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Abstract 

Background Pretraining labeled datasets, like ImageNet, have become a technical standard in advanced medical 
image analysis. However, the emergence of self-supervised learning (SSL), which leverages unlabeled data to learn 
robust features, presents an opportunity to bypass the intensive labeling process. In this study, we explored if SSL 
for pretraining on non-medical images can be applied to chest radiographs and how it compares to supervised pre-
training on non-medical images and on medical images.

Methods We utilized a vision transformer and initialized its weights based on the following: (i) SSL pretraining 
on non-medical images (DINOv2), (ii) supervised learning (SL) pretraining on non-medical images (ImageNet dataset), 
and (iii) SL pretraining on chest radiographs from the MIMIC-CXR database, the largest labeled public dataset of chest 
radiographs to date. We tested our approach on over 800,000 chest radiographs from 6 large global datasets, diagnos-
ing more than 20 different imaging findings. Performance was quantified using the area under the receiver operating 
characteristic curve and evaluated for statistical significance using bootstrapping.

Results SSL pretraining on non-medical images not only outperformed ImageNet-based pretraining (p < 0.001 
for all datasets) but, in certain cases, also exceeded SL on the MIMIC-CXR dataset. Our findings suggest that selecting 
the right pretraining strategy, especially with SSL, can be pivotal for improving diagnostic accuracy of artificial intel-
ligence in medical imaging.

Conclusions By demonstrating the promise of SSL in chest radiograph analysis, we underline a transformative shift 
towards more efficient and accurate AI models in medical imaging.

Relevance statement Self-supervised learning highlights a paradigm shift towards the enhancement of AI-driven 
accuracy and efficiency in medical imaging. Given its promise, the broader application of self-supervised learning 
in medical imaging calls for deeper exploration, particularly in contexts where comprehensive annotated datasets are 
limited.

Key points 

• Validated on over 800,000 chest radiographs from 6 datasets and 20 imaging findings, a self-supervised pretraining 
on non-medical images outperformed ImageNet-based supervised pretraining.
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• Non-medical-self-supervised learning even outperformed task-specific supervised learning on large-scale chest 
radiographs, in certain cases.

• Self-supervised learning signifies AI’s transformative potential in medical imaging, especially chest radiography.

Keywords Artificial intelligence, Deep learning, Medical image processing, Radiography (thoracic), Unsupervised 
machine learning

Graphical Abstract

Background
Artificial intelligence (AI) has become an important tool 
in healthcare and medical image analysis [1]. Its applica-
tion in radiology [2], specifically in automated diagnosis 
of chest radiographs [3], has gained increasing traction. 
Given the intricate challenges posed by the complexity 
and variability of chest radiographs, leveraging AI for 
improved interpretation is an important area of research 
and application. Since the number of labeled chest radio-
graphs with definitive diagnosis available for the training 
of AI models is limited, interest in self-supervised learn-
ing (SSL) has grown.

SSL is a learning paradigm that allows models to 
derive rich representations from unlabeled data [4–6]. 
Unlike traditional supervised learning (SL), which relies 
on accurately labeled datasets that can be laborious 
and resource-intensive to create, SSL can be used with 
images only that contain no labels, offering a promising 

alternative for robust feature extraction. In addition, 
exciting possibilities arise from AI advancements, such 
as the evolution of transformer architectures from the 
realm of natural language processing (NLP) to computer 
vision [7]. The “vision transformer” (ViT), introduced in 
2021 by Dosovitskiy et al. [8], replaces traditional convo-
lution-based techniques with self-attention mechanisms 
[7], showing promise for healthcare applications. Nev-
ertheless, further exploration is needed to fully integrate 
these advancements with existing pretraining methodol-
ogies [9], and we tackle this problem in our investigation.

It has been established in the literature that select-
ing an appropriate weight initialization for deep neural 
networks is a critical step that can influence the perfor-
mance of AI models [10–12]. Usually, this is done by pre-
training the network with SL on an unrelated task before 
training on the actual task. Numerous large-scale, pub-
lic, annotated pretraining image datasets are available for 
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this paradigm. The most widely used such datasets are 
ImageNet [13], the dataset of the Canadian Institute for 
Advanced Research, CIFAR [14] (CIFAR-10 and CIFAR-
100), PASCAL Visual Object Classes [15], Microsoft 
Common Objects in Context [16], and places [17]. These 
datasets provide a valuable resource for initializing net-
work weights when dedicated task-related pretraining 
weights are not accessible. In particular, the ImageNet 
database and its extended versions like ImageNet-21  K 
[13], trained on roughly 14 million annotated images, 
have enabled substantial performance increases of AI 
models and are widely regarded as the benchmark for 
pretraining deep learning models for image classification 
tasks [10–12].

One drawback is that pretraining in this manner 
requires the images to be equipped with labels that depict 
what can be seen in the images. This naturally limits the 
number of available images, since labeling is a costly and 
resource-intensive procedure. Methods that use SSL, 
such as described in literature [4–6, 18–20], on the other 
hand have the advantage that images do not need to be 

labeled, and thus, much larger databases can be con-
structed (Fig. 1).

In this study, we investigate if pretraining with SSL on 
large unannotated image databases based on DINOv2 
[18] can improve performance of medical AI models as 
compared to pretraining with SL. We examine this by 
training AI models to diagnose over 20 radiological imag-
ing findings on an international multi-site dataset span-
ning three continents and comprising over 800,000 chest 
radiographs.

Methods
Patient cohorts
We analyzed frontal chest radiographs from six interna-
tional patient cohorts across three continents, sourced 
from the VinDr-CXR [21], ChestX-ray14 [22], CheXpert 
[23], MIMIC-CXR [24], UKA-CXR [3, 25–28], and Pad-
Chest [29] datasets. Collectively, the study encompassed 
805,805 radiographs from patients aged between 1 and 
111 years. The median patient age was 61 years, with an 
average of 59 years and a standard deviation of 18 years. 

Fig. 1 The process and advantages of utilizing self-supervised learning (SSL) as a pretraining method for medical AI models. a Supervised learning 
shows the traditional process of AI pretraining using labeled datasets, which can be resource- and time-intensive due to the need for manual 
annotation. b SSL paradigm where AI models are trained on unlabeled non-medical images, taking advantage of freely available data, bypassing 
the need for costly and time-consuming manual labeling. c Transfer of learnings from the SSL pretrained model using non-medical images 
to a supervised model for accurately diagnosing medical images, highlighting the potential for improved performance in medical AI models due 
to the large-scale knowledge gained from SSL
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An overview of the characteristics for each dataset can be 
found in Table 1.

Label generation and parameters
This subsection delves into the label generation process, 
details the specific labels associated with each chest radi-
ograph dataset, and references imaging parameters pro-
vided in the original studies. The labeled diseases within 
each dataset were not identical, but overlapped partially, 
details are given in Table 2.

VinDr‑CXR
The VinDr-CXR [21] dataset, collected between 2018 and 
2020, sourced over 100,000 chest radiographs from two 
Vietnamese hospitals’ picture archiving and communica-
tion system servers. These images were captured using 
a broad spectrum of scanners from different medical 
equipment brands. The dataset was carefully anonymized 

for patient privacy. A Python script removed digital 
imaging and communications in medicine (DICOM) tags 
with protected health information (PHI) [30], keeping 
only vital image processing attributes. Textual data on 
the images was auto erased, with a manual check ensur-
ing no text remained. While the primary focus was on 
adult posteroanterior-view chest radiographs, the collec-
tion did have outliers, which were filtered using a binary 
classifier. The dataset was annotated for 28 findings and 
diagnoses, including 22 localized and 6 global labels. 
Expert radiologists curated these labels based on condi-
tion prevalence and visibility in chest radiographs. Using 
a web-based system [31], 17 radiologists labeled the data. 
From the refined data, 18,000 radiographs were selected, 
with 15,000 designated for training and 3,000 for testing. 
Three radiologists independently annotated each image, 
and for the test set, any disagreements were resolved by 
two senior radiologists to ensure label accuracy [21].

Table 1 Characteristics of the datasets utilized in this study

The table shows the statistics of the datasets used, including VinDr-CXR [21], ChestX-ray14 [22], CheXpert [23], MIMIC-CXR [24], UKA-CXR [3, 25–28], and PadChest 
[29]. The values correspond to only frontal chest radiographs, with the percentages of total radiographs provided. Binary labeling system refers to diagnosing if a 
finding is present or not. “Severity” refers to classification of the severity of a finding. “Certainty” indicates that a certainty level was assigned to each finding during the 
labeling by either the experienced radiologists (manual) or an automatic natural language processing—NPL, labeler. Note that some datasets may include multiple 
radiographs per patient

N/A Not available

VinDr-CXR ChestX-ray14 CheXpert MIMIC-CXR UKA-CXR PadChest

Number of radio-
graphs (total)

18,000 112,120 157,878 213,921 193,361 110,525

Number of radio-
graphs (training set)

15,000 86,524 128,356 170,153 153,537 88,480

Number of radio-
graphs (test set)

3,000 25,596 29,320 43,768 39,824 22,045

Number of patients N/A 30,805 65,240 65,379 54,176 67,213

Patient age (years)
Median
Mean ± standard 
deviation
Range (minimum, 
maximum)

42
54 ± 18 (2, 91)

49
47 ± 17 (1, 96)

61
60 ± 18 (18, 91)

N/A
N/A
N/A

68
66 ± 15 (1, 111)

63
59 ± 20 (1, 105)

Patient’s sex
Females/males [%]
Training set, test set

47.8/52.2
44.1/55.9

42.4/57.6
41.9/58.1

41.4/58.6
39.0/61.0

N/A
N/A

34.4/65.6
36.3/63.7

50.0/50.0
48.2/51.8

Projections [%]
Anteroposterior
Posteroanterior

0.0
100.0

40.0
60.0

84.5
15.5

58.2
41.8

100.0
0.0

17.1
82.9

Location Hanoi, Vietnam Maryland, USA California, USA Massachusetts, USA Aachen, Germany Alicante, Spain

Number of contribut-
ing hospitals

2 1 1 1 1 1

Labeling method Manual NLP (ChestX-ray14 
labeler)

NLP (CheXpert 
labeler)

NLP (CheXpert 
labeler)

Manual Manual & NLP 
(PadChest 
labeler)

Original labeling 
system

Binary Binary Certainty Certainty Severity Binary

Accessibility 
of the dataset 
for research

Public Public Public Public Internal Public
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Table 2 Distribution of different labels provided across datasets, considering only frontal images

Labels [n (%)] VinDr-CXR ChestX-ray14 CheXpert MIMIC-CXR UKA-CXR PadChest

Atelectasis 148 (0.8%) 11,559 (10.3%) 26,313 (16.7%) 42,760 (19.9%) - 6,166 (5.6%)

Atelectasis right - - - - 18,761 (9.7%) -

Atelectasis left - - - - 15,082 (7.8%) -

Calcification 371 (2.1%) - - - - -

Cardiomegaly 2,126 (11.8%) 2,776 (2.5%) 19,890 (12.6%) 42,480 (19.7%) 90,348 (46.7%) 9,845 (8.9%)

Consolidation 217 (1.2%) 4,667 (4.2%) 9,542 (6.0%) 8,603 (4.0%) - 1,666 (1.5%)

Edema 1 (0.0%) 2,303 (2.1%) 43,213 (27.4%) 24,663 (11.5%) - -

Emphysema 17 (0.1%) 2,516 (2.2%) - - - 1,102 (1.0%)

Enlarged pulmonary artery 29 (0.2%) - - - - -

Interstitial lung disease 373 (2.1%) - - - - -

Lung opacity 631 (3.5%) - 73,961 (46.8%) 40,876 (19.0%) - -

Lung cavity 29 (0.2%) - - - - -

Lung cyst 6 (0.0%) - - - - -

Lung lesion - - 5,829 (3.7%) 5,648 (2.6%) - -

Lung tumor 214 (1.2%) - - - - -

Mediastinal shift 105 (0.6%) - - - - -

Enlarged cardiomediastinum - - 7,787 (4.9%) 6,527 (3.0%) - -

Nodule/mass 585 (3.2%) - - - - 4,747 (4.3%)

Nodule - 6,331 (5.6%) - - - -

Mass - 5,782 (5.2%) - - - -

Pleural effusion 745 (4.1%) 13,317 (11.9%) 65,142 (41.3%) 48,716 (22.6%) - 6,984 (6.3%)

Pleural effusion right - - - - 15,609 (8.1%) -

Pleural effusion left - - - - 12,571 (6.5%) -

Pleural thickening 1,051 (5.8%) 3,385 (3.0%) - - - 3,372 (3.1%)

Pleural other - - 2,035 (1.3%) 1,751 (0.8%) - -

Pulmonary fibrosis 1,234 (6.9%) 1,686 (1.5%) - - - 715 (0.6%)

Fracture 55 (0.3%) - 6,445 (4.1%) 4,104 (1.9%) - -

COPD 9 (0.1%) - - - - 14,293 (12.9%)

Chronic changes - - - - - 4,798 (4.3%)

Infiltrates 303 (1.7%) 19,894 (17.7%) - - - 4,605 (4.2%)

Pneumonia 717 (4.0%) 1,431 (1.3%) 3,964 (2.5%) 13,916 (6.5%) - 5,222 (4.7%)

Pneumonia right - - - - 22,513 (11.6%) -

Pneumonia left - - - - 15,993 (8.3%) -

Pneumothorax 76 (0.4%) 5,302 (4.7%) 16,277 (10.3%) 9,866 (4.6%) - -

Tuberculosis 646 (3.6%) - - - - -

Scoliosis - - - - - 5,573 (5.0%)

Hernia - 227 (0.2%) - - - 1,609 (1.5%)

Congestion - - - - 16,371 (8.5%) 863 (0.8%)

Support devices - - 90,967 (57.6%) 61,358 (28.5%) - -

Aortic enlargement 2,566 (14.3%) - - - - -

Aortic elongation - - - - - 8,116 (7.3%)

Kyphosis - - - - - 2,621 (2.4%)

Sternotomy - - - - - 1,912 (1.7%)

Cavitation - - - - - 353 (0.3%)

Volume loss - - - - - 1,647 (1.5%)

Pacemaker - - - - - 2,294 (2.1%)

Bronchiectasis - - - - - 1,548 (1.4%)

Air trapping - - - - - 3,471 (3.1%)

No finding (healthy) 12,652 (70.3%) 60,361 (53.8%) 17,000 (10.8%) 81,117 (37.7%) 74,455 (38.5%) 36,148 (32.7%)

The values indicate the total certain positive cases within an entire dataset. UKA-CXR specifies separate labels for the presence of atelectasis, pleural effusion, and 
pneumonia on both the right and left chest sides
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ChextX‑ray14
The ChestX-ray14 [22] dataset targets fourteen com-
mon thoracic pathologies, identified through radiolo-
gists’ input. Using these pathologies as keywords, related 
radiological reports and images were extracted from the 
picture archiving and communication system. Through 
NLP techniques [32], reports were labeled based on the 
presence or absence of the specified pathologies while 
also excluding negations and uncertainties. The labeling 
process involved two main steps [22]: (i) initially detect-
ing disease concepts primarily from report sections and 
then (ii) categorizing undetected reports as “normal.” 
Disease identification was enhanced using DNorm [33] 
and MetaMap [34]. To ensure accurate labeling, the team 
integrated advanced methodologies for handling nega-
tions and uncertainties, leveraging tools like NLTK [35], 
the Bllip parser [36], David McClosky’s biomedical model 
[37], and the Stanford dependencies converter [38]. A 
“normal” label was applied if no disease was detected or 
if the report indicated normalcy. The labeling approach’s 
accuracy was validated using the OpenI API [39, 40].

CheXpert
The CheXpert [23] dataset includes 224,316 frontal and 
lateral chest radiographs from 65,240 patients, collected 
from Stanford Hospital between 2002 and 2017. Each 
radiograph is annotated for 14 clinically relevant obser-
vations [41] as positive, negative, or uncertain. The selec-
tion of these observations emerged from the manual 
review of 1,000 associated radiology reports by a board-
certified radiologist. The labeling process hinged on a 
rule-based NLP labeler and transpired in three stages. 
Key observations were gleaned from the Impression 
section of the radiology reports. This extraction used a 
comprehensive list of phrases, meticulously curated by 
radiologists. The subsequent phase saw these extracted 
mentions being classified as negative, uncertain, or posi-
tive. Any ambiguities in the report, or direct expressions 
of uncertainty by the radiologist, were categorized as 
“uncertain.” If a mention was not distinctly categorized, 
it defaulted to a positive label. Following a procedure 
similar to NegBio [42], this classification leaned on tools 
such as NLTK [35], the Bllip parser [36], and Stanford 
CoreNLP [43], seeking a universal dependency parse of 
the report. Finally, the individual mention classifications 
coalesced to assign a conclusive label to each of the 14 
observations. The absence of a mention was labeled as 
blank [23].

MIMIC‑CXR
The MIMIC-CXR [24] dataset encompasses 377,110 
frontal and lateral images stemming from 227,835 

radiographic studies conducted at Beth Israel Dea-
coness Medical Center, Boston, MA, USA. Chest 
radiographs from 2011 to 2016 were identified, and 
all corresponding reports within this timeframe were 
extracted. The radiographs, sourced in DICOM for-
mat, faced rigorous de-identification processes, par-
ticularly for potential PHI in meta-data and “burned 
in” annotations [24]. Further, the reports underwent 
a detailed, rule-based de-identification, producing 
two primary segments: an optional addendum and 
the primary report body—both penned by radiolo-
gists. Extraneous details were trimmed, and any PHI 
was uniformly replaced with underscores. Notably, 
the same NLP labeler employed in the CheXpert [23] 
dataset was applied to these reports. This facilitated 
the automatic generation of labels for the chest radio-
graphs, categorizing the 14 imaging findings, consist-
ent with CheXpert, as positive, negative, or uncertain. 
To validate the de-identification process, 2,238 radiol-
ogy reports were manually annotated to detect PHI. 
This manual process identified eight tokens of PHI 
that the automated method overlooked, which were 
subsequently removed [24].

UKA‑CXR
The UKA-CXR [3, 25–28], an internal dataset from Uni-
versity Hospital RWTH Aachen, Germany, includes fron-
tal chest radiographs collected between 2009 and 2020. 
Captured across 10 varied intensive care units using 18 
distinct mobile radiography systems by over 70 special-
ized radiologic technologists, the methodology evolved 
from conventional screen-film systems to digital flat-
panel detectors by 2016. Despite diverse patient position-
ing and source-to-digital film distances, all images were 
consistently shot in the anteroposterior orientation, facil-
itated by automatic exposure control. Labeling involved 
a rigorous review of each radiograph by one of 98 radi-
ologists on designated clinical workstations, employing a 
standardized template. These radiologists, accredited or 
guided by board-certified colleagues, adhered to estab-
lished radiologic conventions while evaluating the images 
[3]. The dataset features labels like pleural effusion, pneu-
monia, atelectasis, congestion, and cardiomegaly, each 
segmented into five distinct severity or extent gradations. 
For instance, cardiomegaly ranged from “normal” to 
“massively enlarged,” whereas other labels spanned clas-
sifications such as “negative,” “mild,” “moderate,” “severe,” 
and “uncertain mild” [3, 25].

PadChest
The PadChest [29] dataset, derived from the Hos-
pital Universitario de San Juan in Alicante, Spain, 
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encompasses studies from 2009 to 2017, totaling 
109,931 studies and 168,861 distinct frontal and lateral 
images. All data was de-identified. The images were 
dynamically rescaled based on DICOM parameters, 
with no resizing to maintain resolution. Projection 
and body position information were used to categorize 
images into six primary groups: standard posteroante-
rior, standard lateral, anteroposterior vertical, anter-
oposterior horizontal, pediatric, and rib views [29]; 
27% of the reports, which translates to 27,593 stud-
ies, were manually annotated by radiologists. This was 
streamlined by an automated topic extraction process, 
which presented radiologists with frequently occurring 
sentences, allowing for more efficient and consistent 
labeling. Once this subset of data was labeled, it was 
used to train a multilabel text classifier which was then 
employed to automatically annotate the remaining 73% 
of the reports [29].

Experimental design
A schematic representation of the study methodology 
is presented in Fig.  2. The process commenced with 
step 1, i.e., the pretraining of a ViT [8] base model. This 
was achieved through three distinct strategies: (i) SSL 
with non-medical images, DINOv2 [18], (ii) SL on Ima-
geNet-21  K [13], and (iii) SL with MIMIC-CXR chest 
radiographs [24]. Step 2 involved fine-tuning the mod-
els using labeled chest radiographs. Finally, in step 3, 
the refined models underwent an evaluation process, 
where they were tested using images from held-out test 
sets of chest radiographs from different domains.

Network architecture
Our study employed the original 12-layer vision trans-
former (ViT) base (ViT-B) model as devised by Doso-
vitskiy et  al. [8]. This network ingested image inputs of 
dimensions (224 × 224 × 3) in batches of 32. For compat-
ibility with the red, green, and blue (RGB) format of pre-
training images, grayscale radiographs were replicated 
across three channels while retaining their grayscale 
nature. The embedding layer featured dimensions of 
either (16 × 16) or (14 × 14), depending on the pretrained 
weights available. A convolution operation with strides 
of (16 × 16) or (14 × 14) ensued, followed by a positional 
embedding layer. This sequence generated an output 
sequence of vectors featuring a hidden layer size of 768. 
These vectors were subsequently inputted to a standard 
transformer encoder. A fully connected layer constituted 
the classification head, employing a binary sigmoid func-
tion to convert the output predictions into individual 
class probabilities.

Step 1: pretraining

SSL pretraining on non‑medical images (DINOv2) DINOv2 
[18], an advancement of the DINO [44] method by Meta 
AI, focuses on self-supervised learning, striving to extract 
diverse visual features from a vast, curated dataset. Initially 
comprising 1.2 billion images drawn from a variety of online 
sources, the dataset went through a rigorous deduplication 
process [45, 46], culminating in the refined LVD-142 M [18] 
dataset with 142 million unique images. This curation inte-
grated images from notable datasets like ImageNet, Google 
Landmarks, and an array of broader public and internal web 
repositories. Using embeddings from the “Huge” iteration of 
the ViT network architecture (ViT-H) [8] pretrained on Ima-
geNet [13], a connection was established between curated 
and uncurated images, paving the way for the LVD-142 M 
dataset. From this foundation, several ViT models, aligned 
with the DINOv2 training methodology, were developed. 
The ViT base (ViT-B) [8] iteration of this model served as the 
weight reference for our study.

The essence of DINOv2 synthesizes elements from 
DINO [44] and iBOT [47] losses, enhanced by the 
centering technique of SwAV [48]. The approach 
incorporates dual primary objectives: image level 
and patch level. The image-level objective deploys a 
cross-entropy loss between features extracted from 
varying crops of an identical image using a ViT, from 
both a student and a teacher network built with an 
exponential moving average of past iterates [49]. In 
contrast, the patch-level objective operates by selec-
tively masking certain input patches for the student, 
followed by the application of a cross-entropy loss 
between the patch features of both the student and 
teacher networks [47]. To combat issues of overfitting 
and underfitting, the weights associated with these 
objectives were decoupled. To ensure uniform fea-
ture distribution, the Sinkhorn-Knopp [50] normali-
zation and the KoLeo regularizer [51] were employed 
[48, 52]. While models trained at a 416 × 416 resolu-
tion showcased optimal performance across various 
resolutions, they necessitated nearly triple the com-
putational capacity compared to the 224 × 224 resolu-
tion. Nonetheless, a balanced approach was adopted 
by conducting self-supervised training at 224 × 224 
and amplifying the resolution only in the conclud-
ing iterations, delivering near-optimal results without 
an exorbitant computational burden [53]. For more 
detailed information regarding data preparation, 
training, and optimization steps, please refer to the 
original paper [18].
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SL pretraining on non‑medical images (ImageNet) Ima-
geNet [13] is a vast database with diverse, annotated non-
medical images. The subset, ImageNet-21 K, houses over 
14 million images of various resolutions across 21,841 
categories. Using supervised learning (SL), a ViT-B 
model (patch size 16 × 16, input size 224 × 224 × 3) was 
trained end to end on the complete ImageNet-21  K to 
predict among the 21,841 available categories.

SL pretraining on chest radiographs (MIMIC‑CXR) MIMIC-
CXR [24] stands as the largest public chest radiograph data-
set to date. Adopting a training approach similar to that of 
ImageNet [13], a ViT-B model was trained on MIMIC-CXR 
for classifying specific imaging findings relevant to our fine-
tuning datasets. Unlike the foundational models established 
using DINOv2 [18] and ImageNet, this strategy directly tar-
gets the specific task at hand. Despite the smaller dataset size 

Fig. 2 General methodology. a Pretraining: the vision transformer base (ViT-B) undergoes pretraining through three avenues: (i) self-supervised 
learning (SSL) on non-medical images (DINOv2(18)), (ii) supervised learning (SL) using ImageNet-21 K [13], and (iii) SL based on MIMIC-CXR [24] 
chest radiographs. b ViT-B models are subsequently fine-tuned using labeled chest radiographs from various datasets. c Prediction: diagnostic 
performance of these models is assessed using images from unseen test sets from various datasets. Although this figure exemplifies pneumonia 
prediction using a single dataset, steps 2 (fine-tuning) and 3 (systematic evaluation) were consistently implemented across six major datasets: 
VinDr-CXR (n = 15,000 training, n = 3,000 testing), ChestX-ray14 (n = 86,524 training, n = 25,596 testing), CheXpert (n = 128,356 training, n = 39,824 
testing), MIMIC-CXR (n = 170,153 training, n = 43,768 testing), UKA-CXR (n = 153,537 training, n = 39,824 testing), and PadChest (n = 88,480 training, 
n = 22,045 testing). The refined models identify a total of 22 distinct imaging findings
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compared to the prior two methods, the task-specific nature 
and substantial scale of MIMIC-CXR suggest potential for 
enhanced performance at first glance.

Step 2: fine‑tuning (SL training on chest radiographs)

Choice of the training chest radiographs for fine‑tun‑
ing For benchmarking, six chest radiograph datasets 
were standardized using only frontal images for both 
fine-tuning and evaluation. Original sets from VinDr-
CXR and ChestX-ray14 were retained, while CheXpert, 
MIMIC-CXR, UKA-CXR, and PadChest were divided 
into 80% training and 20% test sets based on patients. 
This ensured radiographs from one patient stayed 
together, preserving patient-specific integrity. Train-
ing sets had 128, 356, 170, 153, 153, 537, and 88,480 
images for CheXpert, MIMIC-CXR, UKA-CXR, and 
PadChest, respectively. Test sets contained 29, 320, 43, 
768, 39, 824, and 22,045 images correspondingly. Con-
sistent sets were used across all steps for comparable 
evaluations [25–27].

Label unification In line with previous studies [25, 
26, 28], a binary multilabel classification approach was 
employed, permitting each image to receive a positive 
or negative diagnosis for each disease. Optimization was 
centered on the average performance across all labels, 
without delving into detailed comparisons for individual 
diseases. For datasets with certainty levels (CheXpert 
and MIMIC-CXR), labels were converted to binary: clas-
sifications marked as “certain negative” and “uncertain” 
were categorized as negative, while “certain positive” 
was deemed positive. The final breakdown of the labels 
employed for each dataset’s multilabel diagnosis in this 
study is provided in Table  3. Labels with minimal rep-
resentation were excluded from our final label selection, 
e.g., “lung cyst” and “edema” in the VinDr-CXR dataset 
had only 6 and 1 positive instances, respectively (refer to 
Table  2). Thus, they were excluded from our final label 
selection for the VinDr-CXR dataset (see Table 3).

Overall, our analysis encompassed 30 labels spanning all 
datasets. The specific number of these labels within the 
VinDr-CXR, ChestX-ray14, CheXpert, MIMIC-CXR, 
UKA-CXR, and PadChest datasets was 11, 14, 10, 10, 9, 
and 17, respectively. A detailed breakdown of these labels 
per dataset can be found in Table 3.

Standardized image preprocessing To standardize and 
ensure equitable comparisons across various SL fine-tun-
ing experiments, we uniformly applied a consistent image 
preprocessing approach to all chest radiograph datasets 

for fine-tuning. This preprocessing sequence began with 
resizing all images to a consistent dimension of 224 × 224 
pixels. Subsequently, min–max feature scaling, as sug-
gested by Johnson et  al. [24], was employed. Finally, to 
enhance image contrast and thereby aid in more accurate 
disease identification, we applied histogram equalization 
to the processed images [25–27].

SL training configuration All ViT models were opti-
mized using the AdamW [54] optimizer with learning 
rates set at 1 ×  10-5. The network comprised approxi-
mately 86 million trainable parameters. Data augmenta-
tion strategies included random rotation within the range 
of [0, 8] degrees and random flipping [25]. Each network 
was trained end to end, i.e., optimizing all the parame-
ters, in a supervised learning manner employing each of 
the three sets of pretrained weights as initial weights.

It is noteworthy that class imbalance is a pervasive issue 
in numerous medical image datasets, often resulting 
in biased model training that disproportionately favors 
the majority class [55]. This is evidenced in our study by 
Table 2, which presents the distribution of positive labels 
for each dataset, revealing distinct variations in distribu-
tions. To address this concern, binary weighted cross-
entropy [56], a modification of the standard binary cross-
entropy, was utilized as our loss function. Weights for 
individual labels were determined based on the inverse 
frequency of each label within the training data for the 
respective dataset [3, 25–27].

Step 3: evaluation and statistical analysis
Test sets, held out from the training sets of each data-
set, remained consistent across all experiments for 
benchmarking. The primary evaluation metric for our 
study was the area under the receiver operating char-
acteristic curve (ROC-AUC), supported by accuracy, 
specificity, and sensitivity, calculated with a thresh-
old that was determined according to the Youden’s 
criterion [57]. We employed bootstrapping [58] with 
replacement, on each test set with 1,000 redraws for 
each ROC-AUC value to determine the statistical 
spread in terms of mean ± standard deviation and to 
calculate p-values. Multiplicity-adjusted p-values were 
determined based on the false discovery rate to account 
for multiple comparisons, and the family-wise alpha 
threshold was set at 0.050.

Results
Pretraining with SSL versus SL for medical AI models
We compare two settings for the pretraining stage of 
AI models: in the first setting, pretraining is performed 
using SSL on the DINOv2 [18] dataset; in the second 
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setting, pretraining is done with SL on ImageNet-21  K 
[13]. For both settings, we subsequently fine-tune the 
AI model on radiographs to classify the presence of a 
disease. We consistently observe superior classification 
performance for the first setting. The models that were 
pretrained with SSL exhibit significantly superior per-
formance in terms of the average over all ROC-AUC val-
ues for individual labels as compared to those pretrained 
with SL for all datasets (VinDr-CXR 88.92 ± 4.59% 
[mean ± standard deviation] versus 86.38 ± 6.27%; ChestX- 
ray14 79.79 ± 6.55% versus 79.10 ± 6.34%; CheXpert  
80.02 ± 6.60% versus 79.56 ± 6.51%; MIMIC-CXR 80.52 ±  
6.17% versus 79.92 ± 6.35%; UKA-CXR 89.74 ± 3.57% versus  

89.45 ± 3.62%; and PadChest: 87.62 ± 4.86% versus 87.12 ± 
 5.05%; p < 0.001 for all dataset pairs). Figures  3 and 4 
display the receiver operating characteristic curves for 
all individual labels, encompassing a total of 30 unique 
labels, which consist of 22 specific imaging findings and 
healthy participants, across each dataset for both meth-
odologies. Table  3 provides a detailed breakdown of 
the classification targets for each dataset, and Table  4 
provides a comprehensive comparison of the average 
ROC-AUC, accuracy, sensitivity, and specificity for each 
fine-tuning dataset. For an even more detailed compari-
son, Supplementary Tables S1–S6 provide individual 
evaluation metrics for each label.

Table 3 Breakdown of labels used for multilabel diagnosis across datasets in this study

The table details the specific labels applied to each dataset’s images for diagnostic purposes. The study’s multilabel diagnosis tasks involved predicting 11, 14, 10, 10, 
9, and 17 distinct labels for the VinDr-CXR, ChestX-ray14, CheXpert, MIMIC-CXR, UKA-CXR, and PadChest datasets, respectively. Notably, UKA-CXR delineates separate 
labels for the presence of atelectasis, pleural effusion, and pneumonia for both the right and left sides of the chest. The “Healthy” label signifies cases without any 
disease diagnosis. ✔ label utilized in this study

COPD Chronic obstructive pulmonary disease

Labels VinDr-CXR ChestX-ray14 CheXpert MIMIC-CXR UKA-CXR PadChest

Cardiomegaly ✔ ✔ ✔ ✔ ✔ ✔
Pleural effusion ✔ ✔ ✔ ✔ ✔
Pleural effusion right ✔
Pleural effusion left ✔
Pleural thickening ✔ ✔ ✔
Infiltrates ✔
Pneumonia ✔ ✔ ✔ ✔ ✔
Pneumonia right ✔
Pneumonia left ✔
Pneumothorax ✔ ✔ ✔ ✔ ✔
Atelectasis ✔ ✔ ✔ ✔ ✔
Atelectasis right ✔
Atelectasis left ✔
Consolidation ✔ ✔ ✔ ✔ ✔
Congestion ✔ ✔
Nodule/mass ✔ ✔
Nodule ✔
Mass ✔
Fibrosis ✔ ✔
Hernia ✔ ✔
Emphysema ✔ ✔
Edema ✔
Aortic elongation ✔
Kyphosis ✔
COPD ✔
Scoliosis ✔
Lung opacity ✔ ✔ ✔
Lung lesion ✔ ✔
Fracture ✔ ✔
No finding (healthy) ✔ ✔ ✔ ✔ ✔ ✔
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SSL pretraining on non-medical images versus SL 
pretraining on radiographs
In the preceding experiment, we investigated pretrain-
ing using SSL and SL on non-medical images. An alter-
native approach to such pretraining on unrelated tasks 
is pretraining on medical images, potentially even with 
SL if labels are available. Here, we compare two set-
tings: (i) pretraining with SSL on non-medical images (as 
before) versus (ii) pretraining with SL on 210,625 radio-
graphs from the MIMIC-CXR [24] dataset. This dataset 
is currently the most comprehensive dataset of chest 
radiographs that is publicly available. We pretrained the 
network on this dataset by aligning all labels from the 

MIMIC-CXR dataset with each of the other datasets 
respectively, selecting all overlapping labels. This led to 
the identification of up to 10 different imaging findings 
for each dataset.

For both scenarios, we then trained networks for the task 
at hand, i.e., for classification in VinDr-CXR, ChestX-ray14, 
CheXpert, UKA-CXR, and PadChest. Table  5 presents 
the ROC-AUC values for individual labels for each data-
set. We find that for large datasets, approach (i) performs 
better CheXpert (ROC-AUC 80.02 ± 6.60% [mean ± stand-
ard deviation] versus 79.45 ± 6.60%, p < 0.001) and UKA-
CXR (ROC-AUC 88.49 ± 2.65% versus 88.32 ± 2.77%, 
p = 0.001). However, for small datasets, approach (ii) 

Fig. 3 Evaluation contrasting pretraining using self-supervised learning (SSL) on non-medical images with supervised learning (SL). Models 
were either pretrained with SSL (DINOv2, shown in blue) or with SL (ImageNet [13], shown in orange) on non-medical, non-medical images. 
Subsequently, these models were fine-tuned on chest radiographs in a supervised manner for six datasets: (a) VinDr-CXR [21], (b) ChestX-ray14 
[22], (c) CheXpert [23], (d) MIMIC-CXR [24], (e) UKA-CXR [3, 25–28], and (f) PadChest [29] with fine-tuning training images of n = 15,000, n = 86,524, 
n = 128,356, n = 170,153, n = 153,537, and n = 88,480, respectively, and test images of n = 3,000, n = 25,596, n = 39,824, n = 43,768, n = 39,824, 
and n = 22,045, respectively. The box plots present the mean area under receiver operating characteristic curve (ROC-AUC) values across all labels 
within each dataset. A consistent pattern emerges, showing SSL-trained models outperforming SL pretrained ones. Crosses denote means; boxes 
define the interquartile range (from Q1 to Q3), with the central line signifying the median (Q2). Whiskers stretch to 1.5 times the interquartile range 
above Q3 and below Q1. Points beyond this range are marked as outliers. Statistical differences between the DINOv2 and ImageNet approaches 
were evaluated through bootstrapping, with corresponding p-values displayed. Note the varying y-axis scales
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Fig. 4 Receiver operating characteristic (ROC) curves of individual labels comparing diagnostic models pretrained with self-supervised learning 
(SSL) on non-medical images against fully supervised learning (SL) on non-medical images. Models pretrained via SSL used DINOv2 (solid lines), 
while SL utilized ImageNet (dotted lines). These models were subsequently fine-tuned in a supervised manner on chest radiographs from six 
datasets: VinDr-CXR, ChestX-ray14, CheXpert, MIMIC-CXR, UKA-CXR, and PadChest. The number of training images for SL fine-tuning for each 
dataset was n = 15,000, n = 86,524, n = 128,356, n = 170,153, n = 153,537, and n = 88,480, and test images were n = 3,000, n = 25,596, n = 39,824, 
n = 43,768, n = 39,824, and n = 22,045, respectively. Corresponding area under ROC curve values for each label, presented as mean ± standard 
deviation (95% CI), is provided in the bottom right, contrasting DINOv2 versus ImageNet pretraining strategies
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performs better VinDr-CXR (ROC-AUC = 91.58 ± 3.45% 
versus 94.47 ± 3.30%, p < 0.001); ChestX-ray14 (ROC-AUC 
77.99 ± 6.38% versus 78.68 ± 6.77%, p < 0.001); and PadChest 
(ROC-AUC 87.89 ± 4.30% versus 89.30 ± 4.45%, p < 0.001).

Together, these results show that both approaches (i) 
and (ii) have their merits in different regimes: (i) can help 
to steer the network in the right direction when only few 
data are available for the training stage, while (ii) prevails 
when enough training images are available such that fine-
tuning of the pretrained weights can be performed on an 
unrelated task.

Discussion
We investigated different pretraining methods for the 
task of image classification in thoracic radiographs. Since 
AI performance is often dependent on the training and 
testing domain, we gathered over 800,000 publicly avail-
able chest radiographs spanning six distinct institutions 
across the USA, Europe, and Asia to test our results over 
a wide variety of different data sources.

Our primary exploration centered around gaining 
an understanding of the effectiveness and benefits of 
SSL on non-medical images for the follow-up task of 
image classification on chest radiographs. We compared 
three different pretraining strategies: SSL pretrain-
ing on a dataset of non-medical images (DINOv2 [18]), 
supervised pretraining on non-medical images (Ima-
geNet-21 K [13]), and supervised pretraining on medical 
images (MIMIC-CXR [24]). We employed a state-of-the-
art vision transformer [8] architecture and found that 
SSL on non-medical images serves as a highly effective 
method for initializing network weights that significantly 

and consistently improve the ROC-AUC of AI models 
for chest radiograph classification. Notably, our results 
demonstrate that under specific circumstances, initial-
izing networks with weights obtained via SSL from non-
medical images such as the LVD-142  M dataset [18] 
can outperform initialization with weights derived from 
supervised learning on a task-specific, large-scale chest 
radiograph dataset. This research opens up new perspec-
tives in the application of AI within the medical image 
analysis domain and has particular importance for situ-
ations where large, modality-specific public datasets for 
pretraining are not available.

The significantly superior performance of models pre-
trained with SSL on non-medical images based on the 
DINOv2 [18] method, compared to those pretrained 
with supervised learning on the ImageNet-21  K [13] 
dataset, substantiates the claim that weights derived from 
SSL with non-medical images might better generalize to 
non-related tasks than weights derived from SL on non-
medical images.

It is important to note that these findings were consist-
ent across a variety of imaging findings and across data-
sets of different origins covering over 800,000 images.

Interestingly, even when compared to supervised learn-
ing with a dedicated and the largest public chest radiograph 
dataset (MIMIC-CXR [24]) to date, the pretraining with 
SSL on non-medical images demonstrated competitive 
performance. These results hold promising implications, 
especially when access to large amounts of annotated medi-
cal data is a challenge. Hence, leveraging SSL on non-med-
ical images can be an effective strategy to compensate for 
the scarcity of annotated medical datasets.

Table 4 Comparative evaluation of pretraining with self-supervision on non-medical images versus full supervision on non-medical 
images

The metrics used for comparison include the area under the receiver operating characteristic curve (ROC-AUC), accuracy, sensitivity, and specificity percentage values, 
all averaged over all labels for each dataset. The datasets in question are those pretrained with self-supervision on non-medical images (DINOv2 [18]) and those under 
full supervision with non-medical images (ImageNet-21 K [13]). The datasets employed in this study are VinDr-CXR, ChestX-ray14, CheXpert, MIMIC-CXR, UKA-CXR, and 
PadChest, with fine-tuning training images totals of n = 15,000, n = 86,524, n = 128,356, n = 170,153, n = 153,537, and n = 88,480, respectively, and test images totals of 
n = 3,000, n = 25,596, n = 39,824, n = 43,768, n = 39,824, and n = 22,045, respectively. For more information on the different labels used for each dataset, please refer to 
Table 3. p-values are given for the comparison between the ROC-AUC results obtained from DINOv2 and ImageNet-21 K pretraining weights

Pretraining VinDr-CXR ChestX-ray14 CheXpert MIMIC-CXR UKA-CXR PadChest

ROC-AUC DINOv2 88.92 ± 4.59 79.79 ± 6.55 80.02 ± 6.60 80.52 ± 6.17 89.74 ± 3.57 87.62 ± 4.86

ImageNet-21 K 86.38 ± 6.27 79.10 ± 6.34 79.56 ± 6.51 79.92 ± 6.35 89.45 ± 3.62 87.12 ± 5.05

Accuracy DINOv2 82.49 ± 6.92 72.81 ± 7.43 72.37 ± 8.29 73.08 ± 5.32 80.68 ± 4.00 79.82 ± 6.69

ImageNet-21 K 81.92 ± 6.50 71.69 ± 7.29 71.36 ± 8.39 73.00 ± 5.37 79.94 ± 4.29 78.73 ± 7.49

Sensitivity DINOv2 83.58 ± 6.93 73.14 ± 8.94 75.68 ± 6.45 74.87 ± 10.01 83.42 ± 4.57 81.66 ± 6.91

ImageNet-21 K 78.50 ± 8.97 73.04 ± 8.23 75.43 ± 6.00 73.91 ± 9.51 83.76 ± 4.37 81.80 ± 5.30

Specificity DINOv2 81.69 ± 7.37 73.32 ± 8.00 70.95 ± 9.69 72.25 ± 6.04 80.32 ± 4.44 79.49 ± 6.97

ImageNet-21 K 81.80 ± 6.88 72.10 ± 7.94 70.23 ± 9.33 72.30 ± 6.16 79.39 ± 4.61 78.37 ± 7.80

ROC-AUC p-value 0.001 0.001 0.001 0.001 0.001 0.001



Page 14 of 17Tayebi Arasteh et al. European Radiology Experimental            (2024) 8:10 

Ta
bl

e 
5 

Co
m

pa
ris

on
 o

f p
re

tr
ai

ne
d 

w
ei

gh
ts

: s
el

f-s
up

er
vi

se
d 

le
ar

ni
ng

 w
ith

 la
rg

e 
no

n-
m

ed
ic

al
 im

ag
es

 v
er

su
s s

up
er

vi
se

d 
le

ar
ni

ng
 w

ith
 a

 la
rg

e,
 ta

sk
-s

pe
ci

fic
 c

he
st

 ra
di

og
ra

ph
 d

at
as

et

Th
e 

ta
bl

e 
sh

ow
ca

se
s 

ar
ea

 u
nd

er
 re

ce
iv

er
 o

pe
ra

tin
g 

ch
ar

ac
te

ris
tic

 c
ur

ve
 (R

O
C-

AU
C)

 p
er

ce
nt

ag
es

 fo
r e

ac
h 

in
di

vi
du

al
 la

be
l a

cr
os

s 
da

ta
se

ts
: V

in
D

r-
CX

R,
 C

he
st

X-
ra

y1
4,

 C
he

Xp
er

t, 
U

KA
-C

XR
, a

nd
 P

ad
Ch

es
t. 

Th
es

e 
da

ta
se

ts
 w

er
e 

pr
et

ra
in

ed
 u

si
ng

 S
SL

 o
n 

no
n-

m
ed

ic
al

 im
ag

es
 (D

IN
O

v2
) a

nd
 fu

lly
 s

up
er

vi
se

d 
le

ar
ni

ng
 o

n 
a 

de
di

ca
te

d 
ch

es
t r

ad
io

gr
ap

h 
da

ta
se

t (
M

IM
IC

-C
XR

). 
Th

e 
to

ta
l fi

ne
-t

un
in

g 
tr

ai
ni

ng
 im

ag
es

 fo
r V

in
D

r-
CX

R,
 C

he
st

X-
ra

y1
4,

 C
he

Xp
er

t, 
U

KA
-C

XR
, a

nd
 P

ad
Ch

es
t w

er
e 

n 
=

 1
5,

00
0,

 n
 =

 8
6,

52
4,

 n
 =

 1
28

,3
56

, n
 =

 1
53

,5
37

, a
nd

 n
 =

 8
8,

48
0,

 re
sp

ec
tiv

el
y,

 w
ith

 c
or

re
sp

on
di

ng
 te

st
 im

ag
es

 to
ta

ls
 o

f n
 =

 3
,0

00
, n

 =
 2

5,
59

6,
 n

 =
 3

9,
82

4,
 n

 =
 3

9,
82

4,
 a

nd
 n

 =
 2

2,
04

5,
 re

sp
ec

tiv
el

y.
 

p-
va

lu
es

 s
ig

ni
fy

 th
e 

co
m

pa
ris

on
 b

et
w

ee
n 

th
e 

av
er

ag
e 

RO
C-

AU
Cs

 fr
om

 D
IN

O
v2

 a
nd

 M
IM

IC
-C

XR
. F

or
 d

et
ai

ls
 a

bo
ut

 e
ac

h 
da

ta
se

t’s
 la

be
ls

, r
ef

er
 to

 T
ab

le
 3

N
/A

 N
ot

 a
va

ila
bl

e

La
be

ls
Vi

nD
r-

CX
R

Ch
es

tX
-r

ay
14

Ch
eX

pe
rt

U
KA

-C
XR

Pa
dC

he
st

D
IN

O
v2

M
IM

IC
-C

XR
D

IN
O

v2
M

IM
IC

-C
XR

D
IN

O
v2

M
IM

IC
-C

XR
D

IN
O

v2
M

IM
IC

-C
XR

D
IN

O
v2

M
IM

IC
-C

XR

Ca
rd

io
m

eg
al

y
94

.5
3 

±
 0

.5
2

97
.1

7 
±

 0
.3

4
88

.5
1 

±
 0

.4
7

89
.5

4 
±

 0
.4

4
87

.9
6 

±
 0

.3
1

87
.2

7 
±

 0
.3

1
85

.8
6 

±
 0

.1
8

85
.4

5 
±

 0
.1

8
92

.3
0 

±
 0

.2
7

92
.6

8 
±

 0
.2

6

Pl
eu

ra
l e

ffu
si

on
97

.6
2 

±
 0

.6
8

98
.3

1 
±

 0
.5

2
81

.0
1 

±
 0

.3
2

82
.0

0 
±

 0
.3

2
87

.8
1 

±
 0

.2
0

87
.6

4 
±

 0
.2

0
91

.2
3 

±
 0

.1
9

91
.4

1 
±

 0
.1

9
95

.6
6 

±
 0

.2
6

95
.8

5 
±

 0
.2

4

Pn
eu

m
on

ia
91

.9
9 

±
 0

.9
8

94
.4

6 
±

 0
.6

6
70

.1
7 

±
 1

.0
3

69
.8

5 
±

 1
.0

4
76

.4
2 

±
 0

.8
8

76
.2

9 
±

 0
.8

4
92

.1
5 

±
 0

.1
8

91
.9

4 
±

 0
.1

8
83

.9
3 

±
 0

.6
7

84
.9

6 
±

 0
.6

6

A
te

le
ct

as
is

88
.5

5 
±

 1
.7

1
92

.2
1 

±
 1

.4
8

75
.5

6 
±

 0
.4

3
75

.8
7 

±
 0

.4
1

69
.5

7 
±

 0
.4

0
69

.2
8 

±
 0

.3
9

86
.3

6 
±

 0
.2

3
86

.3
0 

±
 0

.2
4

83
.6

2 
±

 0
.5

8
83

.5
9 

±
 0

.5
5

Co
ns

ol
id

at
io

n
91

.3
5 

±
 1

.5
6

94
.8

2 
±

 0
.7

4
73

.6
0 

±
 0

.5
7

75
.1

1 
±

 0
.5

4
75

.1
4 

±
 0

.5
6

74
.1

3 
±

 0
.5

6
N

/A
N

/A
88

.2
6 

±
 0

.8
2

89
.9

5 
±

 0
.7

6

Pn
eu

m
ot

ho
ra

x
90

.9
6 

±
 2

.9
1

97
.3

9 
±

 1
.2

7
84

.7
0 

±
 0

.3
8

85
.9

3 
±

 0
.3

7
87

.2
9 

±
 0

.3
3

86
.0

3 
±

 0
.3

4
N

/A
N

/A
86

.3
7 

±
 2

.0
1

92
.8

9 
±

 1
.0

0

Lu
ng

 o
pa

ci
ty

86
.8

6 
±

 1
.2

7
87

.8
9 

±
 1

.2
6

N
/A

N
/A

73
.9

8 
±

 0
.2

8
73

.6
2 

±
 0

.2
9

N
/A

N
/A

N
/A

N
/A

Lu
ng

 le
si

on
N

/A
N

/A
N

/A
N

/A
76

.5
6 

±
 0

.7
3

75
.7

9 
±

 0
.7

3
N

/A
N

/A
N

/A
N

/A

Fr
ac

tu
re

N
/A

N
/A

N
/A

N
/A

77
.9

3 
±

 0
.6

7
76

.9
2 

±
 0

.6
6

N
/A

N
/A

N
/A

N
/A

N
o 

fin
di

ng
 (h

ea
lth

y)
90

.7
9 

±
 0

.5
6

93
.5

1 
±

 0
.4

6
72

.3
7 

±
 0

.3
3

72
.4

8 
±

 0
.3

3
87

.6
1 

±
 0

.3
0

87
.5

3 
±

 0
.3

1
86

.8
6 

±
 0

.1
8

86
.4

9 
±

 0
.1

8
85

.1
1 

±
 0

.2
6

85
.2

0 
±

 0
.2

6

Av
er

ag
e

91
.5

8 
±

 3
.4

5
94

.4
7 

±
 3

.3
0

77
.9

9 
±

 6
.3

8
78

.6
8 

±
 6

.7
7

80
.0

3 
±

 6
.6

0
79

.4
5 

±
 6

.6
0

88
.4

9 
±

 2
.6

5
88

.3
2 

±
 2

.7
7

87
.8

9 
±

 4
.3

0
89

.3
0 

±
 4

.4
5

p-
va

lu
e

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1



Page 15 of 17Tayebi Arasteh et al. European Radiology Experimental            (2024) 8:10  

Our study, while yielding promising outcomes for 
SSL application with non-medical images in medi-
cal imagery interpretation, is not without constraints, 
suggesting avenues for prospective research. Firstly, 
despite our paired comparison design, we fine-tuned 
all models with radiograph inputs sized 224 × 224. 
However, prior studies [59, 60] employing convolu-
tional networks have determined resolutions between 
256 × 256 and 448 × 448 to be ample for diagnos-
tic purposes in chest radiographs. Moreover, our 
chosen network architecture, the ViT [8], has con-
sistently delivered competitive results in existing lit-
erature [61–63] with 224 × 224 inputs. Secondly, we 
propose to extend the analysis to other medical imag-
ing modalities, such as magnetic resonance imaging, 
computed tomography, or gigapixel imaging in histo-
pathology [64], and for further downstream tasks such 
as segmentation [65]. Our current endeavor serves as 
a starting point for exploration into leveraging freely 
available non-medical images via SSL for medical diag-
nostics. Third, given the multimodal nature of medical 
imaging [63], leveraging SSL for these different medi-
cal imaging types could yield even richer and more 
diverse representations, potentially enhancing the 
diagnostic capabilities of AI models. A persistent chal-
lenge, however, remains in sourcing vast volumes of 
medical images, even if they are unlabeled. Collabora-
tive efforts might be the key to addressing data acces-
sibility challenges.

Our findings highlight the potential of SSL on non-
medical images for network initialization in the task of 
chest radiograph interpretation. The promising results 
of this approach could inspire further exploration of 
SSL strategies in the realm of medical imaging, particu-
larly when access to large, annotated medical datasets is 
limited.
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