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Abstract 

This review aims to take a journey into the transformative impact of artificial intelligence (AI) on positron emis-
sion tomography (PET) imaging. To this scope, a broad overview of AI applications in the field of nuclear medicine 
and a thorough exploration of deep learning (DL) implementations in cancer diagnosis and therapy through PET 
imaging will be presented. We firstly describe the behind-the-scenes use of AI for image generation, including acqui-
sition (event positioning, noise reduction though time-of-flight estimation and scatter correction), reconstruction 
(data-driven and model-driven approaches), restoration (supervised and unsupervised methods), and motion cor-
rection. Thereafter, we outline the integration of AI into clinical practice through the applications to segmentation, 
detection and classification, quantification, treatment planning, dosimetry, and radiomics/radiogenomics combined 
to tumour biological characteristics. Thus, this review seeks to showcase the overarching transformation of the field, 
ultimately leading to tangible improvements in patient treatment and response assessment. Finally, limitations 
and ethical considerations of the AI application to PET imaging and future directions of multimodal data mining 
in this discipline will be briefly discussed, including pressing challenges to the adoption of AI in molecular imaging 
such as the access to and interoperability of huge amount of data as well as the “black-box” problem, contributing 
to the ongoing dialogue on the transformative potential of AI in nuclear medicine.

Relevance statement
AI is rapidly revolutionising the world of medicine, including the fields of radiology and nuclear medicine. In 
the near future, AI will be used to support healthcare professionals. These advances will lead to improvements in diag-
nosis, in the assessment of response to treatment, in clinical decision making and in patient management.

Key points
• Applying AI has the potential to enhance the entire PET imaging pipeline.

• AI may support several clinical tasks in both PET diagnosis and prognosis.

• Interpreting the relationships between imaging and multiomics data will heavily rely on AI.
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Graphical Abstract

Background
Over the past decade, there has been a significant pro-
gress in nuclear medicine imaging techniques, boosted 
by remarkable technological advances. Nuclear medi-
cine physicians now have access to high-dimensional 
and multimodal images, along with a huge amount of 
quantitative data on the biological and genetic charac-
teristics of tumours. In the era of precision medicine, 
the ability to improve image quality, harness this data, 
and extract meaningful information is a contemporary 
challenge in the oncological field. In this context, the 
implementation of artificial intelligence (AI) techniques 
is leading to significant breakthroughs, fundamentally 
transforming how clinicians approach medical diagno-
sis and patient care [1]. 

The integration of AI and positron emission tomography 
(PET) has clearly pushed the boundaries of these func-
tional techniques. The growing synergy between AI and 
PET imaging promises to revolutionise diagnosis, improve 
accuracy and expand clinical utility. More than other AI 
techniques, deep learning (DL) has emerged as key player, 
finding applications in a wide range of tasks, that include 
imaging acquisition and quality improvement, as well as 
clinical activities (Fig. 1) [2]. Nevertheless, it is crucial to 
acknowledge that AI encompasses a broader spectrum of 

techniques beyond DL, such as classical machine learning, 
reinforcement learning, and hybrid AI models, albeit these 
are primarily niche applications within the field [3, 4].

This review will present some key AI applications 
within the PET imaging domain, including image gen-
eration, reconstruction, and restoration. A series of 
real-world clinical applications will be showcased, high-
lighting the tangible advantages that AI offers across 
various aspects of nuclear medicine, and its capability 
to reshape the field. Nonetheless, a critical discussion 
about the crucial issues related to data interoperability 
and AI black-box problem will be given, providing an 
overarching overview into both potential and limita-
tions of AI within the field.

Image generation development
Image acquisition
The impact of AI algorithms begins in the PET scan-
ner room, in the critical task of PET image acquisition, 
and includes event positioning, noise reduction through 
time-of-flight estimation and scatter correction. Opti-
mising these three different aspects of PET image gen-
eration can significantly improve the overall image 
quality, with the tangible consequence of increased lesion 
detectability.
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Event positioning
Historically, simple signal processing methods have been 
used to compute the timing of pick-off for each detector 
waveform, using analogue pulse processing electronics 
and pixelated crystals [6]. With the advent of fast wave-
form digitisers, DL methods have become fundamental 
for improving the gamma detection from scintillators, 
predicting the time-of-flight (TOF) of photons, and 
improving the coincidence-time-resolution. AI-driven 
techniques have also been critical for the introduc-
tion into clinical applications of monolithic scintillator 
crystals, which are attracting the interest in the nuclear 
imaging community due to their reduced production 
costs, good spatial resolution, and depth-of-interaction 
estimation. The adoption of real-time algorithms to 
improve spatial resolution and make it comparable to 
pixelated crystals is a challenge for monolithic-based 

PET detectors. To solve complex non-linear tasks such 
as the determination of the photon interaction posi-
tion, deep learning neural network algorithms have 
been fundamental for event time-stamping in mono-
lithic crystals, drawing attention to the real-time hard-
ware implementation essential for its use in a complete 
PET scanner (Fig. 2) [7]. Thanks to the implementation 
of deep learning neural network algorithms, monolithic-
based devices now have potential to attain performance 
levels beyond the state-of-the-art [7].

Noise reduction through time of flight estimation
The ability to add information about the position of the 
positron annihilation along the Line-of-response (LOR) 
is an important parameter in the reconstruction process, 
leading to an improvement in signal-to-noise ratio and 
lesion detectability. Deep convolutional neural networks 

Fig. 1 Key applications of artificial intelligence in nuclear medicine. Reprinted from JNM [5]
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(CNN) have been implemented to estimate the TOF 
directly from the pair of digitised detector waveforms for 
a coincident event [6, 9]. CNNs have the ability to learn 
complex representations of the input data, making them 
suitable for TOF estimation from the waveforms that are 
confounded by multiple complex random processes [10]. 
Since all the timing information is contained in the first 
few nanoseconds of the detector waveforms, the CNN 
algorithms are ingeniously developed on the rising edge 
of the signals, without the need to store the entire wave-
form for TOF estimation. So far, simulation studies have 
shown that, for digitisers with monolithic PET detec-
tors, a superior time resolution can be achieved with 
3D-CNN, reaching an improvement of 26% compared 
to the traditional method of leading-edge discrimination 
followed by an averaging of the first few time-stamps [9].

Scatter correction
Another source of uncertainty affecting image quality is 
randomly scattered photons, which add low frequency 
backgrounds and introduce serious artefacts. AI meth-
ods do not completely replace traditional methods in 
this task, such as the physical model of photon scatter-
ing, but rather they represent an auxiliary means to find 
function-mapping relationships and largely depend on 
the model structure, data range, and training process 
[11]. Neural network (NN) approaches have been devel-
oped to solve the issue of the triple coincidence pro-
duced by photon scattering in LOR assessment [12]. The 
method computes the LOR within the coincidences by 
pre-processing the energy and position measurements, 
and then NN discrimination. The results with NN 
approaches showed very good LOR recovery rate (75%), 
yielding an overall high sensitivity increase of 55% (real 
scanner conditions) by incorporating triple coincidences 

within a traditional 360–660  keV energy window and 
a single energy threshold of 125  keV. When compared 
to photopeak-only images, the method demonstrated 
acceptable, limited resolution degradation with little to 
no contrast loss [12].

Image reconstruction
PET scanners do not generate data directly in image 
space, but they require reconstruction algorithms to 
obtain a tomographic representation. This is an inverse 
problem that however lacks an exact solution, and only 
closed-form approximation can be found with iterative 
algorithms, which are computationally expensive and 
may still include modelling errors in the forward opera-
tor. DL-based approaches have been used to solve these 
limitations by replacing the uncertain user-defined vari-
ables in traditional methods with parameters learned 
directly from data.

Currently, there are two main AI approaches in PET 
image reconstruction [13]: data-driven and model-driven.

Data‑driven approach
The NN learns to reconstruct the image directly from 
projection data, via a latent feature space, to decode 
to the desired image. Convolutional encoder–decoder 
networks are typically used because of their capabil-
ity to compute image-to-image translation tasks. The 
overall mapping is usually trained by supervised learn-
ing for considering noise and deliver inference from the 
ground-truth object used in the training phase. In this 
case, the input raw PET data are three-dimensional sets 
of measured sinograms that are used to map the out-
put three-dimensional images. At present, data-driven 
approaches are still impractical, as they require huge 
computational memory and training set size for small 

Fig. 2 Deep learning-based event-positioning in positron emission tomography (PET) scanners with monolithic crystals. The three-dimensional 
coordinates of the scintillation position can be predicted by a multilayer perceptron neural network using the number of fired silicon 
photomultiplier (SiPMs) pixels and the total deposited energy. Reprinted with permission from Physica Medica [8]



Page 5 of 13Artesani et al. European Radiology Experimental            (2024) 8:17  

reconstructions. Moreover, they can be hardly general-
ised for unseen.

Model‑driven approach
This is the most promising, and it is a physically informed 
approach. It integrates the existing state-of-the-art of 
statistical iterative image reconstruction methods into a 
deep network. DL is involved in the cascade successive 
reconstructions to provide rich, data-informed, prior 
information to the iterative process, making repeated use 
of the raw data. The model-driven approach has a highly 
reduced need for training data, since the physics and sta-
tistics of PET data acquisition do not need to be learned 
from scratch.

Image restoration
The noise generated by the randomness of physical pro-
cesses (annihilation) and scattering is one of the primary 
factors in PET image degradation, limiting the detect-
ability of lesions and leading to inaccurate diagnosis. The 
same purpose of noise reduction is linked to the effort 
of dose reduction to limit the radiation exposure, which, 
however, results in an increase of image quality degra-
dation. Noise suppression using iterative algorithms is 
not the best choice, as it might induce artefacts or poor-
quality results. Instead, DL offers a highly advantageous 
approach and there are several solutions that use either 
supervised or unsupervised methods in image post-pro-
cessing for denoising purposes [10].

Supervised method
It can be performed by training a NN to map low and 
high-quality images, treating such a prediction as a 
regression problem. Both simulations and experimen-
tal data can be used as training targets, while the set of 
measured data can be obtained by introducing artificial 
noise prior to reconstruction. The relationships between 
the low-quality and high-quality images are then learned 
by the AI model, sometimes using anatomical priors 
from computed tomography (CT) or magnetic resonance 
imaging (MRI) as an additional network input channel 
to improve PET image quality. CNNs are used to predict 
full-dose PET images from PET/MRI or PET/CT images 
acquired at a quarter or less of a full dose (Fig.  3) [14, 
15]. In a more recent study, Kaplan et al. [16] proposed 
a CNN method to further reduce the dose to one-tenth 
of the full dose of PET images by improving the preser-
vation of edges and structural details of the network by 
including them in the loss function during training.

Unsupervised method
This approach is more commonly used to perform 
general tasks such as denoising, super-resolution and 
inpainting. A randomly initialised CNN can itself serve 
as a prior for image restoration by treating the low-qual-
ity images as training labels, and it has been shown that it 
is possible to stop training at a point where the network 
has learned the signal but not yet the noise [17]. Where 
possible, the random input can be replaced with a prior 

Fig. 3 Example of image enhancement using a deep learning model of low-dose  [18F]Florbetaben PET images of a patient with Alzheimer 
disease. The images demonstrate the superiority of including magnetic resonance imaging (MRI) data in the model over PET data alone. Reprinted 
with permission from Radiology [14]. PET Positron emission tomography
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image containing additional information, such as the CT 
or MR image for hybrid PET/CT or PET/MRI denois-
ing. Besides using DL methods for image restoration as a 
post-processing tool, it can also be incorporated into the 
iterative image reconstruction procedure as a replace-
ment for traditional regularisation schemes [18]. With  
this approach, the network is trained to generate the image 
estimate at each updating step from a prior image and to 
perform a denoising step between each update, ensuring a 
higher data consistency on the final denoised image.

Motion correction
Prolonged PET image acquisition times lead to unavoid-
able respiratory motion in organs and lesions, causing 
blurring that degrades image quality and reduces spatial 
resolution. Accurate assessing of areas affected by both 
respiratory and cardiac motion is challenging also due to 
the inherent limitations of PET spatial resolution. This is 
critical in clinical contexts such as detection of small lung 
nodules, quantification of myocardial blood flow and  
assessment of subtle changes in myocardial signal intensity 
(i.e., suspected endocarditis or aortic root complications 
after vascular graft surgery) [19–22]. Data-driven gated 
approaches offer viable solution by modelling and com-
pensating for these typical cardiac and respiratory motions, 
thereby enabling improved image reconstruction [23, 24].

Shi et al. [25] developed a DL-based automated motion 
correction for dynamic cardiac  [82Rb]PET. They achieved 
superior performance in terms of motion estimation and 
myocardial blood flow quantification accuracy compared 
to conventional registration-based methods.

Clinical applications
Segmentation
Image pre-processing techniques using of regions of 
interest (ROI) segmentation are a critical step for several 
clinical tasks, including quantitative analysis, treatment 
planning, response assessment, lesion classification, 
and advanced image analysis (i.e., radiomics). Several 
approaches have been developed to perform semi-auto-
mated, which still requires the manual adjustment of 
segmented regions, and fully-automated segmentation of 
ROI. AI will progressively replace the practice of manual 
segmentation, which is typically time-consuming, suffers 
from intra- and inter-reader variability, and low repro-
ducibility. The most common segmentation algorithms 
include (1) threshold-based algorithms, which distin-
guish a fixed fraction or percentage of tracer uptake to 
define the target; (2) gradient-based algorithms, which 
recognise areas of high uptake from those of low uptake, 
enabling accurate delineation of inhomogeneous targets; 
(3) region-growing-based algorithms, which identify a 

seed region within the target and progressively include 
neighbouring voxels that meet certain similarity criteria; 
(4) algorithms based on statistical analysis; (5) AI-based 
through DL algorithms [26].

DL-based segmentation algorithms have been success-
fully applied to PET images with different radiopharma-
ceuticals and in different clinical settings, from oncology 
to cardiac and brain imaging [26–28]. Moreover, the full 
potential of hybrid imaging can be exploited by combin-
ing segmentation algorithms performed separately on CT 
images and PET images to improve the performance of 
segmentation models based on CT or PET images alone 
[29–31].

Detection and classification
The most complex task delegated to AI in medical image 
analysis is the detection and classification of neoplastic 
lesions. A class of computer systems has been developed 
to assist physicians, known as computer-assisted detec-
tion and computer-assisted diagnosis systems. While 
the former merely identify and locate suspicious altera-
tions, the latter also define their characteristics and clas-
sify them as benign/malignant findings. While these 
systems save time in image interpretation, they are not 
designed to replace the physician, whose expert eye is 
always required to confirm the result generated by the 
algorithm [32–34]. AI algorithms would provide pre-
screened images and pre-identified key features, allowing 
for greater effectiveness and efficiency, by reducing the 
number of human errors, inter-observer variability and 
average reporting times. Computer-assisted systems can 
use either ML or DL algorithms, with supervised, semi-
supervised and unsupervised approaches. The workflow 
includes a preprocessing phase to suppress unwanted 
noise, segmentation of a ROI, feature extraction and 
selection of meaningful characteristics, and lesion clas-
sification [32–35].

Lung nodule characterisation is one of the most prom-
ising applications of computer-assisted systems. Several 
algorithms have been implemented with good perfor-
mance rate on  [18F]Fluorodeoxyglucose  ([18F]FDG) PET/
CT for the detection, classification and accurate staging 
of lung lesions [30, 31, 36–38]. A more complex task is the 
evaluation of whole-body PET/CT images, for instance 
in lymphoma and melanoma patients. CNNs have been 
used to correctly stage the disease by identifying different 
uptake patterns between suspicious and non-suspicious 
findings (i.e., areas of increased physiological uptake) 
(Fig.  4) [38, 39]. Sibille et  al. [38] developed a CNN to 
detect areas of increased uptake, to identify the anatomi-
cal location and to classify these areas as benign/malig-
nant in patients with lung cancer and lymphoma. The 
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CNN achieved high performance in terms of both ana-
tomical localisation accuracy and discrimination of path-
ological lesions. Although the main field of application is 
oncology, AI-based classification systems have also been 
applied to various non-oncological molecular imaging 
techniques [8, 40]. Choi et  al. applied DL to brain  [18F]
FDG PET for the diagnosis of neurodegenerative disor-
ders. The DL model showed strong performance in dis-
criminating patients with Alzheimer disease from normal 
controls. The model was also able to predict conversion 
to Alzheimer disease in patients with mild cognitive 
impairment and identify Parkinson disease patients with 
dementia [41].

Quantification
Quantification is an essential biomarker for both diag-
nostic and therapeutic purposes. In oncology, the most 
commonly used semiquantitative parameters derived 
from  [18F]FDG PET/CT reflect metabolism on a single 
voxel basis (“standardised uptake value”) or on a volumet-
ric basis (“metabolic tumour volume” [MTV] and total 

lesion glycolysis). Semi-quantitative parameters provide 
relevant information for lesion characterisation, prog-
nostic stratification, assessment of disease severity, and 
response to therapy, guiding clinicians in patient man-
agement. However, in certain conditions, many lesions 
must be segmented to obtain these data, and the task can 
be challenging and time-consuming. DL algorithms have 
been applied to whole-body images to segment multiple 
lesions and extract relevant semi-quantitative parameters 
quickly and automatically [42, 43]. In lymphoma, total 
MTV (i.e., the sum of the MTV of all lesions) is a rec-
ognised parameter to stratify the risk of refractoriness/
recurrence after first-line chemotherapy. Lymphoma is 
characterised by a high variability in the number, size, 
distribution, shape of lesions and metabolism. Several 
CNN models have been developed to segment pathologi-
cal lesions, discard areas of physiological uptake and fully 
automatically calculate TMTV. These architectures may 
potentially provide clinicians with a high-throughput 
platform to perform semi-quantitative analyses efficiently 
and accurately [44–46].

Fig. 4 Illustrative demonstration of the results generated by a deep learning classification system on  [18F]FDG PET/CT. This exhibit showcases 
the placement of the liver’s volume of interest (left), the segmentations following the application of a threshold (centre), and the categorisation 
into either physiological uptake or pathological lesions (right). Reprinted with permission from Eur J Nucl Med Mol Imaging [39]. CT Computed 
tomography, FDG Fluorodeoxyglucose, PET Positron emission tomography
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Juarez-Orozco et al. applied DL to quantitative myocar-
dial perfusion polar maps from  [13N]NH3 PET to iden-
tify patients at risk of major adverse cardiac events. This 
approach significantly outperformed traditional clini-
cal and functional variables, providing improved clinical 
prognostic estimates at the individual level [47].

Treatment planning
Great technological advances prompted the develop-
ment of advanced radiotherapy techniques which require 
a high degree of accuracy in defining the target tumour 
volume to minimise the radiation dose to surrounding 
healthy tissue and organs at risk, fitting perfectly into 
the modern vision of precision medicine. The delinea-
tion of the target volume (“gross tumour volume” [GTV]) 
is currently performed using a multimodal approach. In 
this perspective, metabolic data provide complementary 
information to morphological imaging, identifying the 
most aggressive tumour areas prone to radio-resistance 
mechanisms. The dose painting approach entails deliv-
ering a higher dose of radiation to metabolically active 
tumour areas, defined as “biological target volume”, for 
improved disease control and survival. In clinical prac-
tice, the delineation of GTV on PET/CT images is per-
formed with semi-automatic threshold-based systems 
detecting tumour areas with high metabolism which are 
subsequently visually adjusted by the physician [48].

Deep CNN systems have also been applied to the 
automated delineation of different tumour histotypes to 
provide a simpler and faster procedure with less inter-
observer variability. Several studies conducted in patients 
with head-neck cancer confirm a high degree of overlap 
between the biological target volume delineation of the 
primary tumour and pathological loco-regional lymph 
nodes proposed by CNN systems and that performed by 
expert physicians (Fig. 5) [49–51].

Dosimetry
Predicting individual radiopharmaceutical dosimetry in 
compliance with the optimisation principle is crucial in 
therapeutic settings [52]. Currently, certain radioligand 
therapies are still administered with a fixed dose and 
pre-treatment imaging is used only to select candidates 
expressing the therapeutic target [53, 54]. However, a 
radical paradigm shift is taking place with the increasing 

development of radiopharmaceuticals for therapy. Whole-
body absorbed dose quantification can be performed on 
planar or three-dimensional images employing different 
methods. The Medical Internal Radiation Dose Com-
mittee formalism is a simplified method for performing 
organ-level dosimetry. This approach assumes a uniform 
distribution of radiopharmaceutical activity and ignores 
different anatomical characteristics of the patient. The 
Monte Carlo simulation overcomes this inherent limita-
tion but suffers from a high computational burden. Moreo-
ver, pre-therapy dose estimation involves several technical 
problems, requiring several dynamic whole-body scans for 
the extrapolation of pharmacokinetic data, which are cur-
rently not suitable for routine clinical practice [55, 56]. DL 
algorithms were used to generate individual voxel-based 
dosimetry maps from PET and CT with excellent results. 
The algorithms predicted absorbed doses with high preci-
sion, outperforming the Medical Internal Radiation Dose 
Committee and Monte Carlo methods both in terms of 
accuracy and computational efficiency [57, 58].

Radiomics and radiogenomics
Over the past decade, there has been much debate about 
advanced image analysis using radiomics techniques and its 
applicability to clinical routines in the near future. Radiom-
ics has rapidly attempted to establish relationship between 
visual image descriptors and biological/clinical endpoints. 
Radiomics involves the high-throughput extraction of high-
dimensional quantitative features from medical images 
reflecting the biological characteristics of organs, tissues, 
and tumours, to increase the power of decision support 
models for outcome prediction and individualised patient 
management. The radiomics workflow includes several 
steps: image acquisition, ROI segmentation, feature extrac-
tion and analysis, database implementation with clinical 
and image-derived data and model building. Although the 
main application of radiomics is in oncology, the discipline 
is also expanding into non-oncological conditions. Saleem 
et al. [59] assessed the feasibility and utility of using textural 
features to diagnose aortoiliac graft infection from  [18F]
FDG PET/CT revealing promising results.

Personalised medicine is an ambitious goal that relies 
on fusing multidisciplinary data from clinical, imaging, 
genomic, and other omic data [60]. Advances in genom-
ics have led to the sequencing of entire genomes and have 

(See figure on next page.)
Fig. 5 Application of CNNs for fully automated delineation of the GTV on  [18F]FDG PET/CT in patients with head and neck cancer. The image shows 
the predicted (in red) and manual (in blue) segmentations in three different patients on CT alone, PET alone and PET/CT images (an experienced 
oncologist assigned qualitative scores of 10, 8, and 2 to the PET/CT-based predictions from top to bottom). Reprinted with permission from Eur J 
Nucl Med Mol Imaging [51]. CNN Convolutional neural networks, CT Computed tomography, FDG Fluorodeoxyglucose, GTV Gross tumour volume, 
PET Positron emission tomography
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Fig. 5 (See legend on previous page.)



Page 10 of 13Artesani et al. European Radiology Experimental            (2024) 8:17 

provided valuable insights into disease susceptibility and 
cancer development [61]. Radiogenomics is a relatively 
new scientific field that aims to discover new non-invasive 
biomarkers and to bridge the gaps between genomics and 
radiomics [62]. Recent trends include the use of AI and 
radiogenomics to support diagnosis, treatment decisions 
and prognosis in oncology, revolutionising healthcare 
[63]. The scientific literature provides several examples of 
AI-based radiogenomics methods for clinical applications, 
ranging from imaging features with genetic associations 
to tissue characterisation (Fig. 6) [64, 65]. Kirienko et al. 
[66] applied this approach to lung cancer patients. Excel-
lent results were achieved in predicting tumour histology 
and patient outcome by combining radiomic analysis on 
 [18F]FDG PET/CT and gene expression abnormalities via 
ML approach. Kim et al. [67]. explored both ML and DL 
to develop a prediction model for chemotherapy response 
and metastasis in paediatric patients with osteosarcoma 
using gene expression and image texture features from 
 [18F]FDG PET/CT achieving high accuracy.

Limitations and ethical considerations
While the integration of AI into nuclear medicine holds 
great promise, it is essential to recognise and address 
certain limitations and challenges. One of the fore-
most limitations to developing powerful and robust AI 

algorithms revolves around the quality and quantity of 
data available to train. The transition of AI-driven tools 
into clinical workflows can be hindered by limited data 
availability, accessibility, and interoperability. This is 
particularly true for rare cancers or specific patient pop-
ulations, but also includes the variability in data quality 
between medical centres in terms of imaging protocols, 
equipment, and radiopharmaceuticals. Several strate-
gies can help mitigate the limitations of insufficient 
data, including data augmentation, transfer learning, 
synthetic data generation, and one-shot learning [68–
71]. Another approach is data sharing across different 
institutions. However, inadequate data interoperabil-
ity can have a significant impact on the accuracy of AI 
predictions and a reference model should be embraced 
to establish robust data. Approaches to minimise meas-
urement uncertainty, enable data identification, and 
standardise pre-existing data for research purposes 
are of paramount importance for data integration and 
enhanced AI applications in nuclear medicine [72]. Sev-
eral open-source and proprietary software tools have 
been developed by exploiting the availability of large 
amounts of data for learning (open libraries, etc.). How-
ever, the integration of image interpretation software 
into clinical practice is limited by long development 
times and strict requirements for regulatory approval. 

Fig. 6 Radiomics and radiogenomics pipelines in outcome prediction. Reprinted from Br J Cancer [65]. The article is distributed under the terms 
of the Creative Commons CC BY license
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Therefore, most algorithms are currently distributed as 
research tools. There is still a long way to go to provide 
evidence-based data and define the real impact of inte-
grating AI into clinical practice [63, 73].

Another important limitation of AI in clinical practice 
is what is commonly referred to as the "black box" prob-
lem [74]. This refers to the inherent opacity of complex 
AI models, making their decision-making processes dif-
ficult to interpret and understand. In nuclear medicine, 
this challenge becomes particularly pertinent. Medical 
professionals cannot rely on the transparency and inter-
pretability of results and instead must rely on AI-assisted 
diagnoses and treatment plans. This lack of transparency 
can potentially impede the widespread adoption of AI 
in clinical settings. Various approaches have been pro-
posed to tackle this issue, such as incorporating retro-
propagation of information from the model results back 
to the input data [75, 76]. In general, the development of 
techniques to improve the transparency and interpreta-
bility of AI models has been an ongoing effort. However, 
this remains an ongoing challenge within the discipline, 
demanding continued research and innovation to bridge 
the gap between the complexity of AI algorithms and the 
need for transparent and comprehensible decision-mak-
ing processes in clinical practice.

Future directions
The future of AI in PET imaging is bright, with several 
notable advances on the horizon. AI will play a key role 
in the development of accurate pseudo-CT methods for 
attenuation correction in PET/MRI. This will result in 
synthetic CT images from MR and PET data, improv-
ing PET quantification and anatomical precision while 
reducing radiation exposure [77]. A major trend, facili-
tated by AI-driven data fusion, is the integration of PET 
with other imaging modalities such as MRI and CT, as 
well as dynamic multiparametric PET analysis, providing 
a comprehensive view of a patient’s condition, improved 
diagnostic capabilities and valuable clinical insights [78, 
79]. Furthermore, AI will improve the feasibility of real-
time imaging and intervention. Surgeons can use AI to 
navigate procedures and make critical decisions based on 
intraoperative PET imaging, resulting in greater surgical 
precision and minimised damage to healthy tissue [80].

Conclusions
AI is rapidly revolutionising nuclear medicine, improv-
ing diagnostic accuracy, patient care, and the overall util-
ity of PET imaging in both clinical practice and research. 
However, it is currently used mainly for research pur-
poses and few applications have entered clinical practice. 
Responsible development and regulatory oversight will 

be essential to ensure that AI technologies are integrated 
safely and effectively into healthcare workflows.
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