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Abstract 

“Garbage in, garbage out” summarises well the importance of high-quality data in machine learning and artificial 
intelligence. All data used to train and validate models should indeed be consistent, standardised, traceable, correctly 
annotated, and de-identified, considering local regulations. This narrative review presents a summary of the tech-
niques that are used to ensure that all these requirements are fulfilled, with special emphasis on radiological imaging 
and freely available software solutions that can be directly employed by the interested researcher. Topics discussed 
include key imaging concepts, such as image resolution and pixel depth; file formats for medical image data stor-
age; free software solutions for medical image processing; anonymisation and pseudonymisation to protect patient 
privacy, including compliance with regulations such as the Regulation (EU) 2016/679 “General Data Protection Regula-
tion” (GDPR) and the 1996 United States Act of Congress “Health Insurance Portability and Accountability Act” (HIPAA); 
methods to eliminate patient-identifying features within images, like facial structures; free and commercial tools 
for image annotation; and techniques for data harmonisation and normalisation.

Relevance statement This review provides an overview of the methods and tools that can be used to ensure high-
quality data for machine learning and artificial intelligence applications in radiology.

Key points
• High-quality datasets are essential for reliable artificial intelligence algorithms in medical imaging.

• Software tools like ImageJ and 3D Slicer aid in processing medical images for AI research.

• Anonymisation techniques protect patient privacy during dataset preparation.

• Machine learning models can accelerate image annotation, enhancing efficiency and accuracy.

• Data curation ensures dataset integrity, compliance, and quality for artificial intelligence development.
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Graphical Abstract

Background
High-quality datasets have paramount importance in 
artificial intelligence (AI). “Garbage in, garbage out” is 
indeed a universally recognised principle not only of 
machine learning (ML) but of computing in general. All 
tasks aimed at ensuring that the data used to train and 
validate AI-based algorithms are consistent, standard-
ised, traceable, and correctly annotated therefore consti-
tute a critical part of the development of valid, reliable, 
and robust tools.

A bottleneck for the creation of large databases to train 
AI models is the time-consuming task of image anno-
tation. In fact, hospitals have large quantities of images 
available that cannot be used to train supervised learn-
ing models due to the lack of annotation. In the last years, 
many works focused on the development of image anno-
tation tools to speed up the process [1–3].

An important role during database creation is played 
by the anonymisation process to comply with the privacy 
regulations. The anonymisation can be done manually, 
but some pipelines have been proposed to automatise 
and speed up the process [4]. Some of the presented tools 
have been embedded in web applications that can be also 
easily used by healthcare professionals without a techni-
cal background.

This narrative review aims to describe different aspects 
related to the creation and use of medical imaging data-
bases in the ML domain. The focus is on the need to 
standardise image curation and annotation, which would 
allow for example the implementation of “federated 
learning”, a paradigm that seeks to address the problem of 
data governance and privacy by training algorithms with-
out exchanging the data itself [5]. Indeed, interoperability 
among hospitals is prevented because of different ways 
to store data. To overcome this problem, there is some 
research trying to address the interoperability of image 
annotation [6].

After a brief introduction to medical image formats, 
basic image processing concepts, and software that can 
be used to work with such images, this narrative review 
describes the cornerstones of generating a high-quality 
imaging dataset, namely de-identification, annotation, 
and curation, with special emphasis on free software 
that can be readily used for this purpose by interested 
researchers. The key information, namely the steps to 
generate a radiological dataset to be used for develop-
ing ML applications, is summarised in Table 1. The paper 
is addressed to all healthcare professionals both with 
and without a technical background; engineers working 
in healthcare have an overview of the state-of-the-art 
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methods from which they can start to improve existing 
tools while clinicians can become aware of the differ-
ent tools and they can use to automatise some routine 
processes.

Image formats
Medical images may be of different types. A medical 
image dataset can be made of images representing the 
projection of an anatomical volume onto an imaging 
plane (two-dimensional [2D] image), a series of images 
representing thin slices through a volume (each slice 
is 2D, and they constitute a three-dimensional [3D] 
volume), a series of data from a volume (3D), or multi-
ple acquisitions of the same tomographic or volumetric 
image over time to produce a dynamic series of acquisi-
tions (four-dimensional [4D]) [7]. The reference format 
for storing and transmitting medical images in healthcare 
institutions is “Digital Imaging and Communications in 
Medicine” (DICOM). DICOM has been first released in 
the 1980s and has become a standard globally accepted 
and employed by vendors of imaging equipment and IT 
systems, including Picture Archiving and Communica-
tion Systems (PACS) which are the foundation of imaging 
databases in almost every hospital [8]. Due to its back-
ward compatibility, which has been implemented since 
1993, the use of DICOM ensures interoperability between 
any equipment and storage solutions, either modern or 
more dated, or marketed by different manufacturers.

A DICOM object consists of a set of attributes (patient 
name, identifier, study date, etc.). Pixel data, i.e., the 
image itself, is itself an attribute, while each object can 
contain only a one-pixel data attribute, such an attrib-
ute can include various “frames”, practically allowing for 
storing multi-frame data in a single file. The pixel data 

attribute can be uncompressed or compressed, in the lat-
ter case either losslessly or with an algorithm such as the 
Joint Photographic Experts Group (JPEG) format.

Although DICOM is the de facto standard used by 
almost every vendor, other file formats are widely used 
in medical imaging, especially among researchers and 
AI developers. Since backward compatibility is not man-
datory for such applications, more modern formats, 
allowing for example for easier management of a whole 
series of images in a single file, have found a place in 
the field. Well-known examples of such formats include 
the Neuroimaging Informatics Technology Initiative 
(NIfTI) (https:// nifti. nimh. nih. gov/), Analyze, and the 
Whole Slide Image (WSI) format [9]. The main differ-
ence between DICOM and NIfTI/Analyze is that the raw 
image data in the latter formats are saved as a 3D image, 
while in DICOM, they are saved as 2D image slices [10]. 
Besides, Analyze and NIfTI have a simpler structure in 
comparison with DICOM and are easier to parse. As a 
matter of fact, DICOM is not very efficient by current 
standards and remains the dominant format for clini-
cal applications only due to the backward compatibility 
issue. The NIfTI format is mainly used for neuroimaging 
since it was developed in that field, but it can be effec-
tively employed for any medical applications [11]. Ana-
lyze files are usually stored as a 2-item file where one 
item contains the pixel information and the other item 
the metadata [7], while NIfTI contains all information in 
a single file.

DICOM and NIfTI support compression and encryp-
tion, while Analyze does not. The WSI file format stores the 
high-resolution histological image in a pyramidal file where 
we can access the same image at different resolutions. 
Moreover, as for DICOM files, WSI also contains metadata. 

Table 1 Workflow to create a dataset of annotated images to be used for machine learning applications

Step Description

Definition of the data of interest Specifying what kind of data should be collected and annotated for the project, in terms of imaging modality, 
protocol, anatomy, pathology, and clinical question that are relevant for the application.

Data collection and de-identification Acquiring the imaging data from the source, such as a PACS system, a DICOM server, or a public repository. 
The data should be representative of the target population and environment. Data must be de-identified 
by removing any personal or sensitive information that can identify the patients or the institutions. Compliance 
with the ethical and legal regulations, such as HIPAA or GDPR, must be ensured.

Annotation Labelling the data with the information that is needed for the machine learning task, such as bounding boxes, 
polygons, masks, or tags. A standard protocol or guideline for annotation should be followed. The annotation 
must be accurate, consistent, and complete. Either custom computer programs or existing software, free or pro-
prietary, may be used to facilitate this process.

Curation Reviewing and validating the annotated data and resolving any errors or discrepancies. Multiple experts or con-
sensus methods to check the quality and reliability of the annotation may be employed. Software tools can be 
used to manage and monitor the annotation process.

Storage Storing and organising the annotated data in a format that is suitable for machine learning, such as DICOM, NIfTI, 
or PNG. Data must be secure and accessible for the machine learning framework and model. Specific software 
tools can be employed to track and version the data.

https://nifti.nimh.nih.gov/
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WSI was developed specifically for digital pathology lim-
iting its actual use to a very specific domain [12]. Com-
puter languages used for ML applications such as “Python” 
(https:// www. python. org/) and “R” (https:// www.r- proje 
ct. org/) provide libraries to read and write these file for-
mats, as well as DICOM files. Standard image formats not 
developed for medical use such as Tagged Image File For-
mat (TIFF), Bitmap Image File (BMP), and Portable Net-
work Graphics (PNG) are also commonly used in research, 
typically in conjunction with files containing metadata in 
plain text or standard formats such as eXtensible Markup 
Language (XML, https:// www. w3. org/ TR/ REC- xml/) and 
JavaScript Object Notation (JSON, https:// www. json. org/).

Imaging key concepts
Medical images have a set of features that should be con-
sidered when they are processed: the pixel depth, the 
photometric interpretation, the metadata, and the pixel 
data. The latter two have already been mentioned in the 
previous paragraph and will therefore not be detailed 
further.

Pixel depth indicates how many bits are used to dis-
play the information of a single pixel. A bit is the smallest 
building block of digital information, and it can assume 
only two values, namely 0 or 1. In general, an image can 
be displayed with 2n − 1 intensity levels where n is the 
number of bits. For a binary image (only black and white), 
we need, for each pixel, only 1 bit that can have a value of 
0 (black) or 1 (white). Grayscale images are usually rep-
resented as 8-bit images, and so, the pixels can assume 
values from 0 (black) to 255 (white); 12-bit or 16-bit pixel 
depths are also common in medical imaging [13]. The 
photometric interpretation indicates if the pixel data 
should be interpreted as a colour or a grayscale image.

X-rays, computed tomography (CT), and magnetic 
resonance imaging (MRI) images are usually stored as 
grayscale images where each pixel has a unique value. 
Positron emission tomography and single-photon emis-
sion tomography are typically displayed with a colour 
map, but the pixel information has only one value as for 
the previously presented images. These images are said 
to be in pseudo-colour [7]. To have true colour images, 
the machine acquires more samples for each pixel, and 
using colour models [14] converts the samples into 
colours. A typical colour model is the “red, green, and 
blue” (RGB), where the pixel that is displayed should 
be considered as a combination of the three primary 
colours, and so three samples for each pixel are stored 
[15]. Each pixel sample belongs to a so-called chan-
nel, and in fact, colour images are known as 3-chan-
nel images. Usually, RGB images, such as for example 
ultrasound images, are referred to as 24-bit colour 
images (8-bit for each channel). An example of RGB 

images is ultrasound images. The metadata, in addition 
to the set of attributes presented in the previous para-
graph, contain information about the image acquisition 
and the image features such as resolution, pixel depth, 
and photometric information. Moreover, metadata can 
include data about radiologists’ annotations that can be 
used both for research and for patient retrieval in clini-
cal studies. Finally, as explained before, the pixel data 
stores the image itself, and so, it contains the matrix 
with the numbers representing the pixel intensities.

Free software for medical imaging
The scientific research community has always shown 
great interest in free software and substantially contrib-
uted to the development of publicly available software 
for several applications. Image processing, including 
tasks that are more relevant for AI research such as 
anonymisation, curation, segmentation, and annota-
tion of medical images, is no exception. As a matter 
of fact, AI developers can directly access, and modify 
and redistribute, high-quality software made avail-
able on university repositories or cloud services such 
as Sourceforge (https:// sourc eforge. net/) and GitHub 
(https:// github. com/).

ImageJ [16, 17] (https:// imagej. nih. gov/ ij/) is a multi-
platform general-purpose software for image process-
ing and analysis written in Java. It is freely available in 
the public domain, with no licence required. It supports 
a large variety of file formats including all those used in 
medical imaging, either in its native version or through 
widely available plugins. Indeed, ImageJ has been used 
as a development platform for advanced image process-
ing algorithms taking advantage of its extensible nature; 
hundreds of plugins have been made available by vari-
ous academic developers, many of which are conveni-
ently bundled in a single downloadable package, Fiji 
[18] (https:// imagej. net/ softw are/ fiji/) (Fig.  1). Besides 
plugin-based extensions, ImageJ offers several tools to 
perform operations on images such as custom filtering, 
edge detection, sharpening, and geometric transforma-
tion, as well as analysis tools such as calculation of areas, 
distances, angles, and descriptive statistics on the value 
of selected areas. ImageJ directly supports multidimen-
sional data such as image stacks from CT or MRI.

3D Slicer [19] (https:// www. slicer. org/) is a software 
package offering advanced features for image process-
ing with a focus on medical imaging. It provides support 
for multidimensional data in various formats includ-
ing DICOM, as well as capabilities such as manual and 
semiautomatic image segmentation, image registration, 
advanced visualisation and rendering, measurement of 
areas, distances and angles, 3D printing, and virtual real-
ity support (Fig.  2). 3D Slicer has a modular, extensible 

https://www.python.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.w3.org/TR/REC-xml/
https://www.json.org/
https://sourceforge.net/
https://github.com/
https://imagej.nih.gov/ij/
https://imagej.net/software/fiji/
https://www.slicer.org/
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structure that has been exploited by its large community 
of users to develop tools for AI-based segmentation and 
surgical planning. Thanks to its features, user-friendly 
interface, and scripting capabilities, it is one of the most 

employed solutions to generate ground truth data for the 
development of AI tools for image processing.

ITK-Snap [20] (http:// www. itksn ap. org/) is a free soft-
ware application based on the Insight Toolkit (ITK) 

Fig. 1 A screenshot of Fiji, a version of ImageJ packaged with several plugins

Fig. 2 3D Slicer, a free software package for medical image processing and analysis

http://www.itksnap.org/
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(https:// itk. org/) aimed at providing user-friendly tools 
for manual and computer-assisted image segmentation 
(Fig.  3). ITK-Snap supports all file formats commonly 
employed in medical imaging and offers a multi-window 
interface facilitating visualisation and interaction with 
the images. The built-in semi-automatic tool is based on 
active contours methods; in addition, recent versions of 
ITK-Snap offer a registration feature to improve the man-
agement of multimodal images, as well as a distributed 
segmentation service aimed at allowing cloud-based seg-
mentation through algorithms provided by the developer 
community on the Internet.

Several other free software packages and libraries have 
been developed for medical image processing, such as 
for example Icy (https:// icy. bioim agean alysis. org/) and 
DIPlib (https:// diplib. org/), and are not discussed in this 
paper for the sake of brevity.

Anonymisation and pseudonymisation
Medical images used for the development and valida-
tion of AI-based tools are typically de-identified, i.e., 
they do not contain any type of information which can 
lead to an identification of the patient. Deidentifica-
tion aims at preserving the privacy of the patient, in 
turn guaranteeing dignity, respect, and individuality 

[21, 22]. Besides, the use of de-identified data in medi-
cal research favours effective communication and trust 
in the relationship between patient and physician, with 
direct consequences on the quality of the provided 
healthcare as well as of the collected data.

Image deidentification is strictly governed by local, 
national, and supranational regulations, such as 
the General Data Protection Regulation (GDPR) in 
the European Union and the HIPAA (Health Insur-
ance Portability and Accountability Act) in the USA. 
Depending on the specific research project or clinical 
trial, pseudonymisation may be employed instead of 
anonymisation; in the former case, the patient’s identi-
fiable information is replaced with artificial identifiers, 
i.e., pseudonyms, and such de-identified information 
is used for data analysis and processing [23]. By keep-
ing track of the pseudonyms, this approach allows for 
restoring the original information at a later stage. In 
contrast, in full anonymisation, any link between per-
sonally identifiable information and the patient’s data 
and images is irrevocably lost. The process of anonymi-
sation can involve several steps including removing 
identifiers, generalising data [24] (for example, round-
ing ages to the nearest decade), aggregating data (for 
example, stratify patients in age ranges), and further 

Fig. 3 ITK-Snap, a tool for manual and semi-automatic image segmentation using active contours

https://itk.org/
https://icy.bioimageanalysis.org/
https://diplib.org/
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randomisation (shuffling data not useful to the analysis 
to make correlation impossible) [25].

One fundamental aspect is obtaining patient consent 
for data usage. GDPR and HIPAA both emphasise the 
need for informed and voluntary patient consent before 
any data collection or processing can occur. This con-
sent ensures that patients are aware of how their data 
will be used, promoting transparency and trust between 
healthcare providers and patients [26]. Data encryp-
tion and access control are also important. Encrypting 
data ensures that even if unauthorised access occurs, 
the information remains unintelligible [27, 28]. Access 
controls limit who can view, edit, or delete data, ensur-
ing that only authorised personnel have access to patient 
records.

Another critical aspect of data privacy regulations 
is the requirement for data retention periods. GDPR 
and HIPAA stipulate specific timeframes for how long 
patient data can be retained. This ensures that organi-
sations do not keep data indefinitely, reducing the risk 
of unauthorised access over time [29, 30]. Both GDPR 
and HIPAA require the transparent reporting of data 
breaches. Organisations must inform authorities and 
affected individuals of any data breaches as soon as they 
are discovered. Failure to report breaches can result in 
severe legal consequences, including substantial fines 
and penalties [31]. These regulations are designed to 
hold healthcare organisations accountable for data 
breaches and to protect patient rights and privacy in an 
increasingly digital healthcare landscape. A common 
issue with the regulations is how much healthcare pro-
fessionals know about them. A few studies investigated 
this issue, and the conclusion was that doctors and clini-
cal researchers need to increase their knowledge about 
regulatory aspects [32, 33].

Going into details on how different data formats deal 
with anonymisation and pseudonymisation, the DICOM 
format includes attributes which are used for sensitive 
data allowing for patient identification; other formats 
such as NIfTI also include metadata which can be used 
for patient identification. Anonymising/pseudonymising 
images indeed means deleting such metadata, in the case 
of DICOM by erasing their content or by removing the 
attributes altogether. Attributes that should be deleted 
during de-identification include the patient’s name, 
address, and information about the hospital and referring 
physician.

Most PACS clients allow exporting anonymised 
DICOM files but do not typically offer specific control 
about how the de-identification is performed. In cases in 
which a finer control about de-anonymisation is needed, 
dedicated software should be used. Examples of free de-
identification software include gdcmanon, which is part 

of the GDCM (Grassroots DICOM, http:// gdcm. sourc 
eforge. net/) tool collection to process DICOM files, and 
the Python package dicom-anonymizer (https:// pypi. 
org/ proje ct/ dicom- anony mizer/) which can be conveni-
ently integrated into AI pipelines. Most of the dedicated 
de-anonymisation programmes are compliant with the 
DICOM standard; this is a critical aspect that needs to be 
considered, since an incorrect deletion of attributes may 
render the file not readable by viewers enforcing compli-
ance to the standard.

Besides the attributes containing personal identifiable 
information, the images themselves may allow the identi-
fication of the patient [34]. This is often the case for CT/
MRI scans of the head containing facial features, which 
can potentially provide a recognizable 3D rendering of 
the patient. Several tools have been developed to auto-
matically remove such facial features from scans, includ-
ing the free Python library pydeface (https:// github. com/ 
poldr acklab/ pydef ace) and the command line tool mride-
facer (https:// github. com/ mih/ mride facer) (Fig. 4).

Annotation
Supervised learning is based on the availability of labelled 
training data, i.e., data with an associated “label”; devel-
oping an algorithm based on supervised learning indeed 
implies searching for a function able to map each training 
data point to the corresponding label. Labelled training 
data is also employed in self-supervised learning, typi-
cally as a second step after training a model on automati-
cally generated pseudolabels [35].

In AI-based image processing, generating labelled 
training data involves associating information to each 
image, namely “annotations”. Typical annotations are as 
follows:

• Categorical variables describing the content of the 
image

• Segmentations
• Location and size of one or more regions of interest 

(each one potentially with a further label describing 
its content)

• Coordinates of landmarks

The categorical variable annotation is the most gen-
eral as it requires to associate a single label to an image 
whether it is at image, exam, volume, or patient level. 
In this case, the need for a huge dataset is of paramount 
importance to be able to train the models on many dif-
ferent examples. However, in recent years, computer 
vision researchers started to work on new self-supervised 
techniques overcoming the limitations of small, anno-
tated datasets. The application of self-supervised learning 
in the medical domain is limited, but it can grow in the 

http://gdcm.sourceforge.net/
http://gdcm.sourceforge.net/
https://pypi.org/project/dicom-anonymizer/
https://pypi.org/project/dicom-anonymizer/
https://github.com/poldracklab/pydeface
https://github.com/poldracklab/pydeface
https://github.com/mih/mridefacer
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future. The annotation process for segmentation or local-
isation tasks is more specific, and it requires more time. 
Therefore, generating annotation masks and landmarks 
for images can be a tedious task requiring significant time 
and manual labour, especially in the case of large sets of 
thousands, or even millions, of images.

While the standard image processing packages such 
as ImageJ and 3D Slicer are commonly used to gener-
ate image annotations, dedicated software allowing for 
a fast workflow has been developed and made available, 
both by the free software community and for commer-
cial purposes. An example of a free image annotation 
tool is VGG Image Annotator [36] (https:// www. robots. 
ox. ac. uk/ ~vgg/ softw are/ via), an online tool developed at 
the University of Oxford which allows drawing regions 
of interest by means of manual tools such as circles, rec-
tangles, and polygons, to associate a name to each region 
and one or more customised values (Fig. 5). The annota-
tion can then be downloaded as a text file in the com-
monly employed “Common Objects in Context” (COCO) 
format [37]. Another free online platform is MakeSense.
AI (https:// www. makes ense. ai/), which offers similar 
functionality and is available through the GPLv3 licence. 
Intel Corporation (Santa Clara, CA, USA) also released 
an open-source tool, “Computer Vision Annotation Tool” 

(CVAT) which provides enhanced tools especially target-
ing video files (https:// cvat. org/).

While general-purpose image annotation software is 
gradually becoming dominant for the labelling of medical 
images, software purposely designed for a specific anno-
tation task is still being developed, especially in the aca-
demic context (Fig. 6).

It should be noted that the use of such software has 
major advantages: it does not require uploading images 
to the Internet (which may not be allowed or can be 
restricted by some specific hospitals or by local regula-
tions), and the user interface may be designed to take 
advantage of the characteristics of the data to further 
improve efficiency. On the other side, the development of 
annotation software requires time and human resources, 
and the program itself could not be reused in another 
project without extensive modifications.

Due to the high interest in AI-based computer vision 
for commercial applications, several non-free tools 
offering additional features are also available. Some 
examples of such tools include V7 (V7 Labs, London, 
UK, https:// www. v7labs. com/), Labelbox (Labelbox, San 
Francisco, CA, https:// label box. com/), and DataLoop 
(Dataloop, Herzliya, Israel, https:// datal oop. ai/). These 
packages emphasise efficiency in the management of 

Fig. 4 Example of face removal from MRI scans of the head obtained with “Pydefacer”. The first row depicts the original images, while the second 
shows the same images after the removal of the face. Reprinted from [22] (no permission required)

https://www.robots.ox.ac.uk/~vgg/software/via
https://www.robots.ox.ac.uk/~vgg/software/via
https://www.makesense.ai/
https://cvat.org/
https://www.v7labs.com/
https://labelbox.com/
https://dataloop.ai/
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large datasets, the possibility of scripting and automa-
tising pipelines, team working on the same datasets, 
and fast and simple integration with ML frameworks. 
Access to expert human labellers through the same user 
interface can also be offered, for example, by V7.

Vendors of PACS and medical imaging equipment are also 
offering on a commercial basis software that can be used 
for image annotation and preparation for AI development, 
although detailed documentation about such solutions is 
usually not made publicly available. Examples are Siemens 
Healthineers (Erlangen, Germany) with the “syngo.via” 
client-server platform, and Philips (Amsterdam, The Neth-
erlands) with “IntelliSpace Discovery”. The latter frame-
work provides access to the full process of data preparation, 
model training, and deployment in a research environment, 
including image annotation, advanced visualisation, tools 
for semi-automatic segmentation, and radiomics.

Image annotation software can be coupled with 
AI-based models to facilitate and accelerate the 

annotation itself. For example, pre-trained object 
detection models such as You Only Look Once 
(YOLO) [38] can be used to identify potential regions 
of interest within the image, leaving to the human 
annotator only the task of accepting, rejecting, or 
modifying them and therefore speeding up the whole 
process. Similarly, general-purpose segmentation 
models can be used to provide a pre-annotated image 
to the annotator, who may accept it or edit it if neces-
sary. While such accelerating tools are mostly offered 
by commercial vendors (e.g., V7 and Labelbox), some 
open-source packages such as the “Computer Vision 
Annotation Tool” also provide access to them. The 
practical advantage offered by these tools depends on 
the specific application, besides on the performance 
of the assisting models themselves; since most of them 
are designed to process photographs and web content 
and not medical imaging, their applicability to radiol-
ogy needs to be proven on a case-specific basis.

Fig. 5 Screenshot of VGG Image Annotator, a free online platform for image annotation
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Curation and storage
Data curation involves all procedures aimed at ensur-
ing that the database used for training and validation 
of the models has integrity, consistency, traceability, 
and finally high quality in general [22]. While annota-
tion should be considered an integral part of data cura-
tion, other activities need to complement it in order to 
guarantee the quality of the collected data. Such activi-
ties include searching the database for inconsisten-
cies and duplicates, detecting issues such as missing 
data and broken links, verifying the compliance of the 
images to the DICOM format, and finding images with 
insufficient quality, incorrect fields of view, or acqui-
sition protocols different from those planned for the 
specific study.

While the methods used for data curation depend 
strongly on the specific project and cannot be easily gen-
eralised, software tools that can be useful in several cases 
are available. An example is POSDA (https:// posda. com/), 
an open-source framework aimed at curating databases 
of DICOM files. Among its various features, POSDA 
can check the conformity of the image to the stand-
ard and detect images with the same unique identifier 
through either a user-friendly graphical interface or Perl 
scripting. Other open-source projects that offer similar 

functionalities include DVTk (https:// www. dvtk. org/) and 
dicom3tools (https:// www. dclun ie. com/ dicom 3tools. html).

Another important part of data curation is harmonisa-
tion [35]. Harmonising medical images aims at ensuring 
that variables such as the scanner model, the magnetic 
field intensity for MRI, the spatial resolution, the recon-
struction technique, and the acquisition parameters in 
general do not have a significant effect on the predictions 
of the AI-based tools to be developed. Various pre-pro-
cessing techniques are employed for this purpose includ-
ing denoising, intensity normalisation, and removal of 
artefacts. The choice of the most appropriate harmonis-
ing techniques strictly depends on the imaging modal-
ity; for example, intensity normalisation might not be 
needed in the case of quantitative imaging methods such 
as quantitative CT or T2 mapping in MRI.

The intensity normalisation could influence some tasks 
such as texture classification where the aim is to give 
meaning to pixels’ spatial variations that can provide 
useful insights into tissue structure. Collewet et  al. [39] 
studied the effect of normalisation on MRI images by 
comparing different intensity normalisation techniques, 
namely original grey levels (no normalisation), same 
maximum for all images, same mean for all images, and 
dynamics limited to μ ± 3σ. They found that if the original 

Fig. 6 Custom image annotation software developed by the authors, aimed at localising landmarks (green circles) in 3D images of the spine. 
This Python application runs on a local computer and does not require sharing any information over the Internet. The user interface is designed 
to minimise any human interaction not directly aimed at localising the landmarks on the images, considerably speeding up the annotation 
workflow

https://posda.com/
https://www.dvtk.org/
https://www.dclunie.com/dicom3tools.html
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grey levels are kept, the classification errors depend on 
the acquisition protocol.

Another work [40] also studied the impact of normali-
sation on texture classification. They studied the min-
max, the 1−99%, and the 3σ normalisations and found 
that 1−99% normalisation is the best solution to normal-
ise both CT and MRI images. The 1−99% normalisation 
simply saturates the bottom 1% and the top 1% of all pixel 
values to enhance image contrast. In [41], the authors 
investigated the standardisation of MRI images across 
different machines and protocols. They analysed three 
intensity normalisation methods (Nyul, WhiteStripe, 
Z-score) as well as two methods for intensity discretisa-
tion (fixed bin size and fixed bin number) to understand 
their impact on a tumour grade classification task (bal-
anced accuracy measurement) using five well-established 
ML algorithms. The results showed that the mean bal-
anced accuracy for tumour grade classification was 
increased from 0.67 to 0.82, 0.79 and 0.82 respectively 
using the Nyul, WhiteStripe, and Z-score normalisation 
methods compared to no normalisation.

Concerning X-ray images, Brahim et  al. [42] proposed 
a novel normalisation technique based on a predictive 
modelling using multivariate linear regression to reduce 
the inter-subject variability in patients affected by osteo-
arthritis. This normalisation is preceded by a pre-process-
ing step in the Fourier domain using a circular Fourier 
filter. Using random forests and naive Bayes classifiers, 
the authors achieved good results in terms of accuracy 
(82.98%), sensitivity (87.15%), and specificity (80.65%).

The curated database needs to be stored using technolo-
gies compliant with the criteria of security, integrity, and 
consistency as well [22]. A common solution is to use a 
PACS server, in most projects, the same is already in use 
in the hospital that is collecting the data. However, an 
independent PACS could be set up specifically for the pro-
ject, commonly choosing from several open-source solu-
tions such as Orthanc (https:// www. ortha nc- server. com/) 
and Dicoogle (https:// dicoo gle. com/). In recent years, the 
Extensible Neuroimaging Archive Toolkit (XNAT) plat-
form (https:// www. xnat. org/) is gaining a wider and wider 
user base, especially in academic and research environ-
ments. XNAT is compliant with the DICOM standard 
and privacy regulations but does not follow the PACS 
specifications, making it a more modern and flexible 
alternative which allows easier integration with advanced 
research software.

Conclusions
Ensuring that high-quality images and annotations are 
used for the development and validation of AI-based 
algorithms in radiology has become a widely discussed 
topic in recent years, and its importance for achieving 

high accuracy and robustness in model predictions is 
nowadays universally acknowledged. As shown in this 
narrative review, several software tools are available 
either with open-source licences or commercially and 
can be very effective if used correctly. Local regulations 
regarding privacy, data handling and security, and com-
pliance with standards must guide the definition of the 
image preparation workflow and must be considered 
when choosing the annotation and curation tools.
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