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Abstract 

Background  The use of cerebral magnetic resonance imaging (MRI) in observational studies has increased expo-
nentially in recent years, making it critical to provide details about the study sample, image processing, and extracted 
imaging markers to validate and replicate study results. This article reviews the cerebral MRI dataset from the now-
completed BiDirect cohort study, as an update and extension of the feasibility report published after the first two 
examination time points.

Methods  We report the sample and flow of participants spanning four study sessions and twelve years. In addition, 
we provide details on the acquisition protocol; the processing pipelines, including standardization and quality control 
methods; and the analytical tools used and markers available.

Results  All data were collected from 2010 to 2021 at a single site in Münster, Germany, starting with a population 
of 2,257 participants at baseline in 3 different cohorts: a population-based cohort (n = 911 at baseline, 672 with MRI 
data), patients diagnosed with depression (n = 999, 736 with MRI data), and patients with manifest cardiovascular dis-
ease (n = 347, 52 with MRI data). During the study period, a total of 4,315 MRI sessions were performed, and over 535 
participants underwent MRI at all 4 time points.

Conclusions  Images were converted to Brain Imaging Data Structure (a standard for organizing and describing 
neuroimaging data) and analyzed using common tools, such as CAT12, FSL, Freesurfer, and BIANCA to extract imaging 
biomarkers. The BiDirect study comprises a thoroughly phenotyped study population with structural and functional 
MRI data.

Relevance statement  The BiDirect Study includes a population-based sample and two patient-based samples 
whose MRI data can help answer numerous neuropsychiatric and cardiovascular research questions.

Key points 

• The BiDirect study included characterized patient- and population-based cohorts with MRI data.

• Data were standardized to Brain Imaging Data Structure and processed with commonly available software.

• MRI data and markers are available upon request.
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Graphical Abstract

Background
Transparent data description is important to promote 
reproducibility, replication, and collaboration in research. 
The present manuscript describes the sample, the acqui-
sition protocols, the processing pipelines including qual-
ity control and standardization, and the applied analysis 
tools and derived markers of the MRI data of the now-
completed population- and patient-based BiDirect cohort 
study, the latter first described in 2014 by Teismann et al. 
[1]. It is an update and extension of the feasibility report 
published after the first two examination time points and 
focused on rates and reasons of (non)participation in the 
MRI sessions [2]. The present manuscript complements 
this work by presenting the following: (1) the description 
of the last two of a total of four examination time points 
(follow-ups two and three) of the core MRI protocol; (2) 
the extended MRI data acquisition in a subsample (“plus” 
protocol) of follow-ups two and three; and (3) the final 
data handling and processing of the entire MRI data of 
the study. Another publication related to the descriptions 
presented here is an evaluation of the performance of the 
automated lesion segmentation algorithm (BIANCA) in 
our BiDirect MRI data by Wulms et al. 2022 [3].

The selection of an appropriate acquisition proto-
col depends on the specific research question and the 

imaging modality used. The STandards for ReportIng 
Vascular changes on nEuroimaging (STRIVE) recom-
mend the use of T1-weighted (T1w), T2-weighted (T2w), 
and T2*-weighted (T2*w) sequences as well as fluid-
attenuated inversion recovery (T2w FLAIR) and diffu-
sion-weighted imaging (DWI) as minimally necessary 
sequences in large-scale epidemiological studies investi-
gating small vessel disease and aging [4].

In addition to selecting an appropriate acquisition pro-
tocol, it is important to ensure that the protocol is exe-
cuted consistently and that data quality is maintained 
over time. To achieve high-quality results, several quality 
control measures can be implemented throughout study 
acquisition, processing, and analysis. Image artifacts such 
as signal dropouts through motion [5] or tissue suscep-
tibility variation [6] and scanner drift [7] can affect the 
quality of the data and should be identified and addressed 
manually or with automated tools such as MRIQC [8]. 
In addition, incidental findings should be identified and 
documented to allow flexible application of inclusion 
and exclusion criteria depending on the specific research 
question.

Another important aspect for reproducibility is the 
structure of the data [9]. Complex neuroimaging data 
offer many opportunities for structuring, processing, and 
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analysis that compromise transparency and reproducibil-
ity. Therefore, in addition to a complete description of the 
acquisition protocol, the use of open software and frame-
works is critical for reproducible neuroimaging [10, 11]. 
Adherence to a data organization standard, such as the 
Brain Imaging Data Structure (BIDS) specification [12], 
is also highly recommended for MRI data management.

The aim of this article is to provide comprehensive 
information on the MRI data from the monocentric pro-
spective BiDirect study. This includes a detailed descrip-
tion of the sample over time, the imaging protocols, the 
data organization and quality control measures, and the 
analysis tools used and markers available.

Methods
The study was approved by the Ethics Committee of the 
University of Münster and the Westphalian Chamber of 
Physicians in Münster, Germany. All participants gave 
written informed consent.

Sample description
The BiDirect study is a twelve-year monocentric prospec-
tive cohort study established to investigate the bidirec-
tional association between subclinical atherosclerosis and 
depression. Starting in 2010, a cohort of residents (n = 911 
at baseline) was randomly drawn from the population of 
Münster. A second cohort of participants with diagnosed 
depression (n = 999 at baseline) was recruited from psy-
chiatric hospitals and outpatient services in and around 
Münster. A third cohort of patients with recently diagnosed 
acute cardiovascular disease was recruited from hospitals 
and rehabilitation facilities in and around Münster (n = 347 
at baseline) (Table  1). A variety of examinations [1] were 
performed, including clinical, psychometric, and socioeco-
nomic assessments as well as magnetic resonance imaging 
(MRI) of the brain [2]. All data were collected in four study 
sessions between 2010 and 2021 (Fig. 1). At baseline, par-
ticipants were between 35 and 65 years of age (Fig. 2).

Acquisition
MRI of the brain was performed at each of the four 
examination sessions on the same 3T scanner (Philips 
Intera with Achieva upgrade, versions 2.5.3, 2.6.3, and 
3.2.3) throughout the entire period at the University 
Department of Radiology, Münster University Hospital. 
The first feasibility report on the BiDirect MRI protocol 
was published in 2017 [2], focusing on sequence param-
eters and the study population in the first two examina-
tion sessions. For a detailed overview of the available data 
per sequence, cohort, and session, see Figs. 3 and 4 and 
Table 3.

Core MRI protocol
As also previously described in a first feasibility report 
[2] 3D T1w, T2w FLAIR (T2w sequence with complete 
cerebrospinal fluid suppression), 2D T2*w, and 2D T2w 
sequences were used for anatomical imaging. In addi-
tion, a DWI sequence and a resting-state functional 
sequence (72 images at baseline and first follow-up and 
an extended version with 133 images at third and fourth 
follow-up) were performed. The parameters of the core 
protocol are listed in Table 2. All data were acquired with 
a single channel transmit/receive birdcage head coil.

Emotion processing task
The emotion processing task was performed only at base-
line (s0). It was a short version of a previously published 
functional MRI (fMRI) paradigm investigating neural 
responsiveness to happy and sad facial expressions in 
major depression [13, 14]. Facial stimuli consisted of sad, 
happy, and neutral expressions [14]. Subjects were pre-
sented with alternating 20-s epochs of a facial emotion 
category interleaved with 10-s epochs of a no-face base-
line (crosshair). In a passive viewing task, facial stimuli 
were presented twice per second for 500 ms in a random 
sequence within each face category. Each 20-s face cate-
gory epoch was followed by a 10-s no-face epoch and was 
presented twice, resulting in a total presentation time 
of 3 min. The order of blocks was sad-neutral-happy-
sad-neutral-happy for each participant. For the emotion 
processing task, T2* functional data were acquired using 
a single-shot echo-planar sequence, with parameters 
selected to minimize distortion in the region of central 
interest, while retaining adequate signal-to-noise ratio 
and T2* sensitivity. Volumes consisting of 35 slices were 
acquired (parameters are listed in Table 2).

MRI plus protocol
For approximately 200 randomly selected participants 
in each of the population-based and depression cohorts, 
an additional MRI protocol (BiDirect Plus, Table 4) with 
higher-resolution anatomic sequences including 3D T1w, 
3D T2w, 3D FLAIR, and 3D (combined) multiecho fast 
field-echo was performed at follow-ups 2 and 3. Data 
were acquired using a six-channel phased array head coil. 
The plus protocol parameters are listed in Table 4.

Quality control
There was no hardware upgrade after the start of the MRI 
study. The software updates did not alter the imaging fea-
tures of the sequences reported here. A routine checkup 
of the scanner performance consisted of a mainly weekly 
Periodic Imaging Quality Test (PIQT) applying a vendor-
provided head phantom measured in a birdcage head 
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coil. The parameters tested were signal-to-noise ratio, 
geometric distortion, and floodfield homogeneity. The 
vendor service was called if the parameters exceeded 
specific limits defined by the vendor. During the life-
time of the scanner, the highest diagnostic image quality 
was maintained. Measures of quality control on manual 
segmentations of white matter hyperintensities (WMH) 
have been published in [3].

All images were reviewed for incidental findings by 
(neuro)radiologists in a setting comparable to routine 
clinical diagnostics. The description of this procedure 
and the respective results have been previously published 

in Teuber et  al. [2]. An experienced team of neuroradi-
ologists, neurologists, and epidemiologists met regularly 
to decide by consensus which findings were clinically 
relevant and should be reported to the participants [2]. 
The presence and nature of all incidental findings were 
also included in the study database to allow the adaptable 
application of inclusion and exclusion criteria for all sub-
sequent data analyses.

All metadata were extracted from the DICOM head-
ers and matched to the BiDirect database to avoid 
misclassification by ID, age, or sex and to check for 
deviations from standard MRI protocol (e.g., different 

Fig. 1  MRI sequences recorded during the four examination sessions. The different protocols are arranged from top to bottom, while the sessions 
are represented by four columns. The plus cohort was carried out only in sessions 4 and 6 within subcohorts from the population and depression 
cohorts
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resolution, echo time, voxel size). We processed each 
image using the fully automated MRIQC pipeline [8] to 
assess image quality. In addition, we use the “BIDScon-
vertR” Shiny app [15] to provide quick visual access to 
each sequence and participant.

Standardization
All MRI data was saved and synchronized weekly in 
DICOM format. The data was then converted to Neu-
roimaging Informatics Technology Initiative  and 
structured into the BIDS specification [12] using 
the in-house developed R-package BIDSconvertR 
[15]. DICOM images were converted with dcm2niix 
(Linux; v1.0.20190902 [16]), and all potentially iden-
tifying information was removed from the header. All 
sequences were renamed and copied to the BIDS speci-
fication [12] and irrelevant sequences (e.g., localizer) 
were discarded.

Analysis tools and available markers
Structural and functional markers were derived only 
from the core protocol using established tools and pipe-
lines (Fig. 5, Table 5).

Anatomical pipeline
T1w data were processed with CAT12 for voxel-based 
morphometry [17] in developer mode to allow optional 
WMHs output. The “fsl_anat pipeline” of FSL (v6.0.3) 
[18–20] was used to process defaced T1w and T2w 
FLAIR images, which were then used to segment WMH 
in BIANCA [3, 21]. The fsl_anat-derived bias-corrected 
T1w images and the native T2w FLAIR/T2w/T2star 
images were extracted from the brain using “fsl_deface.” 
The T2w-derived brain masks were aligned to T1w space, 
and the transformation matrix was inverted and applied 
to the distorted T1w images to bring them into T2w 
space. The T1w images were downsampled to T2w space 
to be used with the T2w FLAIR images (required for 
BIANCA) for WMH segmentation. All 2D T2-weighted 
sequences (T2w, T2*w, T2w FLAIR) have the same reso-
lution and voxel size. The brain mask was then realigned 
using the transformation matrix and applied to the bias-
corrected T2-weighted sequences. Cortical thickness 
was calculated using Freesurfer (release v6.0 and v7.1.0, 
http://​surfer.​nmr.​mgh.​harva​rd.​edu/). A user-defined 
function was used to extract all variables from the whole 
brain and specific regions of interest (ROIs) using differ-
ent atlases.

Fig. 2  Distribution of age-stratified by session on the x-axis, cohort on the horizontal subplots, and available data on the vertical subplots 
(“all”—all BiDirect participants; “with MRI”—subset of BiDirect participants with MRI data; “with MRI Plus”—subset of BiDirect participants with MRI 
plus protocol data. Shown are boxplots with the median at each session and dotplots with a bin width of 0.5 years on the left. The color intensity 
of the distributions shows a confidence interval from 66 to 95%

http://surfer.nmr.mgh.harvard.edu/
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WMH segmentation
Two raters manually segmented WMHs in 201 T2w 
FLAIR images from the population-based cohort. These 
gold standard lesion segmentations were used to evaluate 
the performance of the automated lesion segmentation 
algorithm (BIANCA) as previously described by Wulms 
et  al. [3]. We decided to use BIANCA after comparing 
the robustness of various white matter segmentation 
tools with respect to lesion volume estimation, which can 
be read here [22]. FSL BIANCA [21] was then trained 
with brain-extracted bias-corrected fsl_anat images 
(T1w, T2w FLAIR, same space, manual masks) based on 
the manually segmented lesion masks. The trained model 
was then applied to all other T1w and T2w FLAIR images 
(also bias-corrected, brain-extracted, in T2w FLAIR 
space) in the data set. The total lesion volume and lesion 
number were extracted from each image.

Diffusion‑weighted imaging
DWI data were processed with PSMD marker (v1.5) [23] 
to calculate the peak width of skeletonized mean diffu-
sivity (PSMD) and mean skeletonized mean diffusivity 
(MSMD) values. The PSMD value and MSMD value were 
extracted, and the temporary file output argument was 

used to extract native and normalized fractional anisot-
ropy (FA) and mean diffusivity (MD) images, as well as 
the skeletonized FA and MP maps for TBSS (tract-based 
spatial statistics). The normalized images were then 
used to extract mean FA and MD from the whole brain, 
white matter masks, TBSS images, and four ROI masks 
(MNI152 atlas: frontal, parietal, temporal, and occipital).

Functional imaging pipeline
For the emotion processing task, a standard process-
ing pipeline in SPM12 (https://​www.​fil.​ion.​ucl.​ac.​uk/​
spm) was implemented. Functional imaging data were 
motion-corrected, spatially normalized to standard 
MNI (Montreal Neurological Institute) space, and 
smoothed (Gaussian kernel, 8-mm FWHM (full width 
at half maximum)). For each subject, trials were aver-
aged for each emotion condition. Brain responses to the 
emotion stimulus categories were isolated by convolv-
ing a vector of onset times of the sad, happy, neutral, 
and no-face conditions with a canonical hemodynamic 
response function. Two individual 1st level contrast 
images (happy-neutral, sad-neutral) were generated 
for 2nd level group statistics. Resting-state sequences 
were pre- and post-processed using fMRIPrep [24] 

Fig. 3  Bar chart of available MRI data stratified by session on the x-axis and cohort by horizontal subplot. The bars show the proportion of available 
or missing data per cohort and session from Table 1 on the y-axis. The numbers show the numbers of observations from each category. The data 
availability coloring of the bars shows loss to follow-up (orange), study participation without acquisition of MRI data (blue), and available MRI data 
(current session, light green; all four sessions, green)

https://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm
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using standard settings that deviate from the protocol 
only by turning off Freesurfer processing and usage 
(for detailed information, see supplementary material: 
fMRIprep boilerplate). Alternative postprocessing was 
performed in specific data analysis projects [25].

Software and hardware
Ubuntu 18.04 LTS was used as the operating system. 
We also used locally installed versions of MATLAB 
(R2018b, The MathWorks, Inc., Natick, MA, USA), 
with SPM12 [26] including the CAT12 toolbox (r1742) 
[17], FSL (v6.0.3) [18–20], and Freesurfer (v6.0 and 
v7.1.0). We used pipelines for quality control and func-
tional preprocessing in Dockerized versions: MRIQC 
(v0.16.0) [8] and fMRIPrep (v20.2.1) [24]. File manage-
ment and FSL functions were wrapped and parallelized 
[27, 28] using the tidyverse library [29] in R (v4.2.1) 
[30]. CAT12 and PSMD computations were performed 
on a Dell Thinkstation-P520, Intel® Xeon(R) W-2125 
(4.00GHz × 8 cores), 16 Gb DDR4-Ram. Freesurfer cal-
culations were performed on a Dell Thinkstation-P500, 
Intel® Xeon(R) CPU E5-1650 v3 (3.50GHz × 12 cores), 
16 Gb DDR4-Ram.

Results
Sample description
The distribution of age per cohort and study population 
is shown in Fig. 2. With all 4 study waves, BiDirect com-
prises a total of 6895 study examinations (49% women) 
with 4,315 MRI core protocols (53%) and 752 MRI plus 
protocols (56% women) (Figs. 3 and 4, Tables 1 and 3). 
In total, n = 320 of the population cohort and n = 200 
of the depression cohort participated in all 4 MRI ses-
sions of the core protocol (Fig. 3, Table 1).

Due to termination through participants, technical 
reasons, motion artifacts, or altered parameters, some 
sequences were missing or discarded. Further informa-
tion on contraindications and other reasons for non-
participation in MRI examinations are listed in the MRI 
feasibility report of the BiDirect study [2]. During the 
12 years of follow-up, starting from a study popula-
tion of 2,257 participants, 842 participants (37%) were 
lost resulting in 1,415 participants at the last follow-
up (Fig. 3). Regarding MRI data, 1,460 MRI sequences 
were acquired at baseline and 846 MRI sequences were 
acquired at the last follow-up, resulting in 614 partici-
pants (42%) lost to follow-up.

Fig. 4  Alluvial plot of available data stratified by session on the x-axis and cohort by horizontal subplot. The bars (strata) show the proportion 
of available or missing data per cohort and session from Table 1 on the y-axis. The numbers in the strata show the observations in each category. 
The alluvia are lines that extend from s0 to s6 and contain the number of observations that fall into each category. The data availability coloring 
of the bars shows loss to follow-up (orange), study participation without acquisition of MRI data (blue), and available MRI data (green)
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The population cohort with MRI lost 74 participants 
(11%) between baseline (s0) and first follow-up (s2), 198 
participants (29%) between baseline (s0) and second 

follow-up (s4), and 189 participants (28%) between base-
line and third follow-up (s6). The depression cohort with 
MRI lost 290 participants (39%) between baseline (s0) 

Fig. 5  Neuroimaging pipelines: input sequence types, frameworks, and functions used
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and first follow-up (s2), 412 participants (56%) between 
baseline (s0) and second follow-up (s4), and 433 partici-
pants (59%) between baseline and third follow-up (s6). 
The CVD cohort with MRI gained 38 participants (73%) 
between baseline (s0) and first follow-up (s2), 25 partici-
pants (48%) between baseline (s0) and second follow-up 
(s4), and 8 participants (15%) between baseline and third 
follow-up (s6).

Acquisition and processing
The parameters of the MRI core protocol are listed 
in Table  2 and have previously been published in the 
BiDirect MRI feasibility report by Teuber et  al. [2]. The 
parameters of the MRI plus protocol are summarized in 
Table  4. Table  5 gives an overview of the frameworks, 
tools, and analysis pipelines used.

Available markers
Extracted neuroimaging markers (Table  5) include both 
structural and functional markers, such as gray mat-
ter volume (CAT12), WMH volume (BIANCA), cortical 
thickness (Freesurfer), and measures of functional con-
nectivity (fMRIprep). WMH lesion segmentation pipe-
lines extracted measures of lesion volume, lesion count, 

and the actual three-dimensional lesion map. In addition, 
diffusion-weighted imaging pipelines extracted measures 
of microstructural integrity, including fractional anisot-
ropy and mean diffusivity.

Discussion
The BiDirect study features a unique combination of 
three cohorts of middle-aged men and women captured 
across four examinations over twelve years. Compared 
with other cohort studies using cerebral MRI, it is at the 
upper end of the sample size range [31] with a total num-
ber 6,895 imaging sequences from 1,460 subjects (672 
from the general population, 736 with depression, and 52 
with cardiovascular disease) with MRI data at baseline. 
The Human Connectome Project (HCP) collected data 
from 1,100 volunteer participants starting in 2010 [32]. 
The prospective Rotterdam Scan Study examined imag-
ing markers from 5,286 population-based participants 
from the Ommoord neighborhood in Rotterdam. The 
German National Cohort recruited 205,000 participants 
at 18 study sites in Germany [33] via population registers. 
At baseline, 56,971 participants underwent in-depth phe-
notyping and 30,861 of them participated in 3-T MRI of 
the brain [34]. The German Rhineland Study also targets 

Table 5  Neuroimaging pipelines: frameworks, tools, analysis types, output variables

BET Brain-extracted, CSF Cerebrospinal fluid, DWI Diffusion-weighted image, FA Fractional anisotropy, FLAIR Fluid-attenuated inversion recovery, Gm Gray matter, KNN 
K-nearest neighbors, MD Mean diffusivity, ROI Region of interest, T1w T1-weighted-image, T2w T2-weighted image, TBSS Tract-based spatial statistics, VBM Voxel-based 
morphometry, Wm White matter

Processing step Framework Tool Input Type Variable/biomarker

Standardization: NII 
and BIDS conversion

R BIDSconvertR [15] dicom dcm2niix [16] BIDS-
conversion

json-metadata, id, birth-
date, weight

Quality control Docker MRIQC [8] T1w, T2w, bold MRIQC pipeline See [8]

Anatomical pipelines SPM CAT12 [14] T1w VBM Volume (native/normal-
ized): GM, WM, CSF, 
WMH + mask

FSL fsl_anat T1w, T2w FLAIR Anatomical pipeline Volume (native/normal-
ized): GM, WM, CSF

Freesurfer (v6 
and v7.1.0)

recon-all (surfer.
nmr.mgh.harvard.
edu/)

T1w Cortical thickness Cortical thickness, ROI-
wise

Lesion delineation 
pipelines

SPM CAT12 [17] T1w Lesion segmentation 
(intensity-based)

Volume (native/normal-
ized): WMH + mask

FSL BIANCA [21] T1w (BET, denoised, 
FLAIR space)

Lesion segmentation 
(trained—KNN)

Lesion count + volume 
(ml) + mask

T2w FLAIR (BET, 
denoised)

Diffusion-weighted 
pipelines

FSL PSMD-Marker [23] DWI + .bval + .bvec Diffusion-weighted 
imaging

PSMD, MSMD, FA/MD 
(native/normalized 
and ROI-wise),

TBSS

Functional pipelines Docker fMRIprep [24] T1w + bold Anatomical and func-
tional preprocessing

Structural and functional 
derivatives; see [24]

With (disabled Free-
surfer processing)
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30,000 subjects [35]. The UK Biobank collected data from 
about 500,000 volunteer participants and in 2014 began 
inviting 100,000 of those original volunteers for brain, 
heart, and body imaging [36]. Imaging data from 10,000 
volunteers has already been processed and made avail-
able [36].

Regarding follow-up losses, the population cohort lost 
218 participants (24%) between baseline (s0, n = 911) 
and last follow-up (s6, n = 693). Among participants with 
MRI, there was a loss of 189 participants (28%, s0 = 672 
and s6 = 483). In comparison, the Rotterdam Scan Study 
showed a decrease from 3,932 participants (2,956 with 
MRI) to 3,122 participants (1,854 with MRI) over 10 
years from 2005 to 2015 [37], corresponding to a loss to 
follow-up of 810 participants (21%) from the total cohort 
and of 1,102 participants with MRI (37%).

The cardiovascular disease cohort lost 127 participants 
(37%) between baseline (s0, n = 347) and last follow-up 
(s6, n = 220). However, they gained 8 participants with 
MRI (15%) between s0 (n = 52) and s6 (n = 60). This gain 
resulted from contraindications, such as newly implanted 
coronary stents, which made them temporarily unavail-
able for MRI [2]. However, all participants were given the 
opportunity to participate in an MRI session at a subse-
quent follow-up visit.

The depression cohort lost 497 participants (50%) 
between baseline (s0, n = 999) and last follow-up (s6, 
n = 502). Among participants with MRI, there was a loss 
of 189 participants (59%, s0 = 736 and s6 = 303). This 1.4- 
to 2.4-fold higher probability of dropout compared with 
the population-based cohort was expected because of the 
underlying disease [38].

In BiDirect, we used T1-weighted, T2-weighted, and 
diffusion-weighted sequences to measure anatomic 
features and white matter connectivity. Thus, the MRI 
protocol complies with STRIVE criteria [4]. We also 
acquired two functional sequences, a task-based para-
digm with emotional faces (baseline only) and a resting-
state sequence. WMH were extracted using BIANCA, a 
widely used and validated tool [3, 21]. During the study 
period, higher-resolution imaging techniques were 
increasingly used in routine clinical practice [39]. In fol-
low-up visits 2 and 3, we therefore added high-resolution 
imaging sequences for a subcohort of approximately 400 
participants.

All MRI data from the BiDirect study were standard-
ized to BIDS using the BIDSconvertR [15]. The BIDS 
specification [12] is a widely used tool for organizing 
neuroimaging data that is being actively developed by the 
BIDS consortium. We applied easy-to-use, widely avail-
able, and open-access pipelines (e.g., BIDS apps [39]) 
developed for or adapted to BIDS structured data to 
improve the reproducibility of our data.

The study is associated with certain limitations. The 
sequences used were not updated during the study period 
and were therefore increasingly outdated, except for the 
plus protocol. We did this intentionally to ensure opti-
mal comparability over time. In addition, the T2w images 
were not acquired at baseline. Moreover, given the large 
number of images acquired, we did not perform manual 
quality control or image quality assessment. This is left to 
the individual scientist for each specific project.

The present manuscript also needs to be distinguished 
from previous work, mainly the MRI feasibility report by 
Teuber et al. [2], which presented the MRI data acquisi-
tion of the first two examination time points together 
with the rates and reasons of MRI non-participation, as 
well as the report on the evaluation of the performance of 
the automated lesion segmentation algorithm (BIANCA) 
in our MRI data by Wulms et al. [3].

The BiDirect study comprises a thoroughly phenotyped 
study population with structural and functional MRI 
data. The imaging data is standardized to the BIDS speci-
fication and already processed with the most common 
analysis tools. Both the images and the MRI markers are 
available for collaboration and sharing.
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