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Abstract 

Background  We aimed to develop a combined model based on radiomics and computed tomography (CT) imaging 
features for use in differential diagnosis of benign and malignant subcentimeter (≤ 10 mm) solid pulmonary nodules 
(SSPNs).

Methods  A total of 324 patients with SSPNs were analyzed retrospectively between May 2016 and June 2022. Malig-
nant nodules (n = 158) were confirmed by pathology, and benign nodules (n = 166) were confirmed by follow-up 
or pathology. SSPNs were divided into training (n = 226) and testing (n = 98) cohorts. A total of 2107 radiomics features 
were extracted from contrast-enhanced CT. The clinical and CT characteristics retained after univariate and multi-
variable logistic regression analyses were used to develop the clinical model. The combined model was established 
by associating radiomics features with CT imaging features using logistic regression. The performance of each model 
was evaluated using the area under the receiver-operating characteristic curve (AUC).

Results  Six CT imaging features were independent predictors of SSPNs, and four radiomics features were selected 
after a dimensionality reduction. The combined model constructed by the logistic regression method had the best 
performance in differentiating malignant from benign SSPNs, with an AUC of 0.942 (95% confidence interval 
0.918–0.966) in the training group and an AUC of 0.930 (0.902–0.957) in the testing group. The decision curve analysis 
showed that the combined model had clinical application value.

Conclusions  The combined model incorporating radiomics and CT imaging features had excellent discriminative 
ability and can potentially aid radiologists in diagnosing malignant from benign SSPNs.

Relevance statement  The model combined radiomics features and clinical features achieved good efficiency in pre-
dicting malignant from benign SSPNs, having the potential to assist in early diagnosis of lung cancer and improving 
follow-up strategies in clinical work.
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Key points   
• We developed a pulmonary nodule diagnostic model including radiomics and CT features.

• The model yielded the best performance in differentiating malignant from benign nodules.

• The combined model had clinical application value and excellent discriminative ability.

• The model can assist radiologists in diagnosing malignant from benign pulmonary nodules.

Keywords  Diagnosis (differential), Machine learning, Nomograms, Solitary pulmonary nodule, Tomography (x-ray 
computed)

Graphical Abstract

Background
Lung cancer is the leading cause of cancer-related death in 
the world, accounting for 18.0% of the total cancer deaths 
[1]. According to the eighth edition of the tumor, node, 
and metastasis classification for lung cancer, the 5-year 
survival rate of patients with stage IA1 lung cancer is 90%, 
while it drops to 12% in stage IIIC [2], which reveals that 
early screening and diagnosis of lung cancer are essential. 
Early-stage lung cancer usually presents as solitary pulmo-
nary nodules, which can be divided into solid nodules and 
sub-solid nodules based on density [3]. Malignant solid 
nodules show higher grade malignancy, earlier metastasis, 
and worse prognosis [4–7]. In addition, malignant solid 
nodules have a short doubling time and rapid growth [8].

Under T staging, subcentimeter nodules are the small-
est nodules. If malignant solid nodule can be diagnosed 

and treated in time at subcentimeter stage, it will effec-
tively improve the prognosis of patients. Besides, despite 
the small size of the tumor, solid subcentimeter non-
small cell lung cancer does not always correspond to 
early-stage disease [9]. Malignant subcentimeter solid 
pulmonary nodules (SSPNs) can present lymph node 
metastasis and distant metastasis, and lymphatic, vascu-
lar, and pleural invasion are also more likely to occur in 
patients with solid subcentimeter NSCLC [9, 10]. How-
ever, the differential diagnosis of SSPNs is particularly 
difficult in clinical practice. There is an overlap of benign 
and malignant SSPNs in computed tomography (CT) 
imaging as some small nodules lack obvious imaging 
characteristics [11]. Biopsy is very difficult for SSPNs and 
prone to false negatives, and follow-up may cause addi-
tional radiation exposure and psychological and financial 
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burden for patients [12, 13]. More importantly, the 
delayed diagnosis of malignant solid nodules may lead 
a patient’s prognosis to further deteriorate. Therefore, a 
more accurate and earlier diagnostic approach is essen-
tial for patients with SSPNs.

Radiomics can extract a large number of high-dimen-
sional imaging features and convert this imaging infor-
mation into quantitative parameters for analysis and 
modeling [14], which may serve as a noninvasive method 
to support personalized clinical decision-making. Previous 
studies have revealed that radiomics has great potential to 
support radiologists in identifying benign and malignant 
solid pulmonary nodules [11, 15–18], but few studies have 
investigated the performance of enhanced CT radiomics 
in differentiating malignant from benign SSPNs. We aimed 
to explore the value of enhanced CT-based radiomics in 
discriminating malignant from benign SSPNs, to develop a 
combined model based on clinical and radiomics features 
for the differential diagnosis of SSPNs in the clinic.

Methods
Patient selection
The institutional review board waived the requirement 
for informed patient consent for this retrospective study. 
We retrospectively reviewed 950 patients with SSPNs on 

enhanced CT in our hospital from April 2017 to June 2022. 
A total of 324 patients were included, based on the following 
criteria: (1) mean solid nodule diameter ≤ 10 mm; (2) malig-
nant and benign nodules confirmed by surgical pathology, 
with nodules that remained stable for more than 2  years 
after follow-up or that became smaller or disappeared for 
less than 2  years of follow-up considered benign; and (3) 
enhanced CT images with slice thickness ≤ 1.25  mm. The 
exclusion criteria were as follows: (1) metastases confirmed 
histologically by surgical resection, (2) poor image quality or 
evident artifacts on CT images, and (3) patients with incom-
plete clinical data. The 324 patients with 324 nodules were 
randomly divided into the training (n = 226) and testing 
(n = 98) cohorts, according to a 7:3 ratio, for model learning. 
The study workflow is shown in Fig. 1.

CT protocol
Chest CT images were obtained using 64-detector (Light-
Speed VCT or Optima CT660, General Electric Medi-
cal Systems, Milwaukee, WI, USA; Toshiba Aquilion, 
TOSHIBA Medical Systems, Otawara, Japan) multislice 
scanners and were reconstructed using standard algo-
rithms. The parameters of LightSpeed VCT or Optima 
CT660 were as follows: tube voltage, 120 kVp; auto mA 
settings (tube current 120–500  mA; noise index 11 or 

Fig. 1  The flow chart showing the patient recruitment process. SSPNs, Subcentimeter solid pulmonary nodules



Page 4 of 13Liu et al. European Radiology Experimental             (2024) 8:8 

13; helical pitch 0.992 or 0.984; rotation time 0.5 or 0.6 s; 
thickness 5 mm), and the parameters of Toshiba Aquilion 
were reconstructed at 120 kV and 150 mAs, with a helical 
pitch of 0.980 s and a thickness of 5 mm. Reconstruction 
thicknesses were 1.00 or 1.25 mm at a 0.8-mm interval. 
Eighty to 90  mL of iopromide (iodine concentration, 
300 mg/mL) was injected intravenously at 2.5 mL/s, and 
imaging was performed 25–30 s after injection.

Clinical and CT image features analysis
Image features were analyzed by a junior radiolo-
gist and reviewed by a medium-senior radiologist 
with 15–30  years of experience. The radiologists were 
blinded to the clinical findings and histological results. 
Disagreements between the two radiologists were 
resolved via discussion. Images were viewed at the lung 
(window width, 1,600 HU, and level, -600 HU) and 
mediastinal (window width, 350 HU, and level, 40 HU) 
windows. The CT features recorded in the analysis were 
as follows: (1) nodule location (left and right lungs, 
upper, middle and lower lobes); (2) diameter (average 
of the maximal long-axis and maximal short-axis per-
pendicular to it); (3) nodule–lung interface (clear or 
blurred/halo); (4) enhancement degree (compared with 
the muscle in the same slice, the enhancement degree 
of the nodule was low if the enhancement was lower 
than that of the muscle, medium if it was equal to that 
of the muscle, and high if it was higher than that of the  
muscle); and (5) other characteristics (lobulation, spicula-
tion, vacuole, pleural indentation, air bronchogram, and 
vascular convergence). Clinical data of patients including 
sex, age, smoking history, and interval time between 
the CT scans and surgery were collected and recorded.

Segmentation and radiomics feature extraction
This study used the Deepwise Multimodal Research Plat-
form version 2.0.1.4 (https://​keyan.​deepw​ise.​com, Beijing 
Deepwise & League of PHD Technology Co., Ltd, Beijing, 
China) to perform the radiomics analysis, which included 
image annotation, feature extraction and selection, 
and model establishment. The software is an integrated 
machine learning platform for medical data analysis 
based on the mature python Pyradiomics (version 3.0.1) 
and Scikit-learn (version 0.22) packages. Thin-slice CT 
images were uploaded to the platform in the original Dig-
ital Imaging and Communications in Medicine format. A 
blinded radiologist (Liu) manually delineated the regions 
of interest (ROI) of the nodules on all transverse images 
slice by slice, while avoiding the inclusion of adjacent ves-
sels, bronchi, and normal lung tissue. Radiomics features 
were extracted from the ROIs of the uploaded CT images 
and analysis was quantified based on the volume of inter-
est. To assess the interobserver reproducibility of the 

segmentation, 30 patients were selected randomly and 
re-segmented by the same radiologist, following the same 
principles as those described above, 1  week later. Intra-
class correlation coefficients (ICCs) of features were cal-
culated, and features with values > 0.75 were included in 
subsequent analysis. Normalization and resampling were 
used during image pre-processing with fixed bin width 
of 25, and all images were resampled to [1,1,0] after the 
B-spline interpolation sampling technology conducted in 
this study. High-throughput radiomics features extracted 
in this study included: first-order features, shape features, 
and texture features including gray level co-occurrence 
matrix (GLCM), gray level size zone matrix (GLSZM), 
gray level run length matrix (GLRLM), gray level depend-
ence matrix (GLDM), and neighboring gray difference 
matrix (NGTDM). All features were named based on 
the three-level naming method, and each level was con-
catenated with “_” [19]. The first level was the image pre-
processing method and specified parameters, the second 
level referred to the feature type, and the third level rep-
resented the statistical description.

Feature selection and model construction
The original dataset was randomly divided into train-
ing and validation cohorts, in a ratio of 7:3, and a model 
was developed using fivefold cross validation. To allevi-
ate redundancy between radiomics features, less signifi-
cant features were removed when the linear correlation 
coefficient between any two features was greater than 0.9. 
The feature selection method used in this study was the 
analysis of variance F-test. Classification machine learn-
ing model was constructed using logistic regression to 
differentiate malignant from benign SSPNs. The clinical 
and CT characteristics in benign and malignant cohorts 
were firstly analyzed using univariate analysis, and char-
acteristics with p < 0.05 in univariate analysis were further 
included in multivariate logistic regression. In addition, 
we constructed a logistic regression model that com-
bined the selected radiomics and CT features. Radiomic 
signature was constructed through linear combinations 
of selected features by their respective coefficients, and 
the radiomics score was calculated as follows [20]:

Radscore = 1/(1 + exp(-logit))

where β1,β2,β3, · · · ,βn are the coefficients of each fea-
ture and χ1,χ2,χ3, · · · ,χn are the magnitudes of the radi-
omics features.

Radscores was the decision probability of the logis-
tic regression model, which indicated the relative risk of 
malignancy in the test samples. Finally, the performances 
of the radiomics, clinical, and combined models were 
compared statistically.

logit = β1 × χ1 + β2 × χ2 + β3 × χ3 + · · · + βn × χn

https://keyan.deepwise.com
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Statistical analysis
Statistical analyses of clinical and CT features were 
performed using the SPSS software version 25.0 (IBM 
Corp., Armonk, NY, USA). Kolmogorov–Smirnov nor-
mality test was used to evaluate whether quantitative 
variables obey normal distribution. Continuous variables 
conforming to a normal distribution were expressed 
as the mean ± standard deviation; otherwise, they were 
expressed as the median (the first quantile; the third 
quantile). To compare the differences between groups, 
the Mann–Whitney U test and independent-samples 
t-test were used for quantitative variables, and Pearson’s 
chi-squared test was used for categorical variables. Model 
diagnostic performance was evaluated using the area 
under the receiver operating characteristic curve (AUC), 
accuracy, sensitivity, specificity, positive predictive value, 

and negative predictive value. The AUCs of different 
models were compared using the Delong test. All statisti-
cal tests were two-sided, and values of p < 0.05 were con-
sidered significant. A decision curve analysis (DCA) was 
used to calculate the clinical impact of the models.

Results
General information and CT characteristics
Detailed information and CT characteristics of the train-
ing and testing cohorts are shown in Table 1. A total of 
324 patients with SSPNs (166 benign and 158 malignant) 
were selected. Among the 166 benign nodules, 125 were 
confirmed by postoperative histopathological results 
(including 16 granulomatous inflammations, 27 hamarto-
mas, 36 pulmonary lymph nodes, 7 sclerosing pneumo-
cytomas, and 39 incidences of nonspecific inflammation), 

Table 1  Demographic information and CT characteristics of training and testing cohorts

Data are expressed as number (%), or mean ± standard deviation

LUL Left upper lobe, LLL Left lower lobe, RUL Right upper lobe, RML Right middle lobe, RLL Right lower lobe

Characteristics Training cohort (n = 226) Testing cohort (n = 98)

Benign (n = 116) Malignant (n = 110) p Benign (n = 50) Malignant (n = 48) p

Gender 0.319 0.658

  Female 76 (65.5%) 65 (59.1%) 28 (56.0%) 29 (60.4%)

  Male 40 (34.5%) 45 (40.9%) 22 (44.0%) 19 (39.6%)

Age (years) 56.4 ± 10.7 55.6 ± 9.5 0.572 56.7 ± 9.1 55.8 ± 9.8 0.629

Smoking history 0.981 0.307

  Yes 22 (19.0%) 21 (19.1%) 12 (24.0%) 16 (33.3%)

  No 94 (81.0%) 89 (80.9%) 38 (76.0%) 32 (66.7%)

Diameter (mm) 6.7 ± 1.9 8.4 ± 1.5  < 0.001 6.5 ± 1.8 7.9 ± 1.7  < 0.001

Location 0.281 0.857

  RUL 23 (19.8%) 22 (20.0%) 7 (14.0%) 7 (14.6%)

  RML 19 (16.4%) 9 (8.2%) 10 (20.0%) 7 (14.6%)

  RLL 26 (22.4%) 24 (21.8%) 16 (32.0%) 13 (27.1%)

  LUL 17 (14.7%) 25 (22.7%) 8 (16.0%) 11 (22.9%)

  LLL 31 (26.7%) 30 (27.3%) 9 (18.0%) 10 (20.8%)

Enhancement degree 0.477 0.864

  Low 91 (78.4%) 93 (84.5%) 43 (86.0%) 41 (85.4%)

  Medium 13 (11.2%) 8 (7.3%) 3 (6.0%) 4 (8.3%)

  High 12 (10.3%) 9 (8.2%) 4 (8.0%) 3 (6.2%)

Nodule-lung interface  < 0.001 0.003

  Clear 111 (95.7%) 84 (76.4%) 48 (96.0%) 36 (75.0%)

  Blurred/Halo 5 (4.3%) 26 (23.6%) 2 (4.0%) 12 (25.0%)

Lobulation 72 (62.1%) 93 (84.5%)  < 0.001 22 (44.0%) 41 (85.4%)  < 0.001

Spiculation 6 (5.2%) 49 (44.5%)  < 0.001 4 (8.0%) 17 (35.4%) 0.001

Vacuole 2 (1.7%) 22 (20.0%)  < 0.001 1 (2.0%) 4 (8.3%) 0.334

Pleural indentation
17 (14.7%)

54 (49.1%)  < 0.001 6 (12.0%) 20 (41.7%) 0.001

Air bronchogram
1 (0.9%)

23 (20.9%)  < 0.001 1 (2.0%) 11 (22.9%) 0.002

Vascular convergence 0 (0.0%) 6 (5.5%) 0.033 0 (0.0%) 5 (10.4%) 0.060
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and the remaining 41 nodules were proved to be benign 
at follow-ups. The median interval time between the CT 
scans and surgery was 16 (first quantile 9; third quantile 
25) days. There were, in total, 158 malignant nodules, 
which included 22 minimally invasive adenocarcinomas, 
125 invasive adenocarcinomas, 4 squamous cell car-
cinomas, 3 adenosquamous carcinomas, 3 carcinoids, 
and 1 small cell lung carcinoma. In the training cohort, 
there were significant differences among the benign and 
malignant groups in diameter, nodule-lung interface, 
lobulation, spiculation, vacuole, pleural indentation, air 
bronchogram, and vascular convergence.

Feature selection and model construction
There were significant differences between the benign and 
malignant groups in diameter, nodule-lung interface, spic-
ulation, vacuole, pleural indentation, air bronchogram in 
the multivariate analysis (Table 2), and these six CT fea-
tures were included to establish clinical logistic regression 
model. The AUC values of the clinical model in predict-
ing risk of SSPNs were 0.920 (95% confidence interval [CI] 
0.885−0.956) and 0.835 (95% CI 0.758−0.912) in the train-
ing and testing groups, respectively (Table 3).

A total of 2107 high-throughput radiomics features 
were extracted, and the four features that had the greatest 
relative weights were finally selected by F-test including 
gradient_glcm_Imc1, lbp-3D-k_gldm_LargeDependence-
HighGrayLevelEmphasis, log-sigma-1–0-mm-3D_ngtdm_
Contrast, and gradient_glcm_Imc2. The specific calculation 
formula for each feature can be found in the Pyradiomics 

web page (https://​pyrad​iomics.​readt​hedocs.​io/). Figure  2 
shows the radiomic features sorted by the absolute value 
of coefficients and rad-score distribution for benign and 
malignant nodules in the training and testing cohorts. The 
combined model was constructed by incorporating these 
six CT features and four radiomics features using logistic 
regression. Figure 3 shows the feature coefficients and the 
radiomics scores of the combined model in the training and 
testing cohorts.

Model performance comparisons
Table  3 shows the diagnostic performance of the clinical, 
radiomics, and combined models in the training and test 
groups. ROC curves were drawn to compare the diagnostic 
accuracy of the clinical, radiomics, and combined models, 
as shown in Fig.  4. The combined model yielded the best 
predictive performance in the training (AUC 0.942; 95% CI 
0.918−0.966) and test (AUC 0.930; 95% CI 0.902−0.957) 
groups. Based on the Delong test, the AUC of the combined 
model was significantly higher than the radiomics model in 
the training group (p < 0.001) and clinical model in the test-
ing group (p = 0.025). In addition, the clinical model had 
lower sensitivity while the radiomics model showed lower 
specificity in the two groups. The combined model achieved 
both high sensitivity in training (0.880) and testing (0.867) 
groups and high specificity in training (0.861) and test-
ing (0.849) groups. The rad-score distribution showed that 
compared with the radiomics model, the combined model 
had a relatively better overall prediction effect, as the com-
bined model effectively increased the correct prediction of 
malignant nodules and reduced the risk of malignant nod-
ules being misdiagnosed as benign, whether in the training 
or testing group. The DCA curves were drawn to investigate 
the clinical usefulness of the three models (Fig. 5). The rep-
resentative SSPN segmentation results are shown in Fig. 6.

Discussion
The differential diagnosis of benign and malignant solid pul-
monary nodules has always been a difficulty in clinical work. 
For large solid nodules, findings such as over 10 mm or 15 
mm in size, enhanced CT, PET-CT, CT functional imag-
ing, puncture biopsy, and other methods can also be used to 

Table 2  Multivariate analysis to identify significant factors for 
SSPNs

Features p Odds ratio Lower Upper

Diameter  < 0.001 1.450 1.192 1.764

Nodule-lung interface  < 0.001 10.996 3.852 31.388

Spiculation 0.001 4.079 1.730 9.615

Vacuole 0.001 9.752 2.396 39.696

Pleural indentation  < 0.001 3.782 1.888 7.576

Air bronchogram 0.001 13.820 2.929 65.213

Table 3  Diagnostic performance of the three prediction models in training and testing set

AUC​ Area under the receiver operating characteristic curve, CI Confidence interval, NPV Negative predictive value, PPV Positive predictive value

Group Model AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Training set Clinical model 0.920 (0.885–0.956) 0.850 0.800 0.897 0.880 0.825

Radiomics model 0.907 (0.875–0.938) 0.824 0.861 0.789 0.795 0.856

Combined model 0.942 (0.918–0.966) 0.870 0.880 0.861 0.858 0.883

Testing set Clinical model 0.835 (0.758–0.912) 0.745 0.604 0.880 0.829 0.698

Radiomics model 0.900 (0.867–0.932) 0.815 0.848 0.783 0.788 0.844

Combined model 0.930 (0.902–0.957) 0.858 0.867 0.849 0.846 0.870

https://pyradiomics.readthedocs.io/
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assist in diagnosis. However, most of these approaches are 
not effective for patients with SSPNs, for whom there is no 
better choice than planned follow-up. Unlike the indolent 
pathobiological behavior of subsolid nodules, solid nodules 
grow faster and are more likely to be invasive adenocarci-
noma [21]. Mohammed et al. [22] proposed that among the 

patients with non-small cell lung cancer, 13%, 31%, and 46% 
had progression after 4, 8, and 16 weeks, and 3%, 13%, and 
13% suffered from evident metastasis at 4, 8, and 16 weeks, 
respectively. Therefore, the delayed diagnosis of malignant 
solid nodules caused by follow-up may affect the prognosis 
of patients with early-stage lung cancer.

Fig. 2  Feature coefficients and radiomics scores of the radiomics model. a The feature parameters and their corresponding coefficients 
of the radiomics model. The radiomics score graphs of the radiomics model in training group (b) and testing group (c). In b and c, the blue bars 
below baseline 0 represent benign nodules with correct prediction, the red bars above baseline 0 represent malignant nodules with a correct 
prediction, and the cross parts represent model prediction errors
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To assist radiologists in the early diagnosis of solid 
nodules non-invasively, the present study developed a 
machine learning model that was combined with radi-
omic features and CT imaging characteristics to dif-
ferentiate malignant from benign sub-centimeter solid 
pulmonary nodules and verified its performance using 
ROC curves, AUC, accuracy, sensitivity, specificity, 
positive predictive value, and negative predictive value. 
The results revealed that the combined model provided 

better differentiation efficiency than the radiomics 
model and clinical model.

Clinical and CT features is the important basis for radi-
ologists to diagnose the malignant from benign SSPNs. This 
study found that the mean diameter, nodule-lung interface, 
spiculation, vacuole, pleural indentation, and air broncho-
gram were independent predictors of SSPNs, in agree-
ment with the findings of previous studies [13, 16, 23, 24]. 
This study found that the differences between benign and 

Fig. 3  Feature coefficients and radiomics scores of the combined model. a The feature parameters and their corresponding coefficients 
of the combined model. The radiomics score graphs of the combined model in training group (b) and testing group (c)
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malignant nodules were statistically significant at pleu-
ral indentation, and the coefficient of this feature was the 
highest among CT features in the combined model. Pleu-
ral indentation is caused by contraction of the pleura in 
response to intratumor fibrosis, and malignant nodules with 
pleural indentation tend to be more aggressive, providing 
an important differential diagnostic sign in this study. The 
blurred nodule–lung interface of malignant nodules is due 
to the continuous infiltration of malignant nodules into the 
periphery during the growth process, while benign nod-
ules generally exhibit no peripheral infiltration with a clear 

and smooth nodule–lung interface. Blurred interface is 
more common in small nodules, which may be related to 
the relative sparsity of tumor cells around the nodules [5]. 
Spiculation is invasive growth of the cancer and exudation 
or proliferative interstitial reaction, which is related to the 
active growth of tumor cells and the obstruction of connec-
tive tissue. Thin and short spiculation were more likely to 
be observed in malignant SSPNs than in benign SSPNs in 
this study. Although vacuole and air bronchogram were less 
frequently observed due to the small nodule size, the two 
signs were also conducive to the diagnosis of benign and 

Fig. 4  The ROC curves of the three prediction models for the classification benign and malignant SSPNs in training group (a) and testing group (b). 
ROC, Receiver operating characteristic; SSPNs, Subcentimeter solid pulmonary nodules
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Fig. 5  The decision curve analysis for clinical model (a), radiomics model (b), and combined model (c) in the training and testing group. The x-axis 
of the curves indicates the threshold probability. The y-axis indicates the net benefit. “All” and “None” show the hypothesis that all nodules were 
diagnosed as malignant or benign, respectively
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malignant SSPNs. Smoking history was not an independ-
ent factor to discriminate malignant and benign SSPNs in 
this study, which may be because adenocarcinoma accounts 
for most malignant nodules and has a higher incidence in 
women. Compared to men, women rarely smoke in China 
[25]. The difference in CT enhancement between benign 
and malignant nodules was not obvious in this study, as 
there was an overlap of benign and malignant SSPNs, and 
benign nodules can also present increased enhancement 
due to blood flow, perfusion, or capillary permeability [26].

Radiomics can extract quantitative features from medi-
cal images with high throughput and reflect the internal 
heterogeneity of tumor tissues that cannot be observed 
by human eyes through objective and quantitative meth-
ods [16]. Several studies have found that radiomics mod-
els perform well in classifying malignant from benign solid 
pulmonary nodules; however, these studies only focused 
on specific pathological types, i.e., lung adenocarcinoma 

and tuberculoma with nodule diameters less than 3 or 
4 cm [11, 13, 15, 16]. Zhang et  al. [16] proposed a diag-
nostic model combining CT and radiomic features and 
achieved an AUC of 0.85 (95% CI, 0.78–0.91) in the vali-
dation cohort, but they focused on solid nodules ranging 
from 5 to 20 mm. Therefore, there are still insufficient 
studies on radiomics models specifically targeting sub-
centimeter solid nodules containing different pathological 
types. Lin et  al. [27] developed a radiomics model based 
on noncontrast enhanced CT images to distinguish benign 
and malignant SSPNs, with an AUC of 0.940 in the train-
ing cohort and 0.903 in the test cohort, but the study only 
included 180 nodules. This study expanded the sample size 
to 324, including a more comprehensive range of patho-
logical types, such as adenocarcinoma, squamous cell car-
cinoma, adenosquamous carcinoma, carcinoid, small cell 
lung carcinoma, inflammation, hamartoma, pulmonary 
lymph node, sclerosing pneumocytoma, and other types.

Fig. 6  Representative segmentation results of nodules. a A nodule in RLL of a 75-year-old male, with mean diameter of 8.0 mm. The clinical 
model diagnosed it as malignant, while the radiomics and combined model diagnosed it as benign. Histopathological finding: sclerosing 
pneumocytoma. b A nodule in RUL of a 39-year-old male, with mean diameter of 10.0 mm. The clinical model diagnosed it as malignant, 
while the radiomics and combined model diagnosed it as benign. Histopathological finding: hamartoma. c A nodule in RUL of a 24-year-old female, 
with mean diameter of 6.0 mm. The clinical model diagnosed it as benign, while the radiomics and combined model diagnosed it as malignant. 
Histopathological finding: invasive adenocarcinoma. d A nodule in RUL of a 62-year-old male, with mean diameter of 6.5 mm. The clinical model 
diagnosed it as benign, while the radiomics and combined model diagnosed it as malignant. Histopathological finding: minimally invasive 
adenocarcinoma. RLL, Right lower lobe; RUL, Right upper lobe
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The radiomics model developed for SSPNs in this 
study contained four features (gradient_glcm_Imc1, lbp-
3D-k_gldm_LargeDependenceHighGrayLevelEmphasis, 
log-sigma-1–0-mm-3D_ngtdm_Contrast, and gradient_
glcm_Imc2) and showed good diagnostic performance 
in differentiating malignant and benign SSPNs. GLCM 
describes texture by analyzing the spatial correlation char-
acteristics of two pixels on an image that maintain a cer-
tain distance with each having a certain gray level. GLDM 
statistics describe the situation where the difference in 
texture between a certain pixel on an image and its sur-
rounding pixels is less than a certain threshold. NGTDM 
quantifies the difference between a gray value and the 
average gray value of its neighbors within distance. The 
nodules in this study were segmented into three-dimen-
sional volume of interest to extract the radiomic features, 
which can comprehensively reflect the internal informa-
tion of the entire nodule. The efficacy of the radiomics 
model was comparable to the clinical model in the train-
ing group but superior to that of the clinical model in the 
testing group. The performance degradation of the clini-
cal model may be due to uneven distribution of samples 
in the training and testing groups, but this finding also 
revealed that the diagnostic performance of the radiom-
ics model was more stable than the clinical model. How-
ever, the specificity of the radiomics model was the lowest 
among the three models, and clinical model showed low-
est sensitivity, especially in testing group (0.604). The 
combined model achieved the best discriminative ability 
among three models in training and testing groups with 
both high sensitivity and specificity, which make up for 
deficiencies of the above single models. The DCA also 
showed that the combined model has the best clinical 
application value, compared with the other two models.

As the technology of CT scanners has advanced, the 
spatial resolution of CT images has reached a higher level. 
Better spatial resolution can reveal tinier lung abnormali-
ties, retrieve detailed information, and allow clear descrip-
tions of lung anatomy, pathological changes, and disease 
states [28]. Albers et  al. [29] proposed technical refine-
ments of propagation-based imaging and achieved better 
image quality at lower x-ray dose levels, possibly revealing 
lung pathological lesions in 3D at high resolution. High 
spatial resolution makes it possible to visualize smaller 
structures and more details, which has a direct impact on 
accurate depiction of CT features and textural features in 
CT images. Studies have found that higher spatial resolu-
tion allows better differentiation of radiomics features and 
yields higher estimation accuracy for radiomics features 
[30, 31]. The increase in resolution may have the potential 
to improve the performance of our models based on CT 
and radiomics features, pending further experimental veri-
fication. This study has some limitations. First, this was a 

single-center retrospective study of nodules selected from 
a tumor hospital, which may lead to selection bias. Sec-
ond, the model developed in this study was only based 
on enhanced CT images, and whether its efficacy is bet-
ter than that of the plain CT-based radiomics model still 
needs to be further investigated in a comparative study. 
Third, there was a lack of external verification cohorts. It 
is necessary to conduct a multicenter study to validate the 
generalization ability of the models developed in this study. 
In addition, this study only focused on intratumoral radi-
omics features, and more image-derived information can 
be applied to model construction, such as the perinodular 
zone of the nodules and delta radiomics features [32, 33]. 
The performance of the model is expected to be further 
improved if these features can be incorporated.

In summary, radiomics signatures contribute to dif-
ferentiating malignant from benign SSPNs, and the 
machine learning model that was constructed combin-
ing CT imaging characteristics and radiomics features 
in this study showed excellent diagnostic performance, 
with high sensitivity and specificity. The combined 
model that integrated the benefits of the clinical and 
radiomics models offers the potential to assist radiolo-
gists in diagnosing benign and malignant SSPNs.
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