uneven distribution of examina-
tions for both sides.

Network training
Based on this large-scale labeled dataset, we trained two 
separate neural networks for the classification of radio-
graphic projection and body side, respectively. Network 
training was conducted on a standard server graphics 
processing unit (GPU, Nvidia Tesla RTX A6000). As a 

deep learning framework, we used the open-source 
Python library TensorFlow 2.6 [19] and its program-
ming interface Keras [20]. The established network 
architecture Xception by Chollet et  al. [21], originally 
designed for the classification of multi-colored images 
with three input channels for the basic colors red, blue, 
and green, acted as Convolutional Neural Network 
base. Leveraging this feature, we utilized the original 
three input channels for each basic color to process our 
augmented training data.

To optimize the network architecture, adjusting for 
the reduced number of classes in comparison to the ini-
tial network configuration, we removed the top layer and 
replaced it with a global average pooling layer, a dropout 
layer to prevent overfitting during training, a dense layer 
with a rectified linear unit activation function to cap-
ture nonlinear dependencies between features and learn 
complex patterns from the data, and a dense layer with 
output neurons adapted to the number of classes. The 

Fig. 2 Exemplary cases of the dataset representing the broad variability of body parts, radiographic projections, and pathologies

Table 1 Overview of every depicted projection in the dataset and its frequency of representation

AP Anterior–posterior, n Number of radiographs in the dataset

Head/spine n Arm n Hand n Leg n Foot n

Nasal bone Lateral 268 AC-joint AP 445 Hand AP 487 Pelvis Pelvis AP 833 Foot AP 864

Hip AP 355 Oblique 771Oblique 454
Lauenstein 349 Lateral 392

Cervical spine AP 367 Shoulder AP 1,132 Wrist AP 404 Whole leg AP 359 Forefoot AP 306

Lateral 395 Axial 658 Lateral 443 Oblique 560
Dens 195 Outlet 977

Thoracic spine AP 659 Clavicle AP 574 Finger AP 333 Knee AP 1,099 Calcaneus Lateral 299

Lateral 1,157Lateral 620 Oblique 946 Lateral 346 Axial 435
Tangential 1,267

Lumbar spine AP 604 Elbow AP 358 Thumb AP 208 Ankle AP 720 Toe AP 189

Lateral 168Lateral 384
Lateral 608 Lateral 208 Lateral 689 Big toe AP 224Radial head 329

Lateral 230
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final output decision was determined using a softmax 
function.

To improve overall network performance and shorten 
training time, we applied pretrained network weights 
using the open-access ImageNet database [22]. For train-
ing input, we rescaled the variably sized radiographs to a 
standard network input size of 256 × 256 pixels. To uti-
lize the three input channels of the Xception network, 
the radiographs were transformed into a three-channel 
image by incorporating a derived inversion and an edge 
enhancement image. This approach can improve network 
performance compared to only using original input radi-
ographs, as shown by Rahman et al. [23]. Edge enhance-
ment was achieved by applying the medianBlur and 
adaptiveThreshold operations. Training data was aug-
mented using lateral flip and rotation up to 10° for pro-
jection training.

To enable body-side detection, the corresponding 
training process did not involve lateral flip.

We trained both networks for a total of 400 epochs 
with 300 steps per epoch and a batch size of 15. The 
initial learning rate started from 0.1 and was gradually 
reduced to 0.005 using a polynomial decay function.

Evaluation metrics
We calculated outcome statistics using the Scikit-Learn 
software library [24]. For statistical analysis, each net-
work output was compared to the manually assigned 
text label, thus determining model accuracy, precision, 
and recall. We additionally calculated the Matthews 
Correlation Coefficient (MCC), which provides a bal-
anced assessment of model accuracy, particularly for 
unbalanced class distributions. Bootstrapping was used 
to calculate 95% confidence intervals, which are pre-
sented in brackets alongside each metric in the results 
section.

To address the potential issue of intransparent net-
work predictions, we employed Gradient-weighted 
Class Activation Mapping (Grad-CAM) [25]. Heat-
maps were computed based on the final convolutional 
layer, providing insight into the specific image regions 
that influenced the network’s classification decision for 
every radiograph in the test dataset.

Code and dataset availability
The model code will be openly accessible as an inter-
active Jupyter notebook on GitHub. This codebase was 
created using Python 3.10.12 and leverages framework 
of TensorFlow 2.13.0, tf-explain 0.3.1, nibabel 4.0.2, cv2 
4.8.0, and numpy 1.23.5. It is openly available under the 
MIT License and can be retrieved from the project’s 
home page, the XraySorterAI Project (https:// github. 
com/ maxru sse/ XrayS orter AI).

The dataset generated in this study will be provided 
upon reasonable request, taking into consideration 
compliance with European data protection regulations 
and laws.

Results
Dataset
The dataset consisted of musculoskeletal radiographs 
with a mean age of 51.6 years (standard deviation 19.8). 
The distribution of files by gender was 56% for males 
and 44% for females.

The x-ray machines used were mainly manufactured 
by Philips Medical Systems (Hamburg, Germany), to a 
lesser extent from Samsung Electronics. The datasets are 
comparable across acquisition technology, x-ray machine 
manufacturer, spatial resolution, and exposure dosage. A 
detailed breakdown of the corresponding metadata can 
be found in the supplementary materials (Suppl. 2–5).

Radiographic projections
The DICOM-headers used in clinical routine did not con-
tain information on the projection in 28.4% of the 2335 
radiographs in the test dataset, emphasizing the neces-
sity of manual labeling for accurate classification within 
this study. Processing all test images using a single-core 
server central processing unit (CPU) and no GPU took 
139 s, resulting in a classification rate of 16 images/s. The 
model achieved an overall accuracy of 0.975 (95% confi-
dence interval 0.968–0.981) on the hold-out test sample. 
Precision measured 0.978 (0.970–0.982), recall 0.973 
(0.969–0.981), and MCC 0.974 (0.967–0.981).

Table 2 displays the radiographic projections in which 
incorrect predictions occurred, along with the corre-
sponding proportion of misclassified radiographs within 
the overall test dataset. The remaining portion of the test 
dataset was correctly classified. Among the projections, 
performance was comparatively lower for the AP view of 
the clavicle (true positive rate of 0.822) and radial head 
(true positive rate of 0.800). For a detailed and compre-
hensive analysis of all network predictions, including true 
and false positives, the complete confusion matrix can be 
found in the supplementary materials (Suppl. 6).

Grad-CAM heatmaps provided visual evidence of the 
image regions that influenced network output decisions. 
Among the misclassified test images, the most common 
errors arose from smooth transitions between different 
projection angles (56%), such as AP and oblique views 
of the clavicle. Challenges also arose from collimation, 
mainly making the choice between AP views of the acro-
mioclavicular joint, shoulder, and clavicle (34%) difficult. 
Metal-dense implant overlay also contributed to classifi-
cation errors in some cases (5%). In 4% of cases, the exact 
reason for misclassification remained unclear.

https://github.com/maxrusse/XraySorterAI
https://github.com/maxrusse/XraySorterAI
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Across all the incorrectly classified test images and 50 
randomly selected correctly classified test images, heat-
maps consistently highlighted that the image regions 
influencing network predictions were central parts of the 
radiograph, such as joint regions or large bone structures.

Figure  3 depicts the heatmaps of two correctly classified 
radiographs of the clavicle. Exemplary heatmaps illustrating 
the regions of influence for misclassified projections are pro-
vided in the supplementary materials (Suppl. 7).

Body side
Processing all 1,592 test images using a single-core CPU 
and no GPU took 48  s, resulting in a classification rate 
of 33 images per second. The model achieved an overall 
accuracy of 0.976 (95% confidence interval 0.969–0.983) 
on the hold-out test sample. Precision measured 0.976 
(0.969–0.983), recall 0.976 (0.969–0.983), and MCC 
0.973 (0.965–0.981).

Grad-CAM heatmaps were also computed for this 
task to illustrate which image regions influenced the 
network’s output decision. Among the misclassified 
test images, the most common errors were observed 

in lateral views of single fingers and knees (18% each), 
followed by AP view of thumb and knee (12% each), lat-
eral view of the foot (9%), and AP view of single fingers 
and toes (6% each). Closer examination of the misclas-
sifications revealed prominent problems arising from a 
projection technique inconsistent with our clinic’s SOP, 
such as inverted radiation beam path or body part posi-
tion (48%), alongside challenges posed by metal-dense 
implants (15%) and unusual pathologies such as foot 
amputation (6%). In 24% of cases, the exact reason for 
misclassification remained unclear, mainly involving 
lateral views of individual fingers.

Across all the incorrectly classified test images and 50 
randomly selected correctly classified test images, the 
heatmaps consistently highlighted that the network’s 
output decision was centered on crucial image areas, 
particularly joint gaps. Notably, none of the heatmaps 
focused on the sometimes visually displayed side labels 
“L” and “R,” as visualized in the sample heatmaps pro-
vided in the supplementary materials (Suppl. 8).

Figure  4 provides two examples of heatmaps repre-
senting correctly classified radiographs, highlighting 

Fig. 3 Input radiographs resized to 256 × 256 pixels with corresponding Grad-CAM overlay of two correctly classified projections demonstrating 
the influential image regions (red overlay). 1a, 1b Clavicle anterior–posterior. 2a, 2b Clavicle oblique

Fig. 4 Input radiographs resized to 256 × 256 pixels with corresponding Grad-CAM overlay of two correctly classified radiographs for the body side 
demonstrating the influential image regions (red overlay). 1a, 1b Right patella. 2a, 2b Left calcaneus
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the influential regions. Supplementary materials con-
tain additional heatmaps showcasing instances of 
incorrect classifications (Suppl. 9).

Discussion
We developed a large-scale, well-characterized dataset of 
musculoskeletal radiographs and trained corresponding 
networks for the classification of radiographic projection 
and body side. The models exhibited excellent and fast 
performance, achieving an accuracy of 0.975 for projection 
and 0.976 for body-side classification. The models’ robust-
ness was further highlighted by their performance on an 
unknown test dataset containing radiographs with various 
underlying pathologies and orthopedic implants. Moreo-
ver, the utilization of Grad-CAM heatmaps provided an 
additional layer of interpretability by visualizing the image 
regions that influenced the model’s output decisions.

In the context of rapidly increasing examination num-
bers, it is crucial to organize and validate both radio-
graphs and their associated metadata, particularly 
considering the prevalent inconsistencies or lack of 
image-related metadata in DICOM-headers. Previous 
studies have emphasized the importance of large labeled 
datasets for neural network training, such as the MURA 
dataset for the upper extremity (40,561 images [16]) and 
the LERA dataset for the lower extremity (93,455 images 
[17]) provided by the Stanford Machine Learning Group. 
The release of both datasets each prompted multiple 
subsequent projects focusing on abnormality detection 
in musculoskeletal radiographs [26–28]. However, these 
datasets primarily focused on presorting body regions, 
assigning labels at study and patient levels, respectively. 
Our dataset stands out for its comprehensive coverage 
of musculoskeletal radiographs, encompassing a broader 
spectrum of images than previously available datasets. 
This breadth allows our models to handle multiclassifica-
tion tasks across a wide range of body regions, with 45 
distinct labels for radiographic projection and additional 
differentiation of body side. The dataset’s high quality 
was further ensured by involving three distinct labelers, 
including a resident and two experienced radiologists, in 
the manual classification process.

Previous studies on sorting networks primarily focused 
on classifying musculoskeletal radiographs based on 
broader body regions [11, 12]. In contrast, our approach 
takes a step further by classifying radiographs based on 
their precise projection and body side. Compared to 
related studies that primarily focused on distinguishing 
two chest x-ray projections [10, 13] or classifying radio-
graphs into 30 categories [29], our models demonstrate 
the ability to classify radiographs across a wide range of 
45 different projections while also incorporating body 

side detection, outperforming the previous research in 
terms of accuracy and scope, respectively.

In our study, projections with unique features, such as 
nasal bone or whole leg AP, achieved excellent classifica-
tion rates. Errors were infrequent and occurred primarily 
in projections such as the AP view of the clavicle (often 
misclassified as clavicle oblique) and the radial head (often 
misclassified as AP elbow). In clinical practice, these pro-
jections are often affected by non-orthograde adjustment 
techniques and show a seamless anatomical transition to 
other views. Similarly, body-side detection errors were 
more prevalent in radiographs of single fingers and toes 
or the tangential view of the patella, where distinguishing 
the body side is subjectively challenging. Nonetheless, our 
models demonstrated success in accurately distinguishing 
even these challenging classes, resulting in overall accura-
cies comparable to previous studies [13].

The incorporation of Grad-CAM heatmaps in our anal-
ysis enhanced the interpretability and transparency of the 
network’s outputs, addressing the inherent “black box” 
nature of neural networks with multiple hidden layers. 
By visualizing the image regions that played a decisive 
role in the output, we showed that the network’s deci-
sions aligned with human viewers’ interpretations. Even 
for the majority of incorrect predictions, we managed to 
make network decisions understandable. The influential 
regions identified by the heatmaps often corresponded to 
clinically relevant areas such as the joint space or promi-
nent bone structures.

Furthermore, our findings demonstrated that the net-
work’s body-side classification was not reliant on the visu-
ally depicted side labels “L” and “R”, as a human viewer 
would interpret. Instead, the classification was primarily 
based on bone structures within the radiographs. It is note-
worthy that the side label was not always a physical opaque 
marker added by the technologist prior to imaging but 
rather often a digital overlay within the PACS, and thus not 
directly encoded in the raw data accessible to the network.

Despite these promising results, our study has limita-
tions. Given the large number of classes in the projection 
training, class balancing was not feasible. Nevertheless, 
the substantial number of radiographs per class allowed 
for an excellent classification accuracy. This finding is 
consistent with previous studies, where increasing data 
volume significantly improved precision and recall, while 
balancing techniques barely showed any improvement [9].

As the study was monocentric and retrospective in 
nature, we did not have the opportunity to validate the 
trained models on radiographs from external institu-
tions. To mitigate this, we implemented a randomized 
dataset split on a patient level, creating a hold-out test 
sample that was unknown to the models. Furthermore, 
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we took measures to create a highly heterogeneous 
dataset that encompasses radiographs from everyday 
clinical practice. This dataset was obtained from vari-
ous examiners, captured using different devices, and 
depicted a wide range of pathologies and orthopedic 
implants. We believe that the excellent performance 
of our models on such a diverse dataset suggests their 
applicability to external datasets, but further validation 
through external studies is warranted.

In summary, the developed networks exhibited 
exceptional performance in classifying a wide range 
of musculoskeletal radiographs, enabling precise data 
extraction in research and automated image sorting 
for standardized reporting. Implementing them as pre-
sorting algorithms for end-to-end solutions targeted 
on specific body regions showcases the great potential 
for minimizing misclassifications, ultimately enhancing 
radiology workflow efficiency and patient care.

Abbreviations
AI  Artificial intelligence
AP  Anterior–posterior
CPU  Central processing unit
DICOM  Digital Imaging and Communications in Medicine
GPU  Graphics processing unit
Grad-CAM  Gradient-weighted class activation mapping
MCC  Matthews correlation coefficient
PACS  Picture Archiving and Communication System
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